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Route Preview in Energy Management of Plug-in Hybrid Vehicles
Chen Zhang and Ardalan Vahidi

Abstract—This brief evaluates the use of terrain, vehicle speed,
and trip distance preview to increase the fuel economy of plug-in
hybrid vehicles. Access to future information is classified into full,
partial, or no future information and for each case an energy man-
agement strategy with the potential for a real-time implementation
is proposed. With full knowledge of future driving conditions, dy-
namic programming (DP) provides a best-achievable benchmark.
A partial preview level has access to future trip terrain and re-
quires velocity estimation. Equivalent consumption minimization
strategy (ECMS) is deployed as an instantaneous real-time min-
imization strategy with parameters adjusted by estimated future
driving conditions and obtained either from DP or from a back-
ward solution of ECMS. To reduce the requirement for future ve-
locity and detailed terrain information, another partial preview
level only assumes known trip distance to the next charging sta-
tion and elevation changes (if available). In this level, the param-
eter of the real-time ECMS is estimated based on the remaining
trip distance, the battery’s state-of-charge, and elevation changes
if included. The results are evaluated against cases with no preview.
Results from a number of simulation case studies indicate that the
fuel economy can be substantially enhanced with only partial pre-
view.

Index Terms—Energy management, optimization control,
plug-in hybrid electric vehicle, predictive control.

I. INTRODUCTION

P LUG-IN HYBRID ELECTRIC VEHICLES (PHEVs)
are now making the transition from prototype concept

to mass production. Plug-in versions of the Toyota Prius for
instance, are expected to go on sale in 2011–2012. Similar
to conventional hybrid electric vehicles, PHEVs can take
advantage of regenerative braking and a reduction in engine
size to operate more efficiently. In addition, by partly utilizing
the cheaper and typically cleaner electric grid energy, PHEVs
achieve a much better overall fuel economy than conventional
hybrid vehicles; their environmental footprint may also be
much smaller. The efficiency of a PHEV also relies on its
power management strategy, the algorithm which determines
the split of the power request between the combustion engine
and electric drive [19]. The focus of this brief is on developing
a real-time implementable power management strategy that
uses terrain, traffic, and trip distance preview and can enhance
energy utilization of PHEVs.
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Typical power management schemes in production HEVs use
rules, pre-optimized maps, or instantaneous optimization to re-
duce the fuel use while sustaining the state-of-charge (SOC) of
the battery [4], [10]. For this, they rely on instantaneous infor-
mation about power demand, the vehicle’s velocity, and the bat-
tery’s SOC. This is formalized in a family of Equivalent Con-
sumption Minimization Strategies (ECMS) first introduced by
[13] where the power-split ratio is found by an instantaneous
optimization algorithm [11], [16], [21]. An HEV maintains the
battery’s SOC in a narrow operating band during the whole trip.
However, in a PHEV maximum energy efficiency is achieved if
the batteries are depleted to their minimum allowable charge by
the end of a trip.

Existing energy management strategies for conventional
HEVs cannot be directly transferred to a PHEV. It is possible to
run the PHEV in its all-electric mode until the battery is nearly
depleted and then switch to a charge-sustaining mode and run
the PHEV similar to an HEV [3], [18]. The result however
may be far from optimal; it can be shown that the fuel-optimal
solution is one that blends the use of the combustion engine
and the electric motor throughout the trip in a way that the
battery is nearly depleted at the charging destination [18]. This
in turn requires knowledge of future trip conditions such as
the trip length and future power demands. In [25] we found
that knowledge of future road elevation profiles is beneficial
in energy management of HEVs. In [24] we showed that ad-
vance knowledge of trip length can contribute to fuel saving
in PHEVs. Missing in our previous work [24] and [25] was a
real-time implementable algorithm for systematic integration
of long-horizon preview information.

With complete knowledge of future driving conditions, it is
possible to generate the optimal energy management policy by
solving a dynamic program (DP) such as in [12]. However, this
is computationally demanding and is not suitable for the prac-
tical cases which have only partial preview. The authors of
[7] propose the use of a two-scale DP solution for a PHEV: A
higher-level DP that plans the battery’s SOC based on approx-
imate information for the entire trip and a lower-level shorter
horizon DP that has more accurate information and tracks seg-
mentally the SOC trajectory found at the higher level. While
interesting, constraining the solution to track a “loosely” opti-
mized SOC trajectory is a shortcoming of the approach in [7];
i.e., it does not fully adapt its policy to instantaneous values of
the battery’s SOC and driver demand.

This study differs from previous work in that it classifies four
different levels of access to the future information for power
management of a PHEV: 1) full knowledge of distance, future
velocity, and upcoming terrain profile; 2) full knowledge of dis-
tance, upcoming terrain and estimated velocity; 3) knowledge
of distance to the next charging station and elevation changes
(if available); 4) no future information. Except for the first level
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TABLE I
PARAMETERS OF THE SIMULATED PHEV

with full future information, the brief proposes real-time con-
trol strategies. The real-time power management is decomposed
into an instantaneous optimization and a (global) parameter es-
timation: the power management decisions are calculated by a
computationally efficient local ECMS optimization and based
on instantaneous driver demand and the battery’s SOC. It is the
unknown parameter of the local ECMS that depends on future
driving conditions. With the second level of preview, local opti-
mization parameters are estimated by a backward DP or back-
ward ECMS sweep over the estimated future velocity and exact
future 3-D terrain information. With the third preview level, the
parameter of local ECMS is adjusted based on the remaining
distance to the next charging station and elevation changes if
included. The proposed algorithms are in the class of nonlinear
model predictive control methods introduced in [6] with the cost
functions derived from Pontryagin’s minimum principle.

Section II presents the vehicle configuration and its simula-
tion model. Section III summarizes the DP and ECMS control
strategies and also includes the description of a rule-based con-
trol strategy which is used as a comparison baseline. Section IV
proposes different real-time control algorithms in which ECMS
is adopted for instantaneous optimization with parameters ad-
justed by different methods depending on the level of preview.
In Section V two sets of simulation case studies are presented
which lead to conclusions in Section VI.

II. PHEV POWERTRAIN CONFIGURATION AND MODEL

A midsize 2000 kg passenger vehicle with a parallel hybrid
electric configuration is selected for this study. Parameter values
and detailed performance maps for various powertrain com-
ponents are extracted from the database of Powertrain System
Analysis Toolkit (PSAT) simulation software developed by Ar-
gonne National Laboratory [1]. A 120 kW gasoline internal
combustion engine and a 45 kW AC motor are selected. They
are directly connected to a torque coupler followed by a 5-speed
automatic transmission. The auxiliary energy storage unit is a
21.5 Ah lithium-ion battery pack, reasonably sized for a PHEV.
A 60% depth of discharge results in 20–30 km all-electric range
depending on the cycle. The key vehicle parameters are summa-
rized in Table I.

The PSAT-based full-order powertrain model contains the ve-
hicle velocity, the clutch input speed, and the SOC of the battery
as its dynamic states with many other lookup tables and logical
switches. Maintaining this level of complexity for developing
an optimal power management scheme is neither practical nor
necessary. In fact, the state critical to the power management
is the slowly varying SOC of the battery [19]. Therefore a re-
duced-order model is developed which contains the battery’s
SOC as its only dynamic state. While there exist a number of
complex models for lithium-ion batteries that take into account

the dynamics of polarization effects [1], the battery here is mod-
eled with its open-circuit voltage in series with a constant in-
ternal resistance; this simplifies the model while maintaining the
main dynamic effects. SOC dynamics are described by

(1)

where is the open-circuit voltage of the battery, is the
battery’s electric power, is the internal resistance of the bat-
tery and connecting wires, and is the battery capacity. More
details can be found in [17]. In the reduced-order model we con-
tinue to use the PSAT lookup tables to model the engine fuel rate
and motor losses. The fuel rate is mapped from the engine
torque and engine speed

(2)

Here we assume the engine is in its hot condition. Another
lookup table is used to relate the motor mechanical power
and the motor speed to output electrical power of the battery

, as implied by

(3)

The gear shifting strategy which is a function of wheel torque
demand and vehicle velocity is also adopted from PSAT and
implemented as a lookup map.

III. ENERGY MANAGEMENT STRATEGY

A PHEV can be operated in two modes: charge-depleting
(CD) and charge-sustaining (CS). When the battery SOC is near
its minimum value the PHEV is operated in the charge-sus-
taining mode by blending operation of the engine and the elec-
tric motor. The battery’s SOC is maintained near a set value sim-
ilar in operation to a conventional HEV, therefore all the energy
management strategies for HEVs are transferable to PHEVs in
the CS mode.

When the battery SOC is high, the PHEV is operated in the
charge-depleting mode: the battery’s charge is depleted to its
minimum allowed value with either all-electric operation or
blended operation of the electric motor and combustion engine
[2]. Because the electric grid energy normally costs less than
gasoline fuel energy, the ideal scenario is to run the PHEV in its
all-electric mode for short trips between two charging stations.
For trips longer than the all-electric range, blended operation
of the electric motor and the combustion engine throughout the
trip is shown to be more fuel efficient than all-electric depleting
followed by charge sustaining [18]. The decision whether to
operate the PHEV in all-electric charge-depleting mode or
blended charge-depleting mode can be optimized by using the
knowledge of future driving conditions.

A. Rule-Based Control Strategy

When the future power demands are unknown, the vehicle is
initially operated in all-electric charge-depleting mode. During
this period the engine could be turned on if the power/torque re-
quest exceeds the capability of the battery or the electric motor.
When the battery nears minimum allowable charge, the opera-
tion is switched to the charge-sustaining mode. Because of the
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relative ease of tuning and implementation, rule-based power
management strategies have been widely used in industry. Ex-
amples of different rule-based strategies can be found in aca-
demic research papers such as [10], [12], and [15]. The rule-
based strategy for charge-sustaining power management in this
study is adopted from PSAT simulation software with more de-
tails shown in [25].

B. Optimal Control: DP and ECMS

Similar to conventional hybrid vehicles, maximizing the fuel
economy of a PHEV can be explicitly formulated as a minimiza-
tion of the following cost function [10]:

(4)

where denotes the cost-to-go at time from po-
sition given the current SOC to the final position
at time ; is the power-split ratio between the engine and
the battery and is the control input. The term penalizes
deviation of the final SOC away from ; in the
following discussion, this term is removed and replaced by an
equality constraint i.e., , where is the de-
sired SOC at the final time. The optimal solution should also be
subject to the powertrain model equations, the constraints for
physical limitations of components, and pointwise-in-time con-
straints for SOC operation.

Analytical solutions to the above optimization problem do
not exist in general, due to its many constraints and nonlin-
earities. We employ the two algorithms that have been widely
used for numerical solutions of the optimal energy management
problem.

1) Dynamic Programming: In the ideal scenario that the fu-
ture velocity and exact future power demands are known, the
optimal power-split ratio that minimizes the cost function (4)
subject to model equations and all constraints can be numeri-
cally obtained by solving a deterministic dynamic programming
problem [12] according to Bellman’s optimality principle.

2) ECMS: In the ECMS the above optimization problem is
simplified to a minimization of the instantaneous (rather than
integral) equivalent fuel rate defined as [15]

(5)

where is the net power charged to the battery or the
power drawn from the battery including the power lost to the
electric circuit’s resistance; , normally abbreviated as , is a
fuel equivalence factor to convert electricity to equivalent fuel;
and is the lower heating value of the fuel.

With known future power demands, it is possible to find the
true value for the equivalence factor . This can be better un-
derstood by using Pontryagin’s minimum principle. The Hamil-
tonian for the cost function (4) is

(6)

where is the co-state and its optimal value depends on fu-
ture power demands. Following Pontryagin’s minimum prin-
ciple, the co-state has the following dynamics [22]:

(7)

subject to the equality constraint . Using to
denote the battery’s current, we substitute the dynamics of the
SOC and into (6) and obtain

(8)

Defining

(9)

yields the same equation as in (5). The challenge in finding the
correct value of for any given cycle can be seen by ob-
serving its dependence on the co-state in (9). The optimal
value of the co-state should ensure and
this strongly depends on the upcoming power demands. There-
fore the optimal value of is a function of future driving con-
ditions as well as the current value of the battery’s SOC. Due to
uncertain future power demands, the true value of can not
be found, but we can come up with an estimate by utilizing
partial preview information, as described in the next section.

IV. ESTIMATION OF EQUIVALENCE FACTOR WITH

PARTIAL PREVIEW

A. Optimal Control With Partial Preview: Future Terrain, Trip
Length, and Estimated Trip Velocity

The future power demand is a function of upcoming road
slope and future velocity profile. The road terrain information
can be retrieved accurately from in-vehicle 3-D maps and the
vehicle GPS-based navigation system if the route is known a
priori. As for the velocity, it is possible to estimate it using
real-time traffic data streams or by using historical traffic data
[8], [9]. The focus in this brief, however, is not on a method of
velocity estimation; rather we focus on how such an estimate
can be used in real-time energy management of PHEVs.

1) Estimating the Equivalence Factor Using DP: From the
Hamilton-Jacobi-Bellman equation, we know that the partial
derivative of the optimal cost with respect to the state is equal
to the optimal co-state [22], that is

(10)

where is the optimal co-state as a function
of and position , and is the opti-
mized cost-to-go in (4). Note that has been reformed as

. Therefore, using (9) and (10) we have,

(11)
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Fig. 1. Estimate �� as a function of SOC and position in the 3-D plane.

Fig. 2. Estimate �� as a function of SOC and position in the 2-D plane.

With an estimate of future power demands, it is possible to
execute a dynamic program backward in time which will cal-
culate, for any possible pair , an estimate of the
optimal cost-to-go denoted by . Finally, the esti-
mate is expressed as

(12)

Because DP calculates the cost-to-go backward in time, the
value obtained from the above formula will not depend on the
past but only on future power demands. Thus a single round
of DP computations may be enough for a trip as long as the
estimated future power demand does not change significantly.
Fig. 1 maps out values of calculated using (12) for a simulation
case which is used later in our discussion. In the figure, a low
value implies using electric power is cheaper than using fuel and
therefore encourages the use of the battery. A high value on
the other hand discourages the use of the battery. As can be seen
in Fig. 1, the value of is mostly between 2 and 3.2 but drops
at high SOC values or when the trip is nearly complete. In other
words, the controller discharges the battery more aggressively
when it anticipates that the charge left in the battery meets the
energy needed to reach the destination. The value of depicted
in 2-D at different positions is shown in Fig. 2. It can be seen that
the -curve becomes steeper and more sensitive to the battery’s
SOC when the vehicle approaches its destination. We refer to
this method of estimating the equivalence factor by using DP as
D-ECMS in the following discussions.

2) Estimating the Equivalence Factor Using Backward
ECMS: Real-time calculation of the equivalence factor using
dynamic programming is viable but requires at least one back-
ward sweep which, depending on the selected grid size and the
processor, can be computationally demanding. In order to cut
the computational load, here we propose the use of a backward
ECMS, inspired by DP, for estimating the value. It is possible
to run the ECMS backward in time given the final SOC as

and to iterate on the value of that yields the present
SOC. More specifically we propose the following steps.

1) The range of the equivalence factor is and is es-
timated as in [24], where is the conversion ratio of fuel
and electricity price explained in Section IV-B and is
the neutral equivalence factor for a charge-sustaining HEV
[25].

2) The range is discretized and the optimal SOC tra-
jectory is obtained backward for each discretized value
in this range starting with the final SOC .
By changing time variable the SOC dynamics
in (1) and co-state dynamics in (7) can be rewritten back-
wards-in-time

(13)

(14)

However, this is a two-point boundary value problem and
computationally expensive due to the coupling of the SOC
and co-state dynamics in (13) and (14). To reduce the com-
putation time for an online implementation, the co-state
(and therefore the equivalence factor) are assumed to be
constants in each backward run of ECMS. This is a valid
assumption if: 1) the pointwise-in-time constraints on SOC
are relaxed and 2) the righthand side of SOC dynamics in
(1) is not an explicit function of SOC. The latter is true
when the open-circuit voltage of the battery , and the
battery resistance , and capacity , are constants. These
assumptions yield and a constant optimal equiv-
alence factor . Considering the variation of the battery’s
parameters, a constant estimation of the equivalence factor
does not result in a globally optimal solution. However, we
note that the estimation error of the future driving condi-
tions may have a larger impact on the equivalence factor
than the variation in battery parameters and therefore the
latter may not significantly influence the results. At each
position and based on the latest preview information the
backward ECMS is executed starting with the final SOC
equal to ; this is repeated for different initial guesses
of the equivalence factor . Each run results in
an optimal SOC trajectory as shown in Fig. 3.

3) The value of that yields the present SOC of the battery is
selected as the optimal value. Interpolations are performed
when necessary. Note that this optimal value will be re-
calculated at each step in time based on the latest preview
information.

The computation time for the above backward ECMS ap-
proach on a personal computer is much shorter than running the
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Fig. 3. Optimized SOC trajectories with the same terminal SOC (��� ) and
different initial guesses (� ) of the equivalence factor.

DP and thus it is thought to be very promising for a real-time im-
plementation. Besides, because of its faster execution, the pre-
diction of the future can be updated periodically which poten-
tially enhances the performance of this methodology. We refer
to this method of estimating the equivalence factor by a back-
ward ECMS as E-ECMS.

B. Optimal Control With Partial Preview: Distance to the Next
Charging Station and Hilly Road Terrain

A desired scenario is to estimate the equivalence factor
without velocity information. In [5], [14], [20], and [25] dif-
ferent methods were proposed for estimating the equivalence
factor in a charge-sustaining HEV. In the PHEV case, because
the batteries can also be charged from the electric power grid,
these approaches for estimating the equivalence factor do not
directly apply. A fair valuation of can benefit greatly from: 1)
information about the distance to the next charging station as
compared to the all-electric range of the vehicle and 2) price of
grid energy as compared to price of fuel energy. Remember ,
by the definition, is the conversion ratio between electricity and
fuel. Therefore the first step is to find the price ratio between
electricity and fuel defined by

(15)

where is the fuel price; is the density of the fuel;
is the constant conversion ratio between different units; is
the electricity price; is the charging efficiency from charging
stations to a PHEV. is the estimated conversion ratio from
electricity to fuel for a charge-sustaining HEV [25] based on
the average efficiency of the powertrain.

When the traveling distance is known to be less than or equal
to the vehicle’s electric range, the powertrain can be run in its
all-electric mode. The equivalence factor for this mode is then
calculated as

(16)

Combining (15) and (16) yields

(17)

Note that in the above equation, is not a function of the neutral
equivalence factor . On the other hand, when the traveling dis-
tance is known to exceed the all-electric range, the equivalence
factor should be adjusted up to reflect the use of gasoline fuel
energy during the trip. We define a ratio parameter as follows
to relate the nominal all-electric range and the total trip dis-
tance

(18)

and determine an averagely estimated equivalence factor as an
initial guess

(19)

In the above equation when then the equality
reflects the fact that all of the electricity will be provided by the
grid. At the other extreme, when the electric range is much
smaller than the distance to the next charging station such
that , then which reflects the average electric price
in the charge-sustaining mode. In between, when , a
value of between and is chosen as the base equivalence
factor.

To reflect the influence of the current SOC in the selection of
the equivalence factor, one can redefine the parameters and
as follows:

(20)

(21)

where is the all-electric range for the remaining SOC and
is the remaining trip distance. They are defined as

(22)

where and are the upper and lower operation
bounds of the battery’s SOC. By its definition, the equivalence
factor varies between and depending on the current SOC

and remaining trip distance. The dependence of the
value on four parameters , , , and remaining trip dis-
tance reduces its sensitivity to the estimation of ; this is
unlike a charge-sustaining HEV. The ECMS discussed in this
part is referred as B-ECMS since it blends operation of the en-
gine and the electric motor and discharges the battery gradually.
This is similar to the methods proposed in [23], [24] but without
the assumption of tracking a predefined SOC trajectory.

In a hilly terrain where more gravitational potential energy
is available in descents to drive the vehicle, the assumption of
discharging the battery gradually may not be a good one. Ob-
serving this fact, here we propose an adjustment to the B-ECMS
strategy to account for the influence of large elevation changes.
The availability of gravitational potential energy in descents can
be translated into an extension of the all-electric range. The ad-
justed all-electric range including the extension is defined
as
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Fig. 4. Estimate �� as a function of SOC at different stages: charge-depleting
(CD) stage and charge-sustaining (CS) stage.

TABLE II
COST GAP (%) OF DIFFERENT CONTROL STRATEGIES COMPARED WITH DP

WITH TRIP DISTANCE OF 32, 48, 72 km IN CASE STUDY I

(23)

where is the vehicle’s mass; is the gravitational accelera-
tion; is the average battery voltage; is the average recu-
peration efficiency; we set when the potential energy
is not lost to braking. is the downhill elevation change and
defined as: , where is
the elevation at time , denotes the current time, and is the
future trip time. Note that is a non-negative value. We use

to replace the term in (20).

C. Optimal Control Without Preview

In the absence of preview, one can guess a low value for
the equivalence factor initially and increase it when the SOC
decreases. This ensures that the battery is discharged aggres-
sively at high SOC and conservatively at low SOC. When the
SOC reaches its lower bound (here 0.3), the control strategy is
switched to a charge-sustaining strategy which keeps the SOC in
a narrow operating band e.g., between 0.3 and 0.4. In this brief,
we refer to this strategy as depleting and sustaining ECMS (DS-
ECMS). This is shown in Fig. 4 where the equivalence factor
is chosen to be a linear function of SOC in the charge-depleting
(CD) stage and a piece-wise linear function in the charge-sus-
taining (CS) stage with details shown in [25]. A summary of dif-
ferent control strategies as well as their abbreviations is shown
in Table IV at the end of this brief.

V. SIMULATION ANALYSIS

The performance of the proposed methods is studied via two
sets of simulations. The first is a federal test cycle and a real-
world terrain profile. The second uses velocity and terrain data

TABLE III
COST GAP (%) OF DIFFERENT CONTROL STRATEGIES COMPARED WITH DP IN

CASE STUDY II (R1-ROUTE 1, R2-ROUTE 2, R3-ROUTE 3 IN FIG. 6, R4-FLAT

ROAD WITH VELOCITY FROM R2)

TABLE IV
COMPUTATIONAL CASE STUDY FOR PROPOSED CONTROL STRATEGIES

obtained simultaneously from driving in a mountainous area.
The total energy cost, taking into account both fuel and elec-
tricity consumption, is used as the index for evaluating the per-
formance of different strategies. The price of gasoline and elec-
tricity, which may vary by area and time, are set to $0.79/litre
($3/gallon) and $0.12/kWh, respectively.

A. Case Study I

The terrain and velocity profile for this simulation case study
are shown in Fig. 5. The terrain is a stretch of uphill road in
Contra Costa County in California and is extracted from In-
termap Technologies’ 3-D map database and the velocity pro-
file is that of the EPA Highway Fuel Economy Cycle (HWFET).
Because the fuel economy of a PHEV strongly depends on the
trip distance, three simulation distances of 32, 48, and 72 km
are selected which are respectively 1.6, 2.4, and 3.6 times the
all-electric range. The velocity profiles are repeated for long
distance simulations; the grades are mirrored, and then also re-
peated if necessary. A simple method to estimate the velocity is
deployed in which the vehicle is forced to run with the speed
limits along the road. In the simulation the speed limits, ob-
served from the HWFET cycle data, are set at 20 and 25 m/s
for the two different segments. The acceleration/deceleration of
the vehicle is set to the constant value 0.5 m/s . The real and
estimated velocity profiles are shown in Fig. 5. In practice it is
deemed feasible to estimate a vehicle’s future speed by using
known speed limits, traffic signal location and timing informa-
tion, and real-time traffic flow conditions [7].

In each simulation case study, dynamic programming with
full future information can find the lowest energy cost; we use
this lowest cost as the best benchmark. The performance of other
proposed methods is evaluated by calculating their percent en-
ergy cost difference with respect to the DP benchmark. Table II
summarizes these results. When preview is available the cost
gap of different control strategies compared with DP is gener-
ally less than 1%. We are also interested in determining which
parts of future information are important for reducing the energy
cost. It can be seen that B-ECMS with only trip distance infor-
mation performs very close to D-ECMS and E-ECMS and is not
far from the best possible benchmark, implying that knowledge
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Fig. 5. Velocity, elevation, and grade profiles for Case Study I.

of trip distance is a significant factor for energy cost saving for a
PHEV and that the influence of non-hilly terrains to an estima-
tion of the equivalence factor can be ignored. Without preview,
the energy cost would increase considerably as shown in the re-
sults of DS-ECMS and rule-based strategies.

B. Case Study II

To evaluate the influence of larger changes in elevation, we
drove a vehicle starting from the city of Clemson in South Car-
olina to the town of Highlands in North Carolina and back,
mostly via the hilly US-28 road on May 14th, 2010. The ele-
vation change in this trip was more than 900 m over a distance
of almost 50 km. We recorded both the velocity and elevation
using a Garmin GPS 20 receiver with a sampling time of 1 s.
The raw data from the GPS was refined by removing the dead
points and by interpolating the missed data. For the simulation
case study, we divide the trip into three segments all having the
same trip length (48 km) with a combination of uphill and down-
hill profiles (Route 1), an uphill profile (Route 2), and a downhill
profile (Route 3) as shown in Fig. 6. The predicted speed in this
figure reflects the speed limits observed from the road side signs
which we had recorded separately as a function of trip time. To
isolate the influence of velocity, we also designated a fourth sce-
nario denoted by Route 4 with the same velocity profile of Route
2 but with road grade set to zero. Route 1, Route 2, Route 3, and
Route 4 are abbreviated as R1, R2, R3, and R4, respectively, in
the following discussion.

Similar to the Case Study I, DP with full future information
is used as the best benchmark. Table III summarizes the energy
cost gap between strategies with and without preview and the
DP benchmark. Here D-ECMS results are not reported as they
are similar to those of E-ECMS. As shown in the table, E-ECMS
performs closest to DP for the R2 uphill terrain with the cost
gap of only 1%. The difference is larger for the R3 downhill
terrain (6.46%) and for the flat case of R4 (6.33%). Note that on
steep uphill roads the power demand from the grade dominates
that of demand to changes in velocity; thus poor estimation of
velocity may have less influence on the optimality of E-ECMS

Fig. 6. Velocity, elevation, and grade profiles for Case Study II.

solution. On downhill or flat terrain on the other hand the power
demand caused by changes in velocity dominates and therefore
the uncertainty about the future velocity profile results in a larger
cost gap between E-ECMS and DP.

As seen in this table, the trip distance based B-ECMS strategy
is far from optimal especially when there are large downhill el-
evation changes (e.g., 40% worse than DP for R3). During de-
scents there are frequent opportunities for running electric only
or for regeneration; but because B-ECMS estimates the equiva-
lent fuel factor based on the remaining trip distance only, it fails
to capture part of the available potential energy. This demon-
strates the importance of incorporating potential energy in the
estimation of an equivalence factor in occasions where large el-
evation changes exist. The performance of adjusted B-ECMS
for (partial) descent routes R1 and R3 is shown in Table III
and is much improved. Note that E-ECMS sometimes performs
worse than (adjusted) B-ECMS. This may be attributed to large
velocity transients in this case study which cannot be merely
captured by using the speed limit approximation as done in
E-ECMS. We observe that the algorithms with partial preview
always perform better than strategies without preview.

C. Computational Case Study

Besides the energy cost, we also compared the computational
burden in a simulation with total trip time of 1472 s and sam-
pling time of 2 s. The SOC resolution was set at 0.0001 for
all simulations. The simulations were performed on a personal
computer with a CPU speed of 1.8 GHz and memory of 2 GB.
Table IV summarizes the computational time of each algorithm.
It can be seen that the E-ECMS approach runs much faster than
D-ECMS with the same level of preview without much loss in
performance and has the potential to be used in real-time. The
computational burden of B-ECMS and DS-ECMS is essentially
the same as a normal ECMS approach and thus it is suitable for
real-time optimization.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

VI. CONCLUSION

This brief investigated real-time implementable energy man-
agement algorithms for energy management of plug-in hybrid
vehicles that can take advantage of information preview for fuel
saving. This is achieved by handling the energy minimization
problem at two levels: 1) a global optimization approach that
utilizes preview information (if available) for the whole trip to
estimate a fuel-electricity equivalence parameter and 2) a local
ECMS optimization which determines the optimal control based
on instantaneous values of power demand, the battery’s SOC,
and the parameter set by the global optimizer. A simulation
case study with a federal driving cycle (HWFET) indicated that
knowledge of distance to the next charging station can have a
significant influence on the fuel economy of a PHEV because it
allows better planning of all-electric or blended motor/engine
operation. Full terrain preview and estimated future velocity
preview can result in additional fuel economy improvements
of up to 1%. Another simulation case study with large eleva-
tion changes indicated the importance of accounting for poten-
tial energy gains resulting from elevation changes. Predicting
the future velocity profile based on speed limits helps the en-
ergy management of a PHEV in general. If the real driving cycle
has more velocity transients than the predicted one, the control
strategy that relies only on trip length and elevation change and
not on velocity estimate may perform better. The computational
time required to include preview is shown to be much smaller
than the total simulation time and therefore has the potential for
a real-time implementation. This work focused only on the en-
ergy minimization. Future work can consider other factors such
as total emissions of the vehicle and of the electric grid.
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