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Pro Memoria: HEP Fuel-Economy Options

• Reduce idling losses (“friction”), i.e., engine

shut-down at idle speed or zero torque

• Recuperate kinetic energy while braking

• Use “two engines”: one for acceleration, one

for cruising (optimized part-load efficiency)

• Operate powertrain in duty-cycle and

load-shift mode

» Load distribution not easy!
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Why “Two-Engines”

Vehicle

Control input (no braking assumed)

Objective function

Forward model

i.e., fuel consumption (using Willans approximation)
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Costate

Co-States and Hamiltonian
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Hamiltonian

Affine in the control! Minimum Principle yields “bang-bang”

control with possible singular arcs.
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Resulting optimal control law

Singular arc solution yields constant speed v0 with
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Use two mechanical power sources:

• One to sustain the desired speed and optimized for

efficiency

• One to provide the desired drivability (acceleration),

optimized for high torque

• Of course during accelerations both motors are 

used in parallel mode

• When coasting both motors are shut down; complete 

separation from wheels (minimize friction)

Main Points
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Optimal Energy Management in HEP

• When full information is available (perfect

models, full driving profile data, …) the optimal

energy control can be computed

• This solution is useful because it defines the

benchmark that no other control algorithm

can beat

• Some problems are close to this setup (hybrid

buses, …), in other cases the chosen control

algorithm can be compared to the benchmark
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Modeling Paradigms

“Forward,” physics-based, causal, …

“Backward,” inverted causality, …
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Driving cycle fixed a priori (speed and

elevation as functions of either time or

vehicle position)

ICE & EM described by quasi-static

models (“map”)

(speed, torque)

Battery as reversible energy reservoir

(charge integrator)

(voltage, current)

Problem Setup
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By the Way …
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and …



13June 12, 2008

Problem Formulation

Find that control sequence (“policy”) u(k) 

that minimizes the total fuel consumption while 

satisfying all constraints imposed on the SoC and 

on the control signal

Equivalence factor s(.) modified power split ratio
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Abstract Problem Formulation
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Principle of Optimality
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Deterministic Dynamic Programming



17June 12, 2008

Discrete State Space Requires Interpolation
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Nearest Neighbor …

… or  Linear Interpolation
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Computational Burden
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NEDC Results I – Trajectories
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NEDC Results II – “Cost to Go”

time  t [s]
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time  t [s]

NEDC Results III – Equivalence Factor
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Varying Altitude Profiles – I
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Varying Altitude Profiles – Control Signal
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Varying Altitude Profiles – Cost to Go
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Varying Altitude Profiles – Equivalence Factor
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By the Way …
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Reduce numerical efforts (restricted search space, adaptive

grid densities, combined “forward” – e.g. MPC – and backward

approaches, etc.)

Computation “hardware,” on-board computations, …

Realization: integration of varying levels of information about

the future driving profile (route, speed, altitude short and long

prediction horizons, …)

Optimal system design (structures, parameters, and control

algorithms combined)

Stochastic and mixed formulations

Interesting Problems


