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Current Management in a Hybrid Fuel Cell Power
System: A Model-Predictive Control Approach

Ardalan Vahidi, Anna Stefanopoulou, and Huei Peng

Abstract—The problem of oxygen starvation in fuel cells coupled
with air compressor saturation limits, is addressed in this paper.
We propose using a hybrid configuration, in which a bank of ul-
tracapacitors supplements the polymer electrolyte membrane fuel
cell during fast current transients. Our objective is to avoid fuel
cell oxygen starvation, prevent air compressor surge and choke,
and simultaneously match an arbitrary level of current demand.
We formulate the distribution of current demand between the fuel
cell and the bank of ultracapacitors in a model predictive control
framework, which can handle multiple constraints of the hybrid
system. Simulation results show that reactant deficit during sudden
increase in stack current is reduced from 50% in stand-alone ar-
chitecture to less than 1% in the hybrid configuration. In addition,
the explicit constraint handling capability of the current manage-
ment scheme prevents compressor surge and choke and maintains
the state-of-charge of the ultracapacitor within feasible bounds.

Index Terms—Compressor surge, fuel cell, hybrid vehicle, model
predictive control, power management, oxygen starvation, ultraca-
pacitor.

I. INTRODUCTION

FUEL CELLS are electrochemical devices that convert the
chemical energy of a hydrogen fuel into electricity through

a chemical reaction with oxygen. The byproducts of this chem-
ical reaction are water and heat. When compressed pure hy-
drogen is available, the subsystem that supplies oxygen to the
cathode is one of the key controlled components of a fuel cell
stack and is the subject of this paper. It is known in the fuel
cell community that low partial oxygen pressure in the cathode
reduces the fuel cell voltage and the generated power, and it
can reduce the life of the stack. Song et al. [1] show a rapid
drop in voltage when hydrogen or oxygen starvation occurs in
phosphoric acid fuel cells. In a patent filed by Ballard [2], data
shows that the fuel cell voltage is reversed during oxygen starva-
tion. Moreover, the temperature within the fuel cell may rapidly
increase when oxygen concentration is too low. Therefore, the
oxygen should be replenished quickly as it is depleted in the
cathode. In high-pressure fuel cells, a compressor is used to pro-
vide the required air into the cathode. The control challenge is
that oxygen is depleted instantaneously when current is drawn
from the stack, while the air supply rate is limited by the supply
manifold dynamics and compressor operational constraints [3].
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Air compressors can consume up to 30% of the fuel cell
power during rapid increase in the air flow. Centrifugal com-
pressors of the type used with high-pressure fuel cells, are sus-
ceptible to surge and choke which limits the efficiency and per-
formance of the compressor [4]. Choke occurs at high mass
flows, during step-up in compressor motor command and surge
occurs at low mass flows, normally during a sudden step-down
in compressor motor command. Surge is especially critical as
it causes undesirable flow oscillations and instability and it can
even result in backflow through the compressor and the instal-
lation downstream of the compressor [5]. Therefore, extra mea-
sures need to be taken during step-down in demand to prevent
compressor surge, and during step-up to prevent choke. It is
shown in [6], that control efforts targeting the compressor have
a great potential for improving system performance.

In [3], it is shown that a combination of feedback and feed-
forward control of the compressor input, can improve the tran-
sient oxygen response. However, the drop in oxygen level could
not be eliminated by merely relying on compressor control un-
less the intention to change the load levels is known in advance.
To protect against reactant starvation, Sun and Kolmanovsky
[7] propose using a “load governor,” which controls the cur-
rent drawn from the fuel cell. The load governor ensures that
constraints on oxygen level are fulfilled at the cost of slower
fuel cell response to current demand. Air compressor constraints
have not been explicitly addressed in the existing literature on
fuel cell power systems.

One way to avoid 1) fuel cell oxygen starvation, 2) com-
pressor saturation, and 3) simultaneously match an arbitrary
level of current demand, is to add a rechargeable auxiliary cur-
rent source which can respond quickly to a change in current
demand. Splitting the current demand with a battery or an ultra-
capacitor for example, offers additional flexibility in managing
the electric loads. The battery or ultracapacitor can be connected
with a fuel cell through a dc/dc converter as shown in Fig. 1.
Other configurations of the electric connection between a fuel
cell and an auxiliary energy supply are discussed in [8]. In all
cases, the auxiliary power source buffers the peaks in demand
and can be recharged by the fuel cell itself when the demand is
lower. In this work, we use a bank of ultracapacitors as the aux-
iliary power source to the fuel cell. We design a current split-
ting scheme which minimizes oxygen starvation and ultraca-
pacitor usage while it enforces bounds on ultracapacitor’s state
of charge and prevents compressor surge and choke. The capa-
bility to explicitly handle constraints of the system is the moti-
vation for using a model predictive control (MPC) approach in
this problem.

The requirements for the supervisory controller formulated
here are, therefore, different from those of existing power
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Fig. 1. Schematic of the hybrid fuel cell control system. The fuel cell stack
consists of 350 cells with peak power of 75 kW. The high pressure air supply
is powered by a 12-kW compressor. A small auxiliary power source provides
additional power when needed.

management schemes for hybrid vehicles. Most supervisory
power split methods aim to minimize fuel consumption and
enforce constraints of state of charge of the auxiliary power
source. Due to their emphasis in fuel consumption over a
typical loading cycle, the prior work can be categorized as
1) “rule-based,” in which power splitting is based on instant
demand [9], [10]. The advantage of these methods is their
relative simplicity. However, these methods cannot take into
account simultaneous constraints in the interacting subsystems
2) “optimization-based” methods on the other hand, optimize
the overall system performance over a decision horizon and
can account for subsystem constraints. Dynamic programming
(DP) is one of the optimization-based approaches that has
been used for power management of hybrid electric vehicles.
In most scenarios, dynamic programming is used offline for
a given load cycle and, therefore, is cycle specific [11], [12].
While most of these schemes are designed for hybrids with
internal combustion engines, they can be applied to hybrids
of fuel-cell with batteries or ultra-capacitors for vehicle [13],
[14] or other applications [15]. Guezennec et al. [16] use a
heuristic approach called “equivalent consumption minimiza-
tion strategy” for power management of a fuel cell hybrid,
which minimizes hydrogen consumption and regulates state of
charge of the auxiliary power source. Rodatz et al. have used an
optimal control design to minimize the hydrogen consumption
in a hybrid fuel cell system [17]. Their design ensures that the
auxiliary power source is charged at the end of each cycle.

The MPC controller that we formulate in this paper, satisfies
upper and lower bounds on the state of charge of the auxiliary
power source and compressor constraints at all instances. Fig. 1
shows the schematic of a fuel cell stack, the air compressor, a
dc/dc convertor and the MPC, which acts as the supervisory con-
troller. The MPC unit determines the current drawn from the
fuel cell and the compressor motor input to meet
the control design specifications. In our model and problem for-
mulation, we assume that a lower level controller in the dc/dc
convertor ensures that is drawn from the fuel cell [8], while
the BUS voltage is regulated by the ultracapacitor. This work
is unique to our knowledge in that it takes into account com-
pressor flow constraints in the supervisory control design stage.

Inclusion of a more realistic ultracapacitor model and the com-
pressor surge constraint in this paper, are the major additions to
our preliminary results presented in [18].

The next section describes the dynamic model of the fuel cell
system followed by a description of the hybrid system archi-
tecture. MPC formulation is briefly discussed in Section IV. In
Section V, we explain choice of prediction horizon and penalty
weights, followed by nonlinear simulation results. Conclusions
are given in Section VI.

II. MODEL OF THE FUEL CELL SYSTEM

A nonlinear spatially-averaged model of a 75-kW fuel cell
stack, together with its auxiliaries, is developed in [19] based
on electrochemical, thermodynamic, and fluid flow principles.
The fuel cell has 350 cells and can provide up to 300 A of cur-
rent. The model, representing membrane hydration, anode, and
cathode flow and stack voltage, is augmented with the models of
ancillary subsystems including the compressor, cooling system,
and the humidifier to obtain a nonlinear model of the overall fuel
cell system. We assume that humidity and temperature are reg-
ulated to their desired levels and do not consider the effect of
temperature or humidity fluctuations. This assumption should
not limit the validity of our results since the temperature and
humidity dynamics are considerably slower than the fuel cell
power dynamics which we study in this paper. We have also as-
sumed that a fast proportional–integral (PI) controller regulates
the hydrogen flow to the anode to match the oxygen flow. Since
the hydrogen is supplied from a compressed tank, a steady and
timely hydrogen supply is assumed. The fuel cell model used
in this work is identical to the one in [19] and [20] and used
in [3]. Note here that we do not use model simplifications used
in [7], [21], or [22]. Since the focus of this paper is on control
of air flow, we present the governing equations essential to un-
derstanding the dynamics between the compressor and the air
flow into the cathode. The compressor flow, pressure, tempera-
ture, and power characteristics are modeled using manufacturer
maps [19] and [20] and shown also in this section. For complete-
ness, all the governing equations of this model are listed in the
Appendix and consequently some equations appear twice; once
in the main paper body and once in the Appendix.

To model the concentration of oxygen in the cathode, we first
define a parameter called oxygen excess ratio

(1)

where is the flow of oxygen into the cathode and
is the mass of oxygen reacted in the cathode. Low values of

indicate low oxygen concentration in the cathode or oxygen
starvation. The rate of oxygen reacted , depends on the
current drawn from the stack

(2)

where is the number of cells in the stack, is the Faraday
number, and is the oxygen molar mass. Therefore, if the
rate of air supply to the cathode is kept constant, decreases
as more current is drawn from the stack. To maintain the level of
oxygen excess ratio, more air should be supplied to the fuel cell.
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The flow rate of the oxygen into the stack , is a function
of the air flow out of the supply manifold

(3)

where is the mass ratio of oxygen
in the dry atmospheric air and is the humidity ratio of the
atmospheric air. The mass flow rate out of the supply manifold

, depends on the downstream (cathode) pressure and
upstream (supply manifold) pressure , through the orifice
equation (A16). The total cathode pressure (A11) depends on
the partial pressure of the following: 1) the oxygen which is
supplied (A18), oxygen which is reacted (A26),
and the oxygen removed (A23); 2) nitrogen which is
supplied (A19) and removed (A24); and 3) the water which
is supplied (A20), generated (A28), transported through the
membrane (A29), and removed (A25). The additional cathode
states of oxygen mass (A1), nitrogen mass (A2),
water vapor mass (A3), total return manifold pressure

(A7), and anode states of hydrogen mass (A8), and
water vapor (A9), are needed to capture the temporal
dynamics of the total cathode pressure during a step change
in current. The derivation and physical interpretation of these
equations are omitted here but can be found in [19]. However,
to allow the reader understand how the control input affects
the supply manifold flow and, consequently, the oxygen
flow , we add the following relations. Specifically, the
supply manifold pressure , and mass , are related to the
compressor’s air flow , and temperature , through the
following dynamics:

(4)

(5)

where is a coefficient determined by air specific heat coef-
ficients and the supply manifold volume. The supply manifold
temperature is defined by the ideal gas law (A14).

The compressor air flow and its temperature are de-
termined using a nonlinear model for the compressor which has
been developed in [19] for an Allied Signals centrifugal com-
pressor that has been used in a fuel cell vehicle [23].

The compressor air mass flow rate is determined as
a function of pressure ratio across the compressor and blade
speed, using a compressor map shown in Fig. 2. In this map, the
dashed lines represent boundaries beyond which compressor
surge and choke can occur. The equations used here to represent
compressor dynamics are valid within these bounds. Later in
this paper, we enforce point-wise-in-time constraints to ensure
operation of the compressor inside the bounded region and
away from the surge and choke regions. In our simulations,
this map is modeled using a nonlinear curve-fitting technique,
which calculates compressor air flow as a function of inlet
pressure , outlet pressures , and compressor rotational
speed

(6)

Fig. 2. Compressor map.

The details of compressor flow calculation are shown in equa-
tion (A34)–(A43) in the Appendix. The compressor outlet tem-
perature and the torque required to drive the compressor are cal-
culated using standard thermodynamic equations [24], [25]. The
temperature of the air leaving the compressor is calculated as
follows:

(7)

where is the ratio of the specific heats of air, is the
compressor efficiency, and is the atmospheric temperature.
The compressor driving torque is

(8)

where is the specific heat capacity of air. The compressor
rotational speed is determined as a function of compressor
motor torque , and the torque required to drive the com-
pressor

(9)

where is the compressor inertia. The compressor motor
torque is calculated as a function of motor voltage
using a dc motor model

(10)

where , and are motor constant and is the motor
mechanical efficiency.

In summary, the compressor voltage , controls the speed
of the compressor through the first-order dynamics shown
in (9) and (10). The speed of the compressor determines the
compressor flow rate , which then according to (4), affects
the supply manifold pressure . The latter, together with the
cathode pressure, determines the supply manifold flow ,
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Fig. 3. Fuel cell response to step changes in current demand.

and the flow rate of the oxygen into the cathode which
finally affects the excess ratio given in (1).

The set of equations described above form the fuel cell state
space equations

(11)

where
is the state vector of the nonlinear dynamic system from

to the outputs compressor flow, manifold pressure,
and oxygen excess ratio.

Fig. 3 shows the nonlinear simulation results for the model
during a series of step changes in current. During the current
steps, the compressor motor input is calculated as a function of
current drawn from the fuel cell based on a feedforward map.
This linear map is designed such that at steady-state the oxygen
excess ratio is regulated at the value of 2. The figure shows cur-
rent, compressor input, compressor flow, manifold pressure, and
oxygen excess ratio. It can be seen that while the compressor
flow and manifold pressure increase when the current increases,
an undesirable rapid drop in oxygen excess ratio still occurs
during sudden changes in current levels.

Fig. 4 shows the evolution of the flow and pressure ratio in
the compressor map during these transients. During a step-up
in command, the compressor flow increases faster than the
pressure downstream the compressor. As a result the com-
pressor operates near the choke boundary. During a step-down
in , the operating trajectory nears the surge boundary. Larger

Fig. 4. Compressor response to step changes in current demand.

steps in current require larger compressor commands that if ap-
plied instantaneously may result in surge or choke. Slowing
down the compressor command through a filter could help pre-
vent the surge or choke of the compressor, but will deteriorate
regulation of oxygen in the cathode. An auxiliary power source
added to the fuel cell provides more flexibility when dealing
with these constraints. The next section explains the addition of
the auxiliary power source to the fuel cell model.

III. HYBRID FUEL CELL AND ULTRACAPACITOR

CONFIGURATION

In the absence of an auxiliary power source, the current
drawn from the fuel cell acts as an external disturbance and
its sudden increase results in oxygen starvation or compressor
surge. By adding a fast power source, part of the power demand
can be drawn from the auxiliary source, giving the fuel cell
and the compressor time to adjust to the new power levels.
To respond to rapid increase in demand, the auxiliary power
source delivers power for short periods of time. This power
requirement is best achieved by ultracapacitors which typically
have a power density ten times higher than batteries [13].
Unlike batteries, ultracapacitors store energy in the form of
electrical charge. The stored charge in an ultracapacitor is char-
acterized by a normalized measure called the state of charge,

. We associate the state of charge of 0 and 1 to
the minimum and maximum allowable charge, respectively.
The ultracapacitor operating voltage can be maintained within
a band by appropriate sizing of the ultracapacitor and enforcing
upper and lower bounds on state of charge.

The rate of change in ultracapacitor state of charge is propor-
tional to the charging current, [26]

(12)

where is the capacitance of the ultracapacitor in Farads and
is its voltage at full charge. In our design, we fix the max-

imum BUS and, therefore, ultracapacitor voltage to 350 V. We
choose the capacitance to be 0.65 F, which is a sufficiently large
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power buffer during fuel cell load transients. One possible con-
figuration that realizes this value of capacitance, is a bank of
120 ultracapacitors, each with capacitance of 80 F and a rated
voltage of 3 V, connected in series. Together the package of
ultracapacitors can provide a maximum voltage of 360 V and
a storage capacity of 11 Wh. This size of ultracapacitors can
shield the fuel cell from starvation or prevent compressor surge.
Note here that larger capacitances will be potentially needed for
start-up or other power requirements.1

In the hybrid fuel cell-ultracapacitor system, we assume that
the response time of the ultracapacitor is considerably faster
than the response time of the fuel cell. This is a valid assump-
tion, since the time constant of the small ultracapacitors used in
this application is very small. If the current demand is feasible,
that is, if the current demand does not exceed the capacity of the
hybrid system, it can always be met by the fuel cell or combi-
nation of fuel cell and the ultracapacitor. The current delivered
by the dc/dc convertor from the fuel cell is

(13)

where is the convertor efficiency which we fix at 0.95,
and are the fuel cell stack current and voltage, respectively.
The stack voltage is a nonlinear function of partial pressure
of oxygen in the cathode and hydrogen in the anode, stack tem-
perature, and fuel cell current. The detailed fuel cell voltage
model can be found in [19]. The ultracapacitor voltage , is
a linear function of its state of charge

(14)

As shown in Fig. 1, the requested current can be met by the
fuel cell and convertor as follows:

(15)

The current is provided by the ultracapacitor
when positive. Negative means that the fuel cell is charging
the ultracapacitor. The charging current would then be

. Therefore, (12) can be rewritten as follows:

(16)

This nonlinear equation is coupled with the nonlinear fuel cell
(11) through the term.

For the control design purpose, the nonlinear model of the
hybrid system consisting of (11) and (16), is linearized around
a selected operating point. We define nominal stack current of

A. The nominal desired current is also selected at
. The nominal value for oxygen excess ratio is se-

lected at , which corresponds to maximum fuel cell
net power for the nominal current [20]. The compressor motor
voltage needed, to supply the optimum air flow that corresponds
to and , is V. The state of

1In [13], Rodatz et al. have used ultracapacitors in a hybrid fuel cell vehicle
to assist the fuel cell during hard accelerations and for storing the energy from
regenerative braking. A much larger buffer size is required for their purpose.
They have provided this buffer by 282 pair-wise connected capacitors, each with
capacitance of 1600 F. The storage capacity is 360 Wh.

charge of the ultracapacitor at this nominal operating point is
.

Equations (11) and (16) are linearized around the previous
operating points and then discretized to obtain the equations for
the hybrid system

(17)

(18)

where and the operator indicates de-
viation from the operating point. The control command is

and the disturbance is the change in current de-
mand , which is treated as a measured disturbance.
The outputs are compressor flow, manifold pressure, oxygen ex-
cess ratio, and state of charge, therefore

The control objective is to find the control that regulates
oxygen excess ratio and state of charge of the ultracapacitor to
desired setpoints. To avoid large variations in the BUS voltage,
it is also required that state of charge of the ultracapacitor always
remain within nominal bounds

(19)

As a result, the BUS voltage is bounded between 200 and 230 V.
Moreover, the controller should ensure that the compressor
always operates away from surge and choke boundaries. As
shown in Fig. 2, the boundaries that define the surge and
choke regions can be approximated by a linear combination
of compressor flow and compressor pressure ratio. The surge
and choke constraints can then be represented by two linear
inequalities

(20)

Both compressor flow and pressure ratio are functions of states
of the system and are relatively easy to measure. Note here
that by confining the compressor between the surge and choke
boundaries, the region for which the nonlinear fuel cell and com-
pressor models can be approximated by a linear model is in-
creased. So the compressor constraints address both functional
and procedural requirements. To better handle these constraints,
a model predictive control methodology is applied using the lin-
earized fuel cell, electric compressor, and ultracapacitor models.

IV. CONTROL DESIGN

The constrained control problem described above can be
solved using a model-predictive controller [27]. In this paper,
we use a simple version of MPC called dynamic matrix control
(DMC). For a survey of other formulations applied in industry,
the reader can refer to [28]. A good review of conditions for
stability and optimally of MPC is presented in [29].

Here, we use the linear model of the hybrid system presented
in (17) and (18) for prediction and control design, and then apply
the control to the nonlinear fuel cell-ultracapacitor model (11)
and (16). First, to remove the direct injection of control input
to the hybrid output (18), we filter the two inputs through linear
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first-order filters with unity gain and very fast time constants.
When the system (17) and (18) are augmented with the two filter
states, the new augmented system is

(21)

in which

and are the two filter states.
To account for the difference between the nonlinear

and the linear models, a simple step disturbance observer
is used. In nonlinear simulations, the actual plant output

is obtained using the
nonlinear fuel cell model (11) coupled with the ultracapac-
itor charge dynamics (16). At each instant the disturbance

, is estimated as the difference between the plant and
the linear model outputs

(22)

where is the state of the linear model for instant
predicted at instant is the plant output, and repre-
sents the outputs at the operating point. It is assumed that future
values of measured disturbance , and estimator error

, remain constant during the next prediction horizon

(23)

Now the linear model can be used to estimate the states and the
outputs using the following observer with observer gains and

[27]:

(24)

where and are the estimate of the state
and output at instant based on information available at
instant . We choose to be a unit vector, which implies that
after each measurement the model outputs are replaced by the
actual plant outputs. This ensures that the output predictions are
updated by actual outputs of the plant at each step. The gain
is chosen to place the state estimator poles inside the unit circle.
An interested reader can find more details about other possible
disturbance models in [30] and [31].

The control inputs are the unknowns that are cal-
culated at each step. If the control horizon is and prediction
horizon is , a control sequence

Fig. 5. Loci of closed-loop poles in s-domain as prediction horizon increases
from h = 2 to h = 50 steps. The performance index weights are Q =
diag(0; 0; 100;1); S = diag(0:1; 0:001).

is sought at each instant , which minimizes the following finite
horizon performance index:

(25)
and satisfies the surge, choke, and state-of-charge constraints for
all . The constraints given by (19) and (20), can be described
as a function of predicted outputs as follows:

(26)

In the performance index, and are input and
output weighting matrices, respectively. Specifically,

and ,
where , and are penalties on
compressor flow, manifold pressure, oxygen excess ratio,
and state of charge, respectively. and are penalties on
compressor motor input and current drawn from the fuel cell.
We chose so that the the first two outputs
are not penalized in the performance index and are only used
for checking the constraints. At each sampling instant , the
plant output , and the disturbance , are measured.
The estimation error , is calculated using (22). The
reference is also fixed. Based on the assumption that
future values of measured disturbances remain constant during
the next prediction horizon, can be calculated as
a function of the control sequence , only. The performance
index (25), and the constraints (26), can be written as functions
of , output and disturbance measurements, and the reference
command in a quadratic form. Quadratic programming is
used to solve this constrained optimization problem at each
sampling time. In absence of constraints, the problem reduces
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Fig. 6. Worst input and output values for different selection of penalty on compressor input, S , and penalty on SOC, Q , when demand jumps from 191 to
291 A. Penalty on oxygen is fixed at Q = 100 and penalty on current is fixed at S = 0:001.

Fig. 7. Compressor flow trajectory with and without surge constraint. The per-
formance index weights are Q = diag(0; 0; 100;1); S = diag(0:1;0:001).

to a simple minimization problem and an explicit control
law can be calculated. With constraints, on the other hand, a
straightforward explicit control law does not exist. Instead

numerical optimization of the performance index is carried out
online to find the control input.2

V. SIMULATION RESULTS AND DISCUSSION

We first tune the prediction horizon and the penalty weights
using the linearized model of the plant. The control design is
then verified with the actual nonlinear model of the plant. The
desired values for regulated outputs is fixed for all times at

and . We used a sampling frequency
of 50 Hz. In this paper, the control horizon is chosen equal to
the prediction horizon. The length of prediction horizon is in-
fluential in both the computational time and performance of
the system. Fig. 5 shows the influence of choice of prediction
horizon on performance in linear unconstrained simulations.
The location of the dominant pole is shown in the s-domain
through transformation [33] as prediction horizon is
increased from 2 to 50 sampling steps. It is clearly shown that, a
short prediction horizon results in a pair of unstable closed-loop
poles. If the state of charge is not heavily penalized and if the
prediction horizon is short, the controller will use the ultraca-
pacitor aggressively to regulate the air flow in this short horizon.
The “short-sighted” and aggressive use of the ultracapacitor can
result in an unstable closed-loop system. Based on this analysis,

2It can be shown that with linear constraints, the control is a piecewise linear
function of the states. However, analytical calculation of such a function be-
comes increasingly difficult as larger prediction horizons are used [32].
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Fig. 8. Influence on time response when surge constraint is enforced. The per-
formance index weights are Q = diag(0; 0; 100;1); S = diag(0:1; 0:001).

we chose 40 sampling steps for the prediction horizon to avoid
poor performance and prevent instability.3

The effect of penalty weights on the controller performance
is studied next. Consider , and

in the performance index (25). The weight
on the state of charge, determines the extent to which the
ultracapacitor is used. Fig. 6 shows the influence of the weights
on maximum deviation from nominal values of inputs and out-
puts as the current demand increases from 191 to 291 A.4 In each
plot, the -axis shows the penalty on the state of charge and each
curve corresponds to a different penalty on compressor voltage.
Penalty on is fixed at 100, and penalty on current is fixed
at . Based on Fig. 6, we chose the penalty on state
of charge to be 1 and the penalty on compressor input at 0.1.
These values result in good oxygen regulation with minimum
compressor use and maximum utilization of the ultracapacitor
(minimum almost equal to 0.5) for 100 A increase in cur-
rent. Therefore, for the rest of simulations, the penalty matrices

and are fixed.
After a suitable prediction horizon and penalty weights have

been chosen, unconstrained and constrained case are compared
through nonlinear simulations. We simulated the system during
a sequence of steps in current demand. Fig. 7 compares the tra-
jectory of the compressor flow for the unconstrained and con-
strained case. Fig. 8 shows the corresponding time history of the
response. In both unconstrained and constrained simulations,
during step changes in the demand, the ultracapacitor is used
as a buffer. During step-up in demand, the current that is drawn

3In recent formulations of MPC, an infinite horizon cost function is used and
transformed into a cost function with finite horizon and a terminal penalty to
guarantee nominal stability [34]. In practice, increasing the length of the pre-
diction horizon is a common way to enhance the nominal stability [35].

4A simple kinetic energy calculation shows that accelerating a 1000-kg ve-
hicle from 20 to 21.5 m/s (45–48 mph) in 1 s, requires an almost 100-A increase
in current on a 300-V BUS.

TABLE I
MODEL VARIABLES AND PARAMETERS

from the fuel cell and passed through the dc/dc convertor , is
initially less than the demand current , but rises smoothly
to catch up with the demand. As a result, oxygen deficit re-
duces to negligible levels as shown in both simulations. When
the fuel cell current tops the demand, the ultracapacitor starts
to recharge. Enforcing the constraints ensures that the state of
charge remains between the specified bounds as shown in Fig. 8.
At a sudden 40 A dip in current results in compressor
surge in the unconstrained system. In the constrained simula-
tion, the current transient and, consequently, the compressor
input transients are slowed down and as a result surge is pre-
vented. At the same time, the excess current charges the ultra-
capacitor as much as the ultracapacitor constraint allows. Once
surge is inactive, the energy stored in the ultracapacitor is re-
leased and the state of charge is brought back to the desired level.
A similar response can be seen at . Note that choke con-
straint is not activated even during the large step-up at .

Simulation also shows that beyond the surge line the com-
pressor behavior is substantially different from prediction of
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TABLE II
FUEL CELL MODEL GOVERNING EQUATIONS

the linearized model. This model mismatch causes the overall
closed-loop response of the unconstrained system to degrade
as can be seen at . Confining the compressor operation
between the surge and choke lines, avoids regions with large
model mismatch and results in improved closed-loop perfor-
mance. Control of the hybrid fuel cell as explained above, re-
duces the compressor overload that occurs during rapid load
transients and might allow use of smaller compressors.

The simulations were performed on a 2-GHz Intel Pen-
tium processor on a Windows XP operating system. The
unconstrained simulation did not require online optimization.
Calculating the control gain and running the linear internal
model required less than 0.3 s5 for the 20 s unconstrained
simulation shown in Fig. 8. This time does not include the
runtime for the nonlinear plant since in reality the plant outputs
are available through measurement and do not require simula-
tion. The constrained simulation required solving a quadratic

5The CPU time command in Matlab was used to get an estimate of the com-
putation time.

program online. For the 20-s simulation shown in Fig. 8, the
total CPU time spent on optimization and running the linear in-
ternal model (and not including the simulation of the plant) was
20.1 s. The CPU time of 20.1 s for a 20-s constrained simulation
is promising, even though we know that the state-of-the-art
2.0-GHz processor is considerably faster than the automotive
microcontroller used in practice. It is also expected that the
simulations can be executed more efficiently in a real-time
environment. The feasibility of real-time implementation of a
similar optimization-based control method for the same fuel
cell system is shown in [36].

VI. CONCLUSION

An ultracapacitor was utilized to prevent fuel cell oxygen
starvation and air compressor surge during rapid load demands.
A model-predictive controller was designed for optimal dis-
tribution of current demand between the two power sources.
Choice of MPC over conventional control methodologies
was motivated by the need for smooth current split between
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TABLE III
CALCULATION OF COMPRESSOR FLOW

the power sources and existence of hard constraints in the
auxiliary power source and the air compressor. The controller
performance was verified on a detailed nonlinear model of the
fuel cell system. The controller performs well in splitting the
demand between the fuel cell and the ultracapacitor. As a result,
during a 100-A step-up in current in the hybrid architecture, the
oxygen excess ratio always stays above 1.98, whereas in the
stand alone fuel cell, oxygen excess ratio reaches the critical
value of 1 as shown in [18]. MPC enforces ultracapacitor con-
straints on state of charge and also prevents compressor surge.

APPENDIX

This appendix provides a summary of fuel cell model gov-
erning equations and parameters. Table I lists the parameters and
variables of the model. The model is explained in more detail in
[19]. Tables II and III summarize the fuel cell and compressor
equations, respectively.
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