
Optimal Pacing in a Cycling Time-Trial Considering Cyclist’s Fatigue
Dynamics

S. Alireza Fayazi Nianfeng Wan Stephen Lucich Ardalan Vahidi Gregory Mocko

Abstract— Optimal pacing of one’s effort during a cycling
time-trial or even during leisurely long bicycle rides can be
a challenge not only for a novice rider but also for the
experienced. The rider’s level of fatigue, upcoming elevation
changes, and varying wind speed all contribute to the problem
complexity. This paper formulates the pacing strategy for a
bicycle time-trial as an optimal control problem with the
goal of finishing in minimum time while considering pedaling
force constraints imposed by velocity and rider’s fatigue.
A phenomenological dynamic model for a rider’s fatigue is
constructed and the model parameters are estimated using
experimental data from road tests. Assuming prior knowledge
of the route elevation profile, the optimal control problem is
solved using dynamic programming which generates a feedback
strategy: Given measured bicycle velocity and the estimated
rider’s state of fatigue, the solution suggests a pacing strategy
that if followed can reduce total travel time. Preliminary
simulation results based on experimental data from a century
(100 mile) ride show the potentials of the proposed approach.

I. INTRODUCTION

Proper pacing is a key consideration for professional riders
in cycling time-trials and contributes considerably to the end
result [1]. Even a casual cyclist may be willing to know how
to ride a path to reach a pre-determined destination more
efficiently by managing his/her effort level. An even pace
(constant power) may be the best strategy for cycling on
flat roads with no wind [2]; but elevation and wind almost
always vary in a road time-trial. The optimal strategy is then
very much a function of future elevation profile, wind speed,
and the cyclist’s fatigue level [1]. In the past effectiveness of
varying rider’s power in parallel to changes in road loads has
been shown in simulations using heuristic pacing strategies
[1], [3].

Pacing in a cycling time-trial can be formulated more
systematically, as an optimal control problem and may be
solved in real-time given a reliable model of rider’s fatigue,
cadence-maximal force relationship, route information, and
sufficient computing power. With recent advances in mobile
device and backend computing, much easier online access
to GPS road data, and availability of inexpensive bicycle
probe sensors integrated with power meters, it may be
possible to compute a near-optimal riding strategy for a
rider in real-time. The suggested pace (power or velocity
recommendation) can be displayed to the rider on the screen
of the mobile device which can be easily mounted on the
bicycle.
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An optimal control approach to pacing was recently pre-
sented in [4] but only accounted for limited energy and power
resources of a cyclist via a simplified physiological model.
We believe that to calculate optimal pacing, one needs to
also consider the time-varying upper bound on the rider’s
pedaling force which is a function of the rider’s state of
muscle fatigue. In fact in many instances, a cyclist exhaustion
is due to muscle fatigue as opposed to lack of reserve energy
or power. This makes the problem quite challenging since
human muscle fatigue process is complicated to accurately
model or to quantitatively measure.

Most of the existing work on describing muscle fatigue
only consider static loading and do not address dynamic
loading effects such as those experienced during a bicycle
ride. Some papers such as [5] model the concentration
of species and their dynamics during muscle activation to
predict the generated force of an individual muscle but
require precise measurements for calibration of their many
parameters. Others have proposed models capturing only
the behavior of muscles in bulk. Such a model in [6] can
correctly describe the fatigue activation and recovery process
for hand muscles. It remains an open problem, if such
lumped models of human fatigue dynamics are effective in
calculating an optimal pacing (or exercise) strategy for an
individual.

In this paper we first construct a lumped dynamic model
for rider’s fatigue and recovery based on models proposed
in recent literature (Section II). The parameters of the model
for an individual rider are estimated using test data from a
“maximal-effort” experiment on a steep hill in Section III.
The assumption is that this model can estimate the maximum
force the rider can produce under similar conditions. Various
other factors including: weather, diet, sleep and fatigue from
other activities affect the cyclists riding capabilities and are
not considered in this paper. In Section IV a minimum
time optimal control problem is formulated with the goal of
finding the optimal power output (or velocity) of the cyclist,
given his fatigue dynamics model and with knowledge of
upcoming terrain. Wind influence is not considered in this
work nor the opportunity to optimally select gears. Gear
switching strategy is captured using a mathematical fit to
the rider’s data and replicated in simulations. The optimal
control problem is solved and simulated for a century (100
mile) ride, results are presented in Section V and analyzed
against data from a casual ride on the same route. Section
VI concludes with directions for future research that improve
applicability of results to real-world cycling.
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II. CONSTRUCTION OF A FATIGUE DYNAMICS MODEL

A. Background

As muscles contract and expand, they require a steady sup-
ply of Adenosine Triphosphate (ATP), which is commonly
referred to as the energy “currency” of cells [7]. The rate of
ATP production in a cell is a function of its oxygen supply.
When cardiovascular and respiratory systems are unable to
maintain supply of oxygen during intervals of increased exer-
cise intensity, muscles cannot produce force solely by aerobic
methods. Fortunately, cells have the capacity to produce
force and energy anaerobically in absence of oxygen. During
anaerobic ATP production, lactic acid accumulates in the
muscles, causing the feeling of muscle fatigue and reduces
muscle force generation capacity as also shown by Nobel
laureate Archibald Hill in his seminal work [8]. While build-
up of fatigue is clearly a dynamic process and a function
of muscle load history, very few studies present a dynamic
model for it. Among those that do, some focus on dynamics
of species in a single muscle over a short interval and include
a large number of parameters that are difficult to calibrate
[5], [9]. Other proposed dynamic models have at least three
dynamic states [6], [10], [11] for each muscle group and
therefore too complex for the optimal control problems that
we propose. The models presented in [12], [13] are single-
state; however they consider muscle fatigue and recovery
separately and model isometric (static) contractions only.

In this paper we construct a low-dimensional fatigue and
recovery model that can capture a person’s state of muscle
fatigue during dynamic movements. We note that perception
of muscle fatigue is also influenced by our motor cortex as
recently emphasized in a series of articles by Noakes et al.
[14], [15] and also in [16]. This paper focuses mainly on
peripheral fatigue that is rooted in muscle physiology as
opposed to central fatigue which is signaled by the motor
cortex. Only when subjects exert their maximal force, they
are mostly prone to the influence of central fatigue. Many of
our test data are at sub-maximal force levels during which,
it is known, peripheral muscle fatigue plays the major role
[17], [18].

B. A Fatigue Dynamics Model for Isometric Contractions

The maximal force that one can apply, to pedal a bicy-
cle for instance, is a decreasing function of both muscle
contraction velocity and the fatigue level. We propose to
separate these two effects, by first constructing a model of the
maximal force during isometric (zero-velocity) contraction as
a function of the fatigue only. This fatigue-based maximal
force will be then scaled as a function of contraction velocity,
as explained in Section II-C.

In this paper we employ a single-state dynamic model to
capture variation of maximum available isometric force, as a
function of applied force history for an individual. Lumping
together the influence of main physiological factors that
contribute to fatigue is justified by findings of [15]. Further-
more, only a rough estimate of a cyclist’s “state of fatigue”
is sufficient, given the nature of the problem addressed in

this paper. Various other factors including weather condition,
cyclist’s diet, sleep, and fatigue from other activities will also
affect riding capabilities and are not considered at this time.

Maximum Voluntary Contraction (MVC) is the maximum
isometric force an individual person can generate, when
rested. During continuous exertion, maximum produced iso-
metric force Fmax,iso drops below the MVC level. The decay
of Fmax,iso is an almost-exponential function of time. And
its time constant is proportional to the ratio between MVC
and a constant applied force Fiso, as shown by an interesting
survey of several experimental results in [19]. More generally
when the applied force Fiso varies with time, the experimental
survey in [19] supports the following model [12]:

dFmax,iso(t)
dt

| f atigue =−kFmax,iso(t)
Fiso(t)
MVC

(1)

where k is a constant but different for each person. Not
reflected in this model is the process of recovery during rest
when Fiso = 0. In [13] it is shown that recovery of muscle
groups is also an almost-exponential increase towards MVC
and can be modeled by:

dFmax,iso(t)
dt

|recovery = R(MVC−Fmax,iso(t)) (2)

where R is a constant recovery coefficient. But fatigue and
recovery cannot be really separated temporally. As explained
in [6], at each time a group of muscle fibers are in activation
mode, some are fatigued, and some recovering. In other
words, fatigue and recovery take place simultaneously. To
reflect this simultaneous occurrence, we propose to linearly
combine Equations (1) and (2) and to capture fatigue and
recovery in a single-state equation:

dFmax,iso(t)
dt

=−kFmax,iso(t)
Fiso(t)
MVC

+R(MVC−Fmax,iso(t))
(3)

According to this model, if one always exerts the maxi-
mum force, i.e. when Fiso = Fmax,iso, the equation has an
equilibrium where the derivative of Fmax,iso vanishes. This is
supported by our preliminary experimental observations. We
refer to equilibrium force as the threshold force Fth,iso:

Fth,iso = MVC · R
2k

(−1+

√
1+4

k
R
) (4)

This is the force at which fatigue and recovery happen at
the same rate and therefore an individual can continue to
generate this threshold force for a long time. However, in
this case Fmax,iso has reached its lowest level which means
the individual is maximally fatigued. We propose the notion
of State of Fatigue SoF :

SoF(t) =
MVC−Fmax,iso(t)

MVC−Fth,iso
(5)

which is a normalized index between 0 and 1, observing
that Fth,iso ≤ Fmax,iso ≤ MVC. An SoF of 1 indicates that
the subject is maximally fatigued and can only provide
the threshold force while Maximum Voluntary Contraction
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(MVC) is possible at SoF = 0. Note that so far, we assumed
zero-velocity muscle contraction. This assumption is not
valid during dynamic exercise and adjustments are necessary
as described next.

C. Maximal Available Force During Pedaling

It is well-known that the steady-state force that a muscle
can produce is a decreasing function of muscle contraction
velocity [7]. Back in 1938, Hill showed through experiments
on an isolated muscle [20] that this relationship is hyperbolic,
that is:

(Fmax +a)(v+b) = (Fmax,iso +a)b

where v is the contraction velocity, Fmax is maximal iso-
tonic (dynamic) force versus Fmax,iso which is the isometric
maximal force, and a and b are positive constants. While
this is now a well-accepted relationship, it only describes
the force-velocity relationship for an isolated muscle. For a
group of skeletal muscles working together, as for instance
in a leg press task or in pedaling, a linear rather than
hyperbolic relationship between force and velocity has been
observed [21], [22]. Equivalently it has been shown that the
maximum power output is a parabolic function of cadence
during a cycling exercise [23], which is consistent with a
linear force-velocity relationship. One explanation for this
observed linear relationship (as opposed to hyperbolic) can
be found in [21].

We adopt this linear relationship between maximal iso-
tonic force and velocity (cadence) and we propose to scale
down the maximal isometric force Fmax,iso, which is imposed
by fatigue, to approximate the available maximal dynamic
force Fmax as follows:

Fmax(t) = Fmax,iso(t)(1−
ω(t)
ωmax

) (6)

where ω denotes a rider’s cadence with its maximum value
denoted by ωmax. In this paper we assume ωmax = 20 rad/sec.
There are two underlying assumptions in Eq. (6): i) muscle
fatigue does not influence the linearity of force-velocity
relationship and ii) contraction velocity does not directly
influence the fatigue dynamics as shown in Section II-
B. Future experimental work is needed to determine how
strong these assumptions are. Most current papers study
fatigue under isometric conditions only and therefore do not
really address the interactions during dynamic exercise. An
interesting study [24] suggests muscle fatigue induced by
dynamic exercise will have a larger influence on muscle
power output at higher than at lower muscle contraction
velocities, which can be a good starting reference for future
work in understanding direct interactions between fatigue
and contraction velocities.

III. EXPERIMENTS FOR MODEL CALIBRATION

A. Test Setup and the Bicycle Model

In order to develop a model for a cyclists state of fatigue,
a Specialized Tarmac Expert bicycle was outfitted with the

following equipment: a CycleOps PowerTap power meter, a
Garmin Edge 500 cycling computer and a dual velocity and
cadence sensor manufactured by Wahoo Fitness. All these
devices communicate wirelessly using the ANT+ protocol,
which has been widely adopted by the fitness industry. A
power meter is a device that calculates the power using strain
gauges mounted inside the hub of the bicycles rear wheel,
and is used by many cyclists to gauge workout intensity.
Another useful metric for cyclists is cadence, which is the
number of revolutions per minute of the bicycle’s crank
arm. The Garmin cycling computer records velocity, power,
cadence, GPS location and altitude data at 1 Hz. The data
is stored in the cycling computer’s memory and can be
uploaded to a computer offline. The parameters of the bicycle
are listed in Table I and its gear ratios in Table II.

TABLE I
PARAMETERS OF THE TEST BICYCLE.

Parameter Value Unit Source
Bicycle mass (mb) 9.1 kg measured
Rider’s mass (mr) 81.6 kg measured
Rolling Resistance Coeff. (µ) 0.0036 - Table 6.4 of [25]
Drag Coefficient Cd 0.9 - Table 5.1 of [25]
Frontal Area (A) 0.4 m2 Table 5.1 of [25]
Wheel radius (rw) 0.35 m measured
Crank arm length (lc) 0.1725 m measured
Gearbox efficiency (ηg) 0.95 - Table 9.4 of [25]

TABLE II
GEAR RATIOS AND TEETH NUMBERS FOR THE TEST BICYCLE.

chain cogs
ring 11 12 13 14 15 17 19 21 23 25

53 4.82 4.42 4.08 3.79 3.53 3.12 2.79 2.52 2.30 2.12
39 3.55 3.25 3.00 2.79 2.60 2.29 2.05 1.86 1.70 1.56

The following longitudinal model is assumed for the
bicycle based on Newton’s second law, and neglecting the
inertial effect of rotating wheels1:

mt v̇ =
ηg

rg

lc
rw

Frider−
1
2

CdρAv2−mtg(µcos(θ)+ sin(θ))−Fb,

(7)
where variable names are those defined in Table I and rg
is the selection of the gear ratio from values in Table II.
Additionally mt = mb +mr is the total mass, g=9.81 m/s2 is
gravitational acceleration, ρ is density of air and assumed
to be invariant at all elevations. The road slope is θ with
positive/negative sign denoting uphill/downhill slopes. The
rider force exerted on the the pedal is Frider and total friction
braking force on wheels is Fb. In all our experiments, the
cyclist rode with shoes clipped in, which to some extent
justifies our assumption in Eq. (7) that flow of power to the
wheel is continuous (as opposed to intermittent).

The power meter estimates the rider power Pwheel at
the wheel which allows us to calculate the pedaling force
estimate, F̂rider, as follows:

F̂rider =
r̂g

ηg

rw

lc

Pwheel

v
(8)

1The effective inertia is me = mt + 2 Iw
rw

where Iw is the inertia of each
wheel. Here we have assumed that wheel inertial effect is negligible.
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where r̂g is the estimated gear ratio and is obtained by
division of wheel rotational speed ωwheel =

v
rw

by cadence
ωpedal . The estimated gear ratio often had several erroneous
spikes, in particular during coasting which were filtered by
a comparison to values in Table II.

B. Parameter Estimation

The fatigue model constructed in Section II has three
unknown parameters k, R, and MVC. To obtain the three
parameters, we arranged a “Maximal-Effort” experiment in
which a rider climbs up a steep hill 5 times. The hill was
chosen such that the rider had to ride at nearly his maximal
force during each climb. A series of five exercise trials was
conducted on a hill with a moderate gradient (3-6%). The
base and the summit of the climb were marked and the
cyclist was instructed to begin each test with a rolling start of
approximately ten miles per hour (4.5 m/s). Once each trial
began, the cyclists goal was to reach the summit as quickly as
possible. Between trials, the cyclist was allowed 90 seconds
to recover and coast down the hill to the start. The goal
was to examine how the cyclist’s power and force output
decayed during each successive test. The experiment was
not controlled for other factors influencing fatigue including:
weather, diet, sleep and fatigue from other activities.
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Fig. 1. Rider force from test data and estimated maximum force.

Figure 1 shows the velocity, cadence, elevation, actual
rider force, and the estimated isometric and dynamic max-
imal forces. At the time of this preliminary test, there was
no direct way of directly measuring rider’s maximal force
capacity. But when the rider force was rapidly decaying at
time intervals (a)-(e), we hypothesized that he was deeply
engaged in generating his maximal force. We formulated an
optimization to minimize the difference between the actual
and maximal force Fmax:

min
k,R,MVC

∑
S∈{a,b,c,d,e}

∫
S
‖Fmax(t)−Frider(t)‖2dt (9)

subject to equality constraints imposed by Eq. (3) and (6). We
also imposed 700N6 MVC 61000N as a reasonable range
for the rider’s maximum voluntary contraction. Additionally
constraints are imposed on values of k and R to limit them
between 10 times and 1/10 of values reported in [13] to
discard unreasonable solutions. This optimization problem
was solved using the fmincon nonlinear optimization function
in MATLAB with the resulting values of MVC = 1000N,
R = 0.0063s−1, and k = 0.0153s−1. The estimated maximum
force can be seen in Figure 1 as the dashed curve.

IV. OPTIMAL PACING PROBLEM FORMULATION

A cyclist has two degrees of freedom in managing road
loads: i) choice of his or her effort determines the bicycle
speed and ii) gear selection allows managing the balance
between one’s pedaling force and cadence. The focus of this
paper is only on choice of optimal pace (velocity or power);
choice of gear is “learned” from our test cyclist data and
used in this paper’s simulations. Because the gear selection
is very much a function of bike’s speed and road grade we
propose the following linear approximation:

rg(t)≈ a1v(t)+a2θ(t)+a3 (10)

and parameters ai are obtained from a least square fit to
the rider’s actual data. The estimated gear ratio can be then
quantized to the closest values in Table II. We observed that
this approximate model mimics, reasonably well, the same
rider’s gear choices on different days and routes.

The optimal control problem is to systematically calculate
a cyclist’s pace as a function of time such that some
performance objective is optimized. One can think of many
different objective functions depending on the exercise goal:
maximizing calorie burn, minimizing time, etc. In this paper
we focus on a minimum time optimal control problem (time-
trial), therefore:

min
u(t)
{J =

∫ t f

t0
dt =

∫ x f

x0

dx
v(t)
} (11)

where x0 and x f denote start and end positions respectively.
The decision variable is u(t), here chosen to be Frider(t)
which influences the velocity through Eq. (7)2. Several
pointwise-in-time constraints are also present and enforced:

constant power limit: 0 6 Prider(t)6 Pmax
force limit from Eq.(3),(6) : 0 6 Frider(t)6 Fmax(t)
only if braking applied: 0≤ Fb
SoF limit by definition: 0 6 SoF(t)6 1
reasonable velocity range: 0 6 v(t)6 vmax

(12)
Next, after showing test data from a century ride, we evaluate
a simulated rider’s performance when optimally paced at the
same century ride.

2One can also use rider’s power instead of force as the decision variable;
the two are not independent given that gear selection is imposed.
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Fig. 2. Actual cyclist data from part of a century ride. The rider had been
instructed to ride conservatively and not at full capacity in order to finish.

V. RESULTS
A. Actual Rider Data

Century data was collected at the third annual Blue Ridge
Breakaway on August 18, 2012. This was by the same rider
for whom the fatigue model had been calibrated and with
the bike and equipment described in Section III. The 100-
mile (≈168 km) ride began in Waynesville, North Carolina,
and included approximately 10,000 feet of climbing. The
elevation on the parkway reached 6000 feet above sea level,
while the elevation of Waynesville, NC and Clemson, SC are
2,700 feet and 750 feet above sea level, respectively. Since
this was an endurance event, the rider was instructed to ride
very conservatively in order to finish.

Figure 2 shows a part of the data gathered during this
century ride. Also shown in this Figure are maximum force
and state of fatigue calculated based on actual pedaling effort
and using equations (3)-(6). It can be observed that the actual
rider’s effort never reaches the maximum force and fatigue
limits. This is in part because the rider had had limited
knowledge of the route in the form of a small cue card
provided at the start. As a result, the rider rode conservatively
as supported by the power curve in subplot (f). Additionally
we note that the current fatigue model may be a bit optimistic
in predicting pedaling capacity.

B. Simulated Rider Results

The optimal control problem of Section IV was solved
numerically, using the method of Dynamic Programming
(DP), and for the entire century route. The fatigue model
and bicycle parameters remain the same as before. The
maximum rider power Pmax was chosen at 500 Watts. This
choice was based on actual rider’s experience that he could
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Fig. 3. Simulated cyclist results along the same path as in Figure 2. The
simulated cyclist was “optimally paced”.

maintain this level of power for periods of two minutes
or less. The velocity is upper bounded to 15m/s. A (nv =
40)×(nSoF = 210) grid was generated for the two states of
velocity and fatigue at every 70m position interval along the
168000m route (nx = 2400). This fine grid size for a long
ride required 34GB of random-access memory (RAM) which
forced us to run the DP computations on Clemson’s Palmetto
computer cluster with nodes with sufficient memory. The
simulation was run on a 2.66GHz Intel Xeon 7542 node
which had access to 512GB of RAM. The DP simulation
time for the entire century was approximately 11.75 hours.
This was a MATLAB implementation and not optimized
for computation time. Sparser grids were also tested and
generated reasonable results with much lower memory use
and shorter computation times.

Figure 3 shows the results for the simulated rider for the
same portion of the course as in Figure 2. This is only a
short section of the 168 km century in order to illustrate
the results more clearly. Because the actual rider was riding
a century for the first time and very conservatively, the
actual and simulated rider’s performance cannot be compared
quantitatively. Moreover, the simulated cyclist had complete
knowledge of the course and was able to act predictively.
As shown in subplot (d) of Fig. 3, the simulated cyclist got
closer to the state of fatigue limit at the end of the each
climb, whereas the actual cyclist did not push toward this
limit partly because he did not know, in advance, the length
of the uphill ride. Note also that the simulated cyclist’s SoF
increases slightly during and after the descent at 63 km while
it had remained steady at 0.5 for the actual cyclist. Velocity
during most climbs and descents is higher than in Fig. 2.
In particular, note that speed is increased during descents.

6461



This could be easily achieved through a more aerodynamic
position and pedaling a little harder. Many cyclists often do
not push to their limit during downhill rides preferring to
coast rather than pedal. However, the rider’s power output,
while always within a reachable range, may be unrealistically
high on average, based on previous riding experiences of the
test subject. It is our goal to characterize the rider’s power
limits more accurately in the near future.

VI. CONCLUSIONS
This paper proposed the idea of utilizing an optimal

control approach for optimally pacing a cyclist on a time-
trial while accounting for body fatigue dynamics. A fatigue
dynamics model was constructed and was calibrated using
data from a test subject riding an instrumented bicycle.
This model determined the time-varying upper bound to a
simulated rider’s pedaling force in a 168 km (century) ride.
With the assumption of prior knowledge of the upcoming
terrain, dynamic programming was employed to solve a
minimum-time optimal control problem for the entire century
and determined the optimal pace. Qualitative comparison of
results to data from an actual rider show similar trends, while
also provides insight on how performance of the actual rider
could be improved.

The results are promising, but they may not still show
the full potential of the fatigue model. Sometimes power
seems to be a major bottleneck and our near term goal is
to construct and evaluate a better model for dynamics of
power constraints. The century ride took place on a highway
where the road slopes were at most 3-6%. In country roads,
commonly traversed by cyclists, the slopes may be a lot more
demanding and muscle fatigue may be more of a bottleneck.
In such cases, the predictive nature of our fatigue model may
provide further predictive insights for pacing.

Currently the computational and memory demand of the
dynamic programming implementation is high. However
significant reduction in computational load is expected with
coarser grid size and perhaps with implementation in the
C programming language. Besides, we note that the DP
solution can be generated offline on a computing cluster,
given information about the rider and the path. The rider
can then be coached based on DP optimal results, prior to
a race. Alternatively, a look-up table of the pre-calculated
DP solution can be employed to provide real-time feedback
to the rider based on GPS position, measured velocity, and
estimated fatigue level. We plan to develop a mobile phone
App to demonstrate feasibility of this approach.
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