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Abstract— In this paper, a causal optimal controller based on
Nonlinear Model Predictive Control (NMPC) is developed for
a power-split Hybrid Electric Vehicle (HEV). The global fuel
minimization problem is converted to a finite horizon optimal
control problem with an approximated cost-to-go, using the rela-
tionship between the Hamilton-Jacobi-Bellman (HJB) equation
and the Pontryagin’s minimum principle. A nonlinear MPC
framework is employed to solve the problem online. Different
methods for tuning the approximated minimum cost-to-go as a
design parameter of the MPC are discussed. Simulation results on
a validated high-fidelity closed-loop model of a power-split HEV
over multiple driving cycles show that with the proposed strategy,
the fuel economies are improved noticeably with respect to those
of an available controller in the commercial Powertrain System
Analysis Toolkit (PSAT) software and a linear time-varying MPC
controller previously developed by the authors.

I. INTRODUCTION

A Hybrid Electric Vehicle (HEV) combines the mechani-

cal energy produced by a combustion engine with the elec-

trical energy of an energy storage system (usually a battery),

hence providing extra degrees of freedom for operating the

engine more efficiently. Another benefit of an HEV comes

from its ability to capture the kinematic energy of the vehicle

which is normally wasted during braking. Among different

HEV configurations, the power-split type is the most versatile

one having been used by several auto-makers. The Toyota

Prius, Ford Escape, and Ford Fusion hybrids are all power-

split HEVs currently in production. The versatility provided

by a planetary gear set (a speed coupler) in a powerplit hybrid

allows the engine operation to be completely decoupled from

the vehicle motion. Also, the battery can assist the engine or

it can store part of the mechanical energy from the engine

or from braking. The challenge is to decide how to split the

driver’s demanded power between the engine and the battery

and to select the system operation point such that the fuel

consumption is minimized without sacrificing drivability.

The fuel minimization problem of an HEV is a nonlinear

and constrained optimal control problem. Assuming full

knowledge of the future driving conditions, the globally

optimal solution for a model of the HEV can be derived

using dynamic programming (DP). However the DP solution

is noncausal due to its dependence on (generally unknown)

future power demands and it is computationally demanding

when a long horizon is considered. The DP solutions over

the known driving conditions have been used mainly as

benchmarks for the best achievable fuel economies [1]. By
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defining an equivalent fuel cost for the battery energy, Equiv-

alent Fuel Consumption Minimization (ECMS) methods have

been developed and solved at each instant rather than over

driving interval [2], [3], [4]. Although ECMS can be applied

online as a closed-loop controller, the decisions may be very

short-sighted because the dynamics of the system (battery in

general) are considered instantaneous.

A compromise between the computational cost and the

non-causality of a globally optimal DP solution and the

faster, causal, but instantaneous ECMS solution can be

formed in an energy management strategy based on the

Model Predictive Control (MPC) where a finite horizon is

taken into account. In [5], a linear-time varying MPC (LTV

MPC) framework [6] with a quadratic cost functional for the

energy management was developed and it was applied to a

closed-loop model of a power-split HEV. Although the LTV

MPC results were comparable with a well-tuned controller

of PSAT software [7], there seemed to be room for further

improvement in the fuel economy. In this paper, we refor-

mulate the MPC fuel minimization problem to include not

only the finite horizon cost of fuel but an approximate cost-

to-go beyond the planning horizon represented as a terminal

cost in the MPC finite horizon optimization problem . We use

the relationship between the Hamilton-Jacobi-Bellman (HJB)

equation and the Pontryagin’s minimum principle ([8]), to

show that the fuel cost-to-go can be approximated as a linear

function of deviations in the battery’s state of charge. Our

derivations support the results published in [9] parallel to

our research. A nonlinear MPC framework is employed to

solve the optimal control problem online. Simulation results

on a closed-loop model of a power-split HEV with respect

to both the previous LTV MPC and the PSAT software show

noticeable improvements.

II. THE PLANT MODEL

In the closed-loop simulations in this paper, we use a

detailed model for a powersplit HEV from the database of

Powertrain Simulation Analysis Toolkit (PSAT) commercial

software [7]. PSAT is a state-of-the-art flexible powertrain

simulation software developed by Argonne National Lab-

oratory with the support of automotive manufacturers and

sponsored by the U.S. Department of Energy (DOE). It runs

in a MATLAB/Simulink environment and provides access

to dynamic models of different mechanical and electrical

components of several hybrid vehicle configurations. The

level of details in PSAT component models and its forward

simulation approach ensures reliable estimation of fuel econ-

omy. The modeling accuracy of PSAT has been validated

against production HEVs such as Honda Insight [10] and
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Fig. 1. A Power-Split HEV Configuration

Toyota Prius [11]. In order to analyze the performance of our

MPC power management scheme on a high-fidelity dynamic

model of a power-split HEV, the PSAT Simulink model of the

Toyota Prius was chosen as the plant model for the closed-

loop simulations. The MPC module receives all the feedback

signals from this model and issues its engine torque and

speed commands to the PSAT model. Because the PSAT

model is too complex for control design, a simplified control-

oriented model that captures the details that are of importance

for the supervisory energy management scheme is derived

and presented in this section. Figure 1 shows various sub-

systems of a powersplit hybrid and their interactions. More

details are available in [12], [13], and [5].

The battery’s state of charge SOC is the main dynamic

state in optimal control of HEV’s [1] and its dynamics can

be described by [14],

dSOC

dt
= −

Voc −
√

V 2
oc −4PbattRbatt

2CbattRbatt

, (1)

where

Pbatt = Pmot +Pgen +Ploss
motor +Ploss

gen . (2)

In these equations, Voc, Rbatt , and Cbatt are the battery’s open-

circuit voltage, internal resistance, and capacity, respectively;

Pbatt is the battery power; Pmot and Pgen are the motor

and generator powers; and Ploss
motor and Ploss

gen are the motor

and generator power losses, respectively. In this model,

positive power indicates battery discharging and negative

power indicates battery charging. Empirical maps, extracted

from PSAT, are used to calculate the power losses of motor

and generator as functions of their torque and speed.

The power transmission system which is also called

electric-continuously variable transmission, includes a plan-

etary gear set (speed coupler) which combines the powers

of the engine, motor, and generator. The energy coupling is

accomplished in a way that the engine operation is decoupled

from the vehicle. Neglecting the inertia of pinion gears in

the planetary gear set and assuming all connecting shafts

in the power transmission are rigid, the dynamics of the

transmission can be obtained using Newton’s laws [5],

Jgen

dωgen

dt
= Tgen +F ×NS

Jeng

dωeng

dt
= Teng −F × (NS +NR)

Jmot

dωmot

dt
= Tmot −

Tout

g f

+F ×NR,

(3)

where Jeng is the lumped inertia of the engine and the carrier

gear; Jgen is the lumped inertia of the generator and the

sun gear; and Jmot is the inertia of the motor lumped with

the inertias of the ring, final transmission, and wheels. In

(3), NS and NR are the radii of the sun and ring gears;

Teng, Tgen, and Tmot are the engine, generator, and motor

torques, respectively; ωeng, ωgen, and ωmot are the engine,

generator, and motor speeds, respectively; and Tout is the

output torque of the power transmission system. Finally in

(3), F is the interaction force between the different parts

of the gear set. To reduce the number of dynamic states,

the inertial losses of the engine, motor, and generator, i.e.

Jeng
dωeng

dt
, Jmot

dωmot
dt

, and Jgen
dωgen

dt
, are ignored in the control-

oriented model. This reduces the relationships in equation (3)

to three static equality constraints. Furthermore, an empirical

map of the engine, extracted from PSAT software, is used to

relate the fuel flow rate, ṁ f , to the engine speed and torque.

There are also two kinematic equality constraints between

velocities,

Nsωgen +NRωmot = (Ns +NR)ωeng (4)

ωmot =
g f

rw

V, (5)

where V is the vehicle velocity. The vehicle velocity is

another state of the HEV model and its dynamics can be

modeled by,

m
dV

dt
=

Tout +Tb

rw

−
1

2
ρA fCdV 2 −CRmgcos(θ)+mgsin(θ).

(6)

In (6), m and A f are the mass and frontal area of the

vehicle, respectively; rw is the wheel radius; CR is the rolling

resistance coefficient; CD and ρ are the drag coefficient and

air density, respectively; g f is the final derive ratio; θ is the

road grade which is assumed to be positive when vehicle

goes down; and g is the gravity acceleration. The drivability

constraint requires that the total torque at the wheels, which

is the sum of the powertrain torque Tout and the friction brake

torque Tb, is equal to the driver demanded torque Tdriver,

Tout +Tb = Tdriver. (7)

Considering the drivability constraint (7), the vehicle speed

dynamics (6) does not add a control state for the energy

management problem. But this dynamics will be used later

for the estimation of the vehicle velocity over the MPC

prediction horizon.
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There are also several physical constraints, generally time-

varying, that should be enforced. For the HEV power man-

agement, the constraints are,

SOCmin ≤ SOC ≤ SOCmax; Pmin
batt ≤ Pbatt ≤ Pmax

batt

ωmin
eng ≤ ωeng ≤ ωmax

eng ; T min
eng ≤ Teng ≤ T max

eng

T min
mot ≤ Tmot ≤ T max

mot ; ωmin
mot ≤ ωmot ≤ ωmax

mot

T min
gen ≤ Tgen ≤ T max

gen ; ωmin
gen ≤ ωgen ≤ ωmax

gen

(8)

where ·min and ·max denote the minimum and maximum

bounds which are generally variable.

The outputs of the model are divided into tracking outputs

(yr) and constraint outputs (yc),

yr =

[

SOC

ṁ f

]

, yc =









Pbatt

ωgen

Tmot

Tgen









Based on the above assumptions, the control oriented model

can be represented by,

ẋ = f (x,u,v)

yr = gr (x,u,v)

yc = gc (x,u,v)

(9)

where

x = SOC, u =

[

Teng

ωeng

]

, v =

[

Tdriver

V

]

,

x is the dynamic state, u is the control input, and v is defined

as the measured disturbances to the model which are known

at each time but not known for the future.

III. THE FUEL MINIMIZATION PROBLEM

The total fuel cost over an entire cycle which starts at time

t0 and ends at time t f can be written as,

J =

t f
∫

t0

ṁ f (u(t))dt +h(SOC(t f )) (10)

where h(SOC(t f )) penalizes the deviation of SOC at the end

of the cycle from a reference value, SOCr. The objective

of the power management strategy is to minimize the cost

function (10) while satisfying the dynamical equations (9)

and the constraints (8). However in the real applications,

the driving conditions over long time horizons are not

generally known in advance and furthermore, the parameters

of the model and of the constraints may vary. Moreover, the

solution of the optimal control problem over a long horizon

is computationally demanding. To remedy these issues, we

propose to use Bellman’s Principle of Optimality to break

the above optimal control problem in a (integrated) stage

cost and an approximated minimum fuel cost from the end

of the horizon to the end of the drive cycle and to solve the

obtained problem in a receding horizon framework.

At time t ≤ t f during the travel, the cost function is,

J(u,SOC(t), t) =

t f
∫

t

ṁ f (u(σ))dσ +h(SOC(t f )) (11)

where SOC(t) is any admissible state value at t. Notice that

the performance measure depends on the values of SOC(t),
t, and the control history over the interval

[

t t f

]

. The

minimum cost or cost-to-go is obtained by,

J∗(SOC(t), t) = min
u(σ)

t≤σ≤t f

{

t f
∫

t

ṁ f (u(σ))dσ +h(SOC(t f ))}

(12)

subject to the physical constraints (8) and dynamics (9). By

subdividing the time interval one can write,

J∗(SOC(t), t) = min
u(σ)

t≤σ≤t f

{

t+∆t
∫

t

ṁ f (u(σ))dσ+

t f
∫

t+∆t

ṁ f (u(σ))dσ +h(SOC(t f ))}

(13)

where ∆t is a finite future time horizon. Bellman’s principle

of optimality ([8]) requires that,

J∗(SOC(t), t) = min
u(τ)

t≤τ≤t+∆t

{

t+∆t
∫

t

ṁ f (u(τ))dτ+

J∗(SOC(t +∆t), t +∆t)}

(14)

The minimum fuel cost over the interval [t + ∆t, t f ], i.e.

J∗(SOC(t + ∆t), t + ∆t), is not in general a known function

of SOC. In the next section, we show how this function

can be approximated enabling us to solve the above fuel

minimization problem in a receding horizon approach.

IV. MINIMUM FUEL COST-TO-GO APPROXIMATION

In this section, we attempt to derive an approximation for

the minimum fuel cost as a function of the battery’s state of

charge. An approximation of the cost-to-go will be sufficient,

because the optimal solutions are recalculated in a receding

horizon manner at each time step.

First, Taylor series expansion of J∗(SOC(t + ∆t), t + ∆t)
around SOC∗(t +∆t) yields,

J∗(SOC(t +∆t), t +∆t) = J∗(SOC∗(t +∆t), t +∆t)+

∂J∗

∂SOC
(SOC∗(t +∆t), t +∆t) ·∆SOC +O(∆SOC2)

(15)

where ∆SOC = (SOC(t +∆t)−SOC∗(t +∆t)). As shown in

the Appendix I, by observing the relationship between the

Pontryagin’s minimum principle and HJB equations, if SOC∗

denotes the optimal trajectory from current time t and initial

state SOC(t) to the end of the trip, we can rewrite equation

(15) as follows,
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J∗(SOC(t +∆t), t +∆t) ∼= J∗(SOC∗(t +∆t), t +∆t)+

λ (SOC(t), t) · (SOC(t +∆t)−SOC∗(t +∆t))
(16)

where,

λ (SOC(t), t) =
∂J∗

∂SOC
(SOC(t), t) (17)

Adding and subtracting the constant reference value SOCr,

to the last term of equation (16) we obtain,

J∗(SOC(t +∆t), t +∆t) ∼= α(SOC(t), t)+

λ (SOC(t), t) · (SOC(t +∆t)−SOCr)
(18)

where, α(SOC(t), t) is defined by,

α = J∗(SOC∗(t +∆t), t +∆t)+

λ (SOC(t), t) · (SOCr −SOC∗(t +∆t))
(19)

Substituting (18) into cost function (14) we get,

J∗(SOC(t), t) = min
u(τ)

t≤τ≤t+∆t

{α(SOC(t), t)+

t+∆t
∫

t

ṁ f (u(τ))dτ+

λ (SOC(t), t) · (SOC(t +∆t)−SOCr)}
(20)

Since α in (19) is not a function of the control inputs, it does

not affect the selection of the optimal control inputs. So the

optimal control over the interval [t t +∆t] can be found by

solving the following optimal control problem,

min
u(τ)

t≤τ≤t+∆t

{
t+∆t
∫

t

ṁ f dτ +λ (SOC(t), t) · (SOC(t +∆t)−SOCr)}

SȮC = f (u(τ),v(τ)) ; SOC0 = SOC(t)
SOCmin ≤ SOC(τ) ≤ SOCmax, u(τ) ∈U

(21)

where U is the set of admissible inputs according to (8). We

will solve this finite-horizon optimal control problem in a

receding horizon manner as explained in the next section.

As shown in Appendices I and II, the parameter λ is

related to both the equivalent factor in the ECMS method

and the rate of change of minimum cost with respect to the

SOC. An admissible range for λ can be obtained as explained

in the ECMS literature ([15]) or from the DP solutions over

different driving cycles ([9]). In what follows, it is shown

that λ can be approximated by a tunable piecewise linear

function over its admissible range. Using equation (17), the

Taylor series expansion of the function λ around the SOCr

yields,

λ (SOC(t), t) =
∂J∗

∂SOC
(SOCr, t)+

∂ 2J∗

∂SOC2
(SOCr, t)(SOC(t)−SOCr)+O(∆SOC2

r )

(22)

where ∆SOCr = (SOC(t)− SOCr) ≪ 1. By defining λ0 =
∂J∗

∂SOC
(SOCr, t) and µ = ∂ 2J∗

∂SOC2 (SOCr, t) as two tuning design

parameters and ignoring the higher order terms we obtain,

λ (SOC(t), t) ∼= λ0 + µ∆SOCr (23)

which approximates λ as linearly dependent on the state.

V. NONLINEAR MPC (NMPC) ENERGY MANAGEMENT

The discrete-time optimal control problem in (21) is first

discretized with a fixed sampling time and solved in a

receding horizon manner using dynamic programming. More

specifically the following steps are carried out:

• At each step k, all the constraints are updated using the

feedbacks from the plant model or HEV.

• The future power demand and vehicle speed (measured

disturbances) are unknown over the prediction horizon.

The future driver torque demand is assumed to be

exponentially decreasing over the prediction horizon,

i.e.

Tdriver(k + i) = Tdriver(k)e

(

−iτ
τd

)

i = 1, 2, · · · , P

(24)

where Tdriver(k) is the known value of the driver torque

demand at the beginning of the prediction horizon, τ
is the sample time and τd determines the decay rate.

The performance due to the choice of (24) has been

confirmed by the simulation results. By using the above

torque model and the vehicle longitudinal dynamics (6),

the vehicle velocity profile over the prediction horizon

is estimated.

• Using DP, the updated MPC problem (21) is solved

numerically over the prediction horizon. Since the MPC

horizon is short with respect to the whole cycle, the

computations can be done in real-time.

• Consistent with standard MPC framework, only the first

input in the sequence of the calculated optimal inputs

over the horizon is applied to the plant and the above

steps are repeated by receding the prediction horizon

one step forward. Repeating these calculations for every

new measurement yields a state feedback control law.

VI. SIMULATION MODEL AND CONTROL PARAMETERS

The power management module of a power-split HEV

determines the engine, generator, motor, and friction brake

torques based on the driver’s demanded torque and the

feedbacks from the vehicle. In this work, the control system

is decomposed to two levels. The first or supervisory level

is the MPC which finds the optimum values for the engine

speed and engine torque. These optimum values are issued

as references to the second or low-level controller. The low-

level controller determines the engine, motor, generator, and

friction brake torques required to follow the references set

by the supervisory layer. A block-diagram of this system

is shown in Figure 2. In the low-level controller, standard

control loops are used for reference tracking.

In order to analyze the performance of our MPC power

management scheme on a high-fidelity dynamic model of a
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Fig. 2. Schematic of the control system architecture.

TABLE I

MPCS AND PSAT RESULTS (DRIVE CYCLES FROM [7])

UDDS cycle

Controller Initial SOC Final SOC FuelEconomy (mpg)
LTV MPC 0.70 0.59 84.31

0.59 0.59 73.02

PSAT 0.70 0.67 78.55
0.67 0.67 76.03

NMPC 0.70 0.68 82.37
0.68 0.68 80.1

Highway FET cycle

Controller Initial SOC Final SOC FuelEconomy (mpg)
LTV MPC 0.70 0.63 70.1

0.63 0.63 66.12

PSAT 0.70 0.64 69.43
0.63 0.63 65.52

NMPC 0.70 0.74 69.63
0.74 0.74 72.2

power-split HEV, the PSAT Simulink model of Toyota Prius

was chosen as the plant model for closed-loop simulations

which has been validated against the production HEV ([11]).

The adjustable parameters of the MPC include the cost

functional parameter and prediction and control horizons. In

addition, the time constant τd in the torque model equation

(24) is another tuning parameter. In the simulations, the

sampling period of the MPC is 1 second. Also, the prediction

and control horizons are 5 steps, and τd = 1 is used in the

simulations. In both PSAT and MPC controllers, the SOC

constraint and reference are defined by 0.60 ≤ SOC ≤ 0.80

and SOCr = 0.70, respectively.

VII. SIMULATION RESULTS AND DISCUSSION

To quantitatively demonstrate the validity of the MPC

strategy, we ran simulations over different driving cycles

and some of the results are presented in Figure 3 and in

Table I. The table compares the fuel economy and the initial

and final SOCs of our previous LTV MPC controller, of the

base controller in the PSAT software, and of the nonlinear

MPC controller in this paper. In order to remove the effect

of different initial and final SOCs on the fuel economy, we

ran the simulations over the same cycle multiple times until

the system reached a charge balance in which the SOC at the

beginning and at the end of the cycle are the same. The fuel

economy values with equal initial and final SOCs are used

to compare the performance of different controllers. It can

be observed that over both city and highway driving cycles,

the MPC controller performance is improved.

Also in Table II, the closed-loop model is simulated over

multiple driving cycles and it can be observed that the devel-

oped MPC strategy consistently shows better fuel economy
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Fig. 3. The outputs and constraints of the NMPC closed-loop model over
the UDDS cycle.

TABLE II

NMPC AND PSAT RESULTS (DRIVE CYCLES FROM [7])

US06 cycle

Controller Initial SOC Final SOC FuelEconomy (mpg)
PSAT 0.70 0.62 45.4

0.6 0.6 42.8

NMPC 0.70 0.69 42.49
0.69 0.69 46.01

SC03 cycle

Controller Initial SOC Final SOC FuelEconomy (mpg)
PSAT 0.70 0.68 71.29

0.68 0.68 69

NMPC 0.70 0.69 76.66
0.69 0.69 74.77

JC08 cycle

Controller Initial SOC Final SOC FuelEconomy (mpg)
PSAT 0.70 0.67 85.67

0.67 0.67 81

NMPC 0.70 0.71 82
0.71 0.71 83.6

NY City cycle

Controller Initial SOC Final SOC FuelEconomy (mpg)
PSAT 0.70 0.66 68.68

0.64 0.64 52.6

NMPC 0.70 0.67 66.47
0.67 0.67 58.25

even if the same control model and tuning parameters are

used in different simulations.

VIII. CONCLUSIONS

A nonlinear MPC approach was proposed for solving the

fuel minimization problem of a power-split hybrid electric

vehicle. The proposed approach is based on breaking the fuel

cost for an entire trip into a receding horizon stage cost and

an approximation of the minimum cost-to-go as a function of

battery’s state of charge, using the Principle of Optimality.

The breakdown to a short-horizon cost function allows to

solve the fuel minimization problem effectively in real-time

while considering the nonlinearities in the cost, dynamics,

and constraints. The proposed method is systematic in both

design and tuning and predictive in nature. The results over
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a PSAT closed-loop model of a power-split HEV show

that with this new approach, the fuel economy is improved

noticeably with respect to that of an available controller in

the commercial PSAT software and to the linear time-varying

MPC controller developed in the past by the authors [5].

APPENDIX I

THE MINIMUM PRINCIPLE AND HEV FUEL MINIMIZATION

The necessary conditions for the optimality can be ob-

tained by applying the variational approach (Pontriagin min-

imum principle [8]) to the fuel minimization problem. To do

that, the Hamiltonian is,

H(SOC(τ),u(τ), p(τ),τ) = ṁ f (u(τ))+ p(τ)[ f c (u(τ),τ)]
(25)

where t ≤ τ ≤ t f . Using this notation, the necessary con-

ditions for the optimality from current time t and an initial

value of SOC(t) to the end of the drive cycle are,

H = ṁ f (u(τ))+ p(τ)[ f c (u(τ),τ)] = H(u(τ), p(τ),τ)

SȮC∗(τ) = ∂H
∂ p

(u∗(τ), p∗(τ),τ)

ṗ∗(τ) = − ∂H
∂SOC

(u∗(τ), p∗(τ),τ) = 0

H(SOC∗(τ),u∗(τ), p∗(τ),τ) ≤ H(SOC∗(τ),u(τ), p∗(τ),τ)
(26)

These conditions need to be satisfied for all admissible

u(τ) in t ≤ τ ≤ t f . Since ∂H
∂ SOC

= 0, we have p∗(τ) =
λ (SOC(t), t). The relationship between HJB equations and

the minimum principle implies that ([8]),

p∗(τ) =
∂J∗(SOC∗(τ),τ)

∂SOC
=

∂J∗(SOC(t), t)

∂SOC
= λ (SOC(t), t)

(27)

Thus for an initial time, t, and a state of the charge,

SOC(t), by replacing τ = t +∆t we get

∂J∗

∂SOC
(SOC∗(t +∆t), t +∆t) =

∂J∗

∂SOC
(SOC(t), t) (28)

where ∂J∗

∂SOC
(SOC(t), t) = λ (SOC(t), t). Notice that SOC∗(τ)

is derived by relaxing the constraints which are enforced

online by MPC along the finite prediction horizon.

APPENDIX II

THE PARAMETER OF THE MPC COST FUNCTIONAL AND

THE ECMS FACTOR

In the ECMS method, an instantaneous cost function is

defined by [2], [16],

J = ṁ f (t)+S ·
Pbatt(t)

H f

(29)

where S is the ECMS factor. In Appendix I, the Hamiltonian

is,

H = ṁ f (u(t))+ p(t)SȮC(t) (30)

According to the Pontryagin’s Minimum Principle, [8],

J = H(SOC(t),u(t), p∗(t), t) = ṁ f (u(t))+ p∗(t)SȮC(t)
(31)

By considering the dynamics of the battery and ignoring

the power losses due to the internal resistance,

SȮC(t) ∼= −
Pbatt

CbattVoc

. (32)

Hence it can be implied that,

p∗(t) =

(

CbattVoc

H f

)

·S (33)

From the relationship between HJB equation and the

minimum principle ([8]), it is obtained that,

λ (SOC(t), t) = p∗(t) =

(

CbattVoc

H f

)

·S (34)
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