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ABSTRACT
In predictive adaptive cruise control systems, a major chal-

lenge is estimating the future driving pattern of the lead car. This
paper proposes an adaptive cruise control system that acts more
smoothly and fuel efficiently by utilizing probabilistic informa-
tion of velocity transition of the front car. The car following
problem is formulated in a chance constrained model predictive
control framework in which the inter-vehicle gap constraints are
enforced probabilistically. The probability distribution of the
position of the front car is estimated through a Markov Chain
Monte Carlo (MCMC) simulation. The position probability dis-
tribution is then utilized to convert the chance constrained MPC
problem to a deterministic linear MPC problem. Two case stud-
ies with two real driving cycle profiles are presented to show the
potential improvement in fuel economy.

1 Introduction
Today’s advances in telematics and traffic information tech-

nology can enable safer, smarter, and greener driving patterns
[1, 2]. Vehicles that rely on real-time traffic information systems
and communicate wirelessly to the infrastructure and neighbor-
ing vehicles will be able to manoeuver more predictively, en-
hancing their safety and fuel efficiency. Examples are use of co-
operative vehicle wireless communication for lane change, pla-
tooning, and obstacle avoidance [3, 4]. In [5, 6] it is shown how
advanced telematics can be an enabler for better energy manage-
ment of hybrid and plug-in hybrid vehicles.

Moreover information from individual vehicle received
wirelessly can help estimate the state of macroscopic traffic flow
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[7] and perhaps even enable higher resolution microscopic pre-
diction of motion of neighboring vehicles. Such information can
in turn be used by individual vehicles, running in an adaptive
cruise control mode, to reduce their velocity transient and stops
and goes [8,9] leading to improved fuel economy, emissions, and
ride comfort.

The adaptive cruise control (ACC) systems in production
cars today are intended to reduce driver’s workload and improve
safety. Different from a conventional cruise control system, an
ACC system uses a radar to measure the distance to the front
vehicle and can adjust the velocity to maintain a safe distance.
While most ACC designs are based on instantaneous measure-
ment of inter-vehicular gap, it is shown that predictive control
strategies can result in smoother car following [10–12]. In such
predictive adaptive cruise control systems, a major challenge is
estimating the future driving pattern of the lead car. Some recent
work have proposed using information about upcoming terrain
[13,14] and information about the state of traffic signals [15, 16]
to enhance the fuel economy in the adaptive cruise control mode.

To deal with the uncertainty of motion of the lead car, in this
paper we employ a chance constrained model predictive control
framework for the ACC in which the inter-vehicle distance con-
straints are imposed probabilistically. The velocity of the lead
car is predicted stochastically using a Markov chain assumption;
i.e. it is assumed that the velocity at the next sampling time only
depends on the current step velocity and is independent of the
past. The probability distribution of the velocity of the lead car
over the prediction horizon is then found via Monte Carlo sim-
ulations. The lead vehicle is assumed to share this information
with neighboring vehicles via wireless communication. Knowl-
edge of the velocity distribution of the lead car enables convert-



ing the chance constrained MPC problem to a deterministic lin-
ear MPC problem for which efficient real-time solution methods
exist.

The rest part of this paper is organized as follows: Section
2 introduces the car following model and vehicle longitudal dy-
namics. In Section 3, the model predictive cruise control problem
with stochastic constraints is presented. Simulation case studies
are given in Section 4 yielding the summary in Section 5.

2 The Plant Model
2.1 Car Following Model

Different methods in the literature model a car following its
leading car, e.g. safe-distance models, stimulus-response mod-
els, and psycho-spacing models [17]. In this work we assume a
safe-distance following model in which the follower maintains a
velocity dependent gap with the lead car:

D(t) = r(t)− x(t)≥ Lmin +T v, (1)

where D(t) is the following distance; r(t) and x(t) are the posi-
tion of the front car and following car respectively; v = ẋ; Lmin is
the minimum following distance at v = 0 and usually is estimated
as Lmin = 1000

ρ jam
, where ρ jam (vehicles/km) is the density of traffic

jam; and T is the reaction time constant.

2.2 Vehicle Kinematics
The vehicle longitudinal motion is modeled based on simple

kinematic relationships and a first order lag between the acceler-
ation command and the actual acceleration:





ẋ = v
v̇ = a
ȧ =− 1

τ a+ 1
τ u(t)

, (2)

where u(t) is the control input and could be understood as the
steady-state acceleration command and τ is a time constant. The
state vector is denoted by Z = [x v a]T . The discretized state-
space model can be written as :

Z(k +1) = AdZ(k)+Bdu(k), (3)

where Ad and Bd are the discretized system matrices.

3 Control Problem Formulation
We use a model predictive approach for the cruise control of

the follower. To clarify the notations between the real states and

predictive states, we use Z(i+ k|k) denoting the i step prediction
of Z from time step k. The state dynamics of the following car
are predicted by Eq.(3) as a function of control input u as:

Z(i+ k|k) = Ā(i)Z(k)+ B̄(i)U, (4)

where U = [u(0 + k|k) ... u(i + k|k) ... u(Nc− 1 + k|k)]T
and Nc is the steps of prediction horizon; Ā(i) ∈ R3×3, B̄(i) ∈
R3×Nc , and they are functions of Ad and Bd .

In model predictive control, the optimization is carried out
in a manner of moving horizon. At each time step k, a cost
J as a function of predicted states, control inputs, and the ref-
erence input is optimized. Meanwhile, the solution needs to
satisfy the constraints imposed from systems design require-
ments. The optimization yields a series of optimal control inputs
u∗(i + k|k), i = 0,1, ... Nc− 1, but only the first step control
input u∗(0 + k|k) is applied. Then the same optimization pro-
cess is repeated with instantaneously measured initial conditions.
Note that in our problem, the cost function and the constraints
may be the function of the preceding car position r(t), which is
uncertain. With assumption of exact knowledge of r(t), we can
solve it as a standard MPC problem. In practice, however, r(t)
is not exactly known in advance and needs to be predicted. This
could be done either in a deterministic way or stochastic way. In
this study, we propose to predict r(t) in a stochastic way yielding
stochastic MPC. In order to evaluate the proposed methodology,
a passive car following model with a feedback control law is also
developed as a baseline to compare.

3.1 Cost Function
The goal is to reduce fuel consumption and keep the car-

following performance as well. Instead of minimizing the fuel
consumption directly, which is nonlinear, we will minimize the
acceleration over the prediction horizon. The effectiveness of
this cost function to reduce fuel consumption is tested sepa-
rately by using a commercialized vehicle powertrain simulation
software-Powertrain Simulation and Analysis Toolkits(PSAT)
developed by Argonne National Laboratory [18]. Moreover, we
penalize the car following error at the end of each prediction hori-
zon Np. This can be achieved by the following cost function:

J =
Nc−1

∑
i=0

a2(i+ k|k)
+q{r(Np + k|k)− x(Np + k|k)−T ẋ(Np + k|k)−Lmin},

(5)

where ...(...+ k|k) denotes the prediction of a variable at instant
k over the horizon; q is the penalty coefficient for car following
error. Other form cost function can be found through [10, 11].
Note that we have a quadratic cost for acceleration but only a
linear cost for tracking error. The gap constraints introduced later
will ensure the linear term remains positive. By defining P =[

0 0 1
]

and R = [1 T 0], we have:



J =
Nc−1

∑
i=0

(PZ(i+ k|k))T (PZ(i+ k|k))
+q{r(Np + k|k)−RZ(Np + k|k)−Lmin}

(6)

By substituting the Eq.(4) into Eq.(5), the cost function is
reformed as:

J = UT ΛU +(Γ−qRB̄(Np))U +C1, (7)

where Λ =
Nc−1

∑
i=0

(PB̄(i))T PB̄(i),

Γ =
Nc−1

∑
i=0

2(PB̄(i))T PĀ(i)Z(k),

C1 =
Nc−1

∑
i=0

(PĀ(i)Z(k))T (PĀ(i)Z(k))

+q(r(Np + k|k)−RA(Np)Z(k)−Lmin).
As we can see, Λ is a constant; Γ changes as the real-time

measurement Z(k) varies, but it is a constat at each step in the
prediction horizon. C1 is independent of the control input u and
as a result, this term can be dropped from the cost function. Note
that the coefficient matrices Λ and Γ are independent of the posi-
tion of the preceding car because a linear cost for car follow error
is used in Eq.(5). If the car following error cost has quadratic
form such as [19], the cost function will be coupled with the po-
sition of the preceding car.

3.2 Constraints
With the cost function in a quadratic form, we now need to

consider the constraints imposed from vehicle system limitations
and safety requirements such as the maximum and minimum ac-
celeration constraints, non-negative velocity, maximum velocity
constraints, and safety car following distance. Specifically, the
constraints for the acceleration are formulated as:

amin ≤ a(i+ k|k)≤ amax, (8)

for i = 0,1,2...Np − 1, where amin and amax are the minimum
and maximum allowable acceleration respectively. The control
input constraints are set the same as the acceleration constraints
i.e. amin ≤ u(i + k|k) ≤ amax for u(i + k|k), i = 0,1,2...Nc − 1
considering the control inputs are the steady-state accelerations.

The constraints for the velocity are expressed as:

vmin ≤ v(i+ k|k)≤ vmax, (9)

for i = 1,2, ...Np, where vmin and vmax are minimum and maxi-
mum velocity, and vmin is set as 0 in our study.

At the same time, the car following distance D(t) in Eq.(1)
should be kept in a reasonable range for which the constraints are
given by:

Lmin ≤ r(i+ k|k)− x(i+ k|k)−T ẋ(i+ k|k)≤ Lmax, (10)

where Lmax is the maximum offset of the following distance. All
these constraints should be satisfied at each sampling time result-
ing in total constraint number as 2Nc +6Np.

An assumption for the representative of constrains as in
Eq.(10) is that r(i + k|k) is known a-priori or can be determin-
istically predicted. However, in practice, the future position
r(i + k|k) is not exactly known. By assuming r(i + k|k) is a ran-
dom variable, in an alternative way, we can consider the con-
straints are satisfied at a given probability. For example, the min-
imum safety distance constraint in Eq.(10) is rewritten as:

P{r(i+k|k)−x(i+k|k)−T ẋ(i+k|k)≤ Lmin} ≤ 1−α(·), (11)

where α(·) is a non-constant value as a function of parameters
of prediction step i and the acceleration of the preceding vehicle
ar(k) discussed in Section 4. The solution for Eq.(11) is

Lmin + x(i+ k|k)+T ẋ(i+ k|k)≤ r1−α
k (i), (12)

where r1−α
k (i) is a value at which the cumulative distribution

function of the position is equal to 1−α, namely:

P{r(i+ k|k)≤ r1−α
k (i)}= 1−α

Similarly, we can convert the maximum following distance con-
straints in Eq.(10) as probability constraints. Consequently, the
constraints in Eq.(10) are converted as:

rβ
k (i)−Lmax ≤ x(i+ k|k)+T ẋ(i+ k|k)≤ r1−α

k (i)−Lmin, (13)

where β is a given satisfying probability value for the maximum
following offset.

3.3 Stochastic Prediction of the Position r(i+ k|k)
For the design of model predictive cruise control, one of the

challenges is to predict the uncertain future input. For immediate
prediction(≈ 0−5s), this may be done by Kalman filter and au-
toregressive moving average algorithms (ARMA). For short term
prediction(≈ 0− 300s), prediction with event occurrences e.g.
break light propagation, vehicle cut-in, local traffic jam, sudden



change of speed limits, or even road elevation change, may in-
crease the prediction accuracy. In our discussion, a Markov chain
model is developed to predict the uncertainty of the preceding ve-
hicle driving condition in a short horizon and the distribution of
the position r(i+ k|k) is found through Monte Carlo simulation.

Markov chain Monte Carlo (MCMC) is a powerful means
for generating random samples that can be used in computing
statistical estimates[20]. [21–23] introduced the Markov chain
construction methods for velocity, acceleration, and driver’s
power demand transition in the application of energy manage-
ment of hybrid electric vehicles. In our discussion, we only
consider the velocity transition excluding the acceleration as a
stochastic process with property of Markov chain assuming the
state value of next step only depends on its previous step. An-
other option is to combine the velocity and acceleration as the
transition state and construct the Markov chain. However, this
would require large training data and is not suitable for a prelim-
inary study.

The transition probability matrix is trained from history
driving data as a square matrix PNv×Nv , where Nv is the number
of the discretized point for the velocity. The one step transition
probability from any state indexed as m to another state indexed
as n is Pm,n. For multiple e.g. i step transition, the transition
matrix is calculated as Pi = Pi.

With known state transition probability and current state
value, the distribution of the future position in predication hori-
zon is also known, which is obtained from Monte Carlo simu-
lation. Monte Carlo methods are a class of computational algo-
rithms that rely on simulated random sampling to compute their
results. Specially, in our problem, different possible realizations,
usually referred as scenario tree [24], of the velocity vr(i + k|k)
of preceding car are simulated according to Markov chain tran-
sition. The vehicle position is the integral of the velocity and it
has the following form in disretized space:

r(i+ k|k) = r(k)+
1
2

n−1

∑
i=0

(vr(i+ k|k)+ vr(i+1+ k|k))∆t(i),

where ∆t(i) is the sampling time at the ith step prediction.
The distribution of r(i+ k|k) is approximated from the sim-

ulation of large size of pseudo-random number by Metropolis-
Hastings algorithm [20]. Monte carlo simulation takes computa-
tion time but this process could be done off line.

3.4 Predictive control with prescient information and
passive control with state feedback

3.4.1 Predictive control with precise prescient in-
formation With precise prescient position of the car ahead at
step k in the prediction horizon, r(i+ k|k) in Eq.(10) is assumed
to be exactly known. This is non-causal, but the performance
with this level preview is expected as the benchmark-the best

one that the controller can achieve. The simulation results later
coincide this expectation.

3.4.2 Passive following model Without any knowl-
edge of future driving condition, the car behind follows the pre-
ceding in a passive way and the safety distance is kept. This is
done by a feedback control law u(t) = k1∆v+k2∆s−k3

∆v2

2∆s (∆v <
0)+k4, where ∆v = vr(t)−v(t), ∆s = r(t)−x(t)−T ẋ(t)−Lmin,
and k1, k2, k3, k4 are coefficients as functions of ∆v. More de-
tails about the design of a feedback law in adaptive cruise control
could be found through [25]. We refer this model as a passive
following model.

4 Case Study and Result Analysis
4.1 Pre-setting of simulation data

The proposed strategies are evaluated through two driving
cycles shown in Fig.1, which were obtained by driving vehicle
from Clemson, SC to Highland NC with the same driver. The
data was retrieved from Garmin GPS 20x receiver with a sam-
pling time of 1 second. In stochastic MPC, the probability ma-
trix P of the state transition is trained from the first driving cy-
cle and the MPC with the same P is applied to the two cycles.
For the final evaluation of different control strategies, instead of
the cost function J, fuel economy-miles per gallon (MPG), emis-
sion(CO2), and tracking distance D(t) are used. The value of
fuel economy and emission for different control strategies are
obtained from simulations in PSAT, which uses complex mod-
els to simulate the dynamics of the vehicle powertrain yielding
accurate simulation results. The tracking distance indicating the
tracking ability is evaluated by the average following distance as
well as maximum and minimum distance.
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Figure 1. Two cycle profiles from the real driving of the same driver

The probability α of the constraint satisfaction has the form
as α(·) = λ0λi−1

1 , where i is the prediction step and λ0 as well



as λ1 is set as λ0 = 0.96 and λ1 = 0.96. As we see later, if we
change λ0 according to the current acceleration, better results
will be presented. The setting of β is the same as α, but it is
not adjusted by acceleration of the preceding car. All other main
parameters used in the simulation are listed as follows:

Table 1. Simulation Parameters.
Lmin(m) Lmax(m) T(s) p Nc Np ∆t(i)(s) τ(s) [11]

6 200 1.5 0.2 10 10 1 0.45

4.2 Simulation and Analysis
The simulation results of cycle 1 are shown and discussed

first followed by that of cycle 2. Fig. 2 showed the optimal
vehicle velocity from strategies of passive control (P-control),
MPC with stochastic input (MPC-STO), and MPC with pre-
scient knowledge (MPC-PRE) and Table 2 summarized the per-
formance including the fuel economy, emission, and tracking
ability. The zoomed figures show that all strategies, like a fil-
ter, smooth the velocity profile of the following car, thus the
fuel economy of these strategies are better than the preceding
car. Among the three, the velocity profile from prescient MPC is
the smoothest one yielding a fuel economy improvement of 32%
compared with the preceding car. Also, the average tracking dis-
tance (34m) is less than the stochastic MPC (48m) and passive
following (39m). The excellent performance of MPC with pre-
scient information indicates the improvement margin for other
control methods. Even though the fuel economy of stochastic
MPC(12.1%) is better than that of passive following (11.4%),
the larger tracking distance (48m) degrades its advantages.

By analyzing the design of stochastic MPC, we found the
factors leading to large following distance are the ignorance of
acceleration in the probability transition matrix P and strict set-
ting for α. One option is to add acceleration as additional state in
transition matrix, however, this will yield very large size of P and
need more training data. As another alternative method, we can
set the value of α by the current acceleration. Specifically, the
current acceleration of the reference vehicle ar(k) is classified
as hard deceleration, normal deceleration, normal acceleration,
hard acceleration. λ0 in α is relaxed as 0.96,0.7,0.4,0.2 depend-
ing of the level of acceleration. By doing so, the fuel economy
of adjusted MPC-STO is improved up to 15.5%, the average fol-
lowing distance is reduced, and so does the maximum following
distance.

In the above simulations for MPC-STO, the velocity tran-
sition matrix P is trained from cycle 1 itself. In a further val-
idation of the proposed MPC-STO, we run all the simulations
above again in cycle 2 with the transition matrix P from cycle
1 and the results are summarized in Table 3. To fairly compare
the performance of MPC-STO and passive following, the param-
eters in passive following is tuned such that the tracking distance
is similar with MPC-STO. By checking the new simulation data,
it indicates that all the findings from cycle 1 hold for cycle 2.
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Figure 2. Velocity profiles from different control strategies: the first one is
from passive control, the second one from MPC with stochastic prediction,
and the third one from MPC with prescient driving condition.

Table 2. Performance comparison of different control methods. 1) P-control:
passive control, 2) MPC-PRE: MPC with prescient knowledge of future uncer-
tainty, 3) MPC-STO: MPC with prediction of the velocity as a Markov chain, 4)
MPC-STO(adj): MPC-STO adjusted by the acceleration of the lead vehicle.

Control method
MPG

(normalized)

CO2

(normalized)

E(D(t)), min(D(t)),

max(D(t))(m)

Ref. Veh. 1 1 -

P-Control1) 1.114 0.89 39.34, 6.00, 71.41

MPC-PRE2) 1.320 0.76 34.03, 6.00, 55.52

MPC-STO3) 1.121 0.88 48.56, 6.00, 93.32

MPC-STO(adj)4) 1.155 0.86 38.30 6.00, 74.34

Table 3. Performance comparison for different control methods for cycle
2.

Control method
MPG

(normalized)

CO2

(normalized)

E(D(t)), min(D(t)),

max(D(t))(m)

Reference Veh. 1 1 -

P-Control 1.075 0.93 39.42, 6.00, 73.54

MPC-PRE 1.317 0.76 35.40, 6.00, 57.59

MPC-STO(adj) 1.145 0.87 39.40, 6.00, 84.54

Table 4 also summarizes all the information required for
different control strategies. Passive control needs the minimum
information-current velocity and position of the reference vehi-
cle. MPC-PRE has the most restrictive requirement-the prescient
driving condition for prediction horizon at the beginning of each
step. MPC-STO requires the history driving information from
the reference vehicle.



Table 4. Comparison of different control methods for the requirement
of driving information. r(t): reference vehicle position at current time
step t , vr(t): current reference vehicle velocity, ar(t): current refer-
ence vehicle acceleration, ar(τ),τ < t : historical time series accelera-
tion, ar(τ),τ > t : (prediction of) future acceleration, P: velocity transition
matrix for reference vehicle.

Method Information Requirement

r(t) vr(t) ar(t)
ar(τ)

τ < t

vr(τ)

τ > t
P

P-Control
√ √ × × × ×

MPC-PRE
√ √ × × √ ×

MPC-STO
√ √ × × × √

MPC-STO(adj)
√ √ √ × × √

We should note that the improvement result strongly de-
pends on the driving cycles and the results may be different for
different cycles. Testing the proposed algorithms with the data
from the same driver in general needs further investigation. Also,
even though we consider the safety constraints in Eq.(10), addi-
tional safety constraints could be added if necessary.

5 Conclusion
The adaptive cruise control system of a car was formulated

in a model predictive control framework with probabilistic gap
constraints. Solution of this problem required prediction of mo-
tion of the front car; this was done based on a Markov chain
assumption for the front car velocity transition. The probabil-
ity distribution of the velocity over the prediction horizon was
calculated using Monte Carlo simulations and allowed convert-
ing the chance constrained MPC problem to a deterministic one.
The resulting controller was tested in two case studies in which
an improvement in fuel economy as compared to a passive car
following model was shown. Future work can consider the ve-
locity and acceleration as the transition states and test with more
real driving data.
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