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Crowdsourcing Phase and Timing of Pre-Timed
Traffic Signals in the Presence of Queues:

Algorithms and Back-End System Architecture
Seyed Alireza Fayazi and Ardalan Vahidi

Abstract—This paper describes a crowdsourcing-based system
for phase and timing estimation of pre-timed traffic signals. The
input crowd is a real-time feed of sparse and low-frequency probe
vehicle data, and the output is an estimated collection of Signal
Phase and Timing (SPaT) information. The estimations could be
ultimately fed into a connected vehicle’s driver assistant appli-
cation. Different from the authors’ previous work, the approach
described in this paper ensures the accuracy of the SPaT esti-
mations even in the presence of queues. This was achieved by
investigating the probe data influenced by the heavy traffic and the
delay in queues. This paper is also a sequel to the authors’ previous
work as it provides an in-depth overview of the crowdsourcing
algorithms and their back-end implementation. The accuracy of
the crowdsourcing algorithm is also experimentally evaluated for
a selection of pre-timed traffic lights in San Francisco, CA, USA,
by utilizing a real-time data feed of San Francisco’s public buses
as an example data source.

Index Terms—Traffic lights, signal timing estimation, queueing
delay estimation, probe vehicles, crowdsourcing, traffic informa-
tion mining.

I. INTRODUCTION

CONNECTED vehicle environment enables the vehicles
equipped with computing and wireless communication

devices to receive Signal Phase and Timing (SPaT) information
of traffic lights. Many in-vehicle applications have the potential
to benefit from Signal Phase and Timing (SPaT) data in order
to achieve better fuel efficiency, emission control, and safety
features [1]–[4]. The Velocity Advisory Systems [1], [2], and
Start/Stop systems [3] are such applications with fuel effi-
ciency benefits reported in [5]–[7]. Also a Collision Avoidance
System [4] can benefit from SPaT information in order to
foresee potential signal violations at signalized intersections. In
addition to in-vehicle applications, there are also many arterial
performance measurement methods that use SPaT as their
input [8], [9].

The main challenge in providing SPaT to aforementioned
in-vehicle applications and arterial performance measurement
methods is in finding an inexpensive and reliable data source.
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Because direct access to signal timings and real-time state of
lights is not available for all the traffic lights across a country, a
complementary solution is needed in situations where the phase
and timing information is not available directly from a city’s
Traffic Management Center (TMC).

An increasing interest in obtaining SPaT is obvious in recent
years. In [10] the probability of a light being green is found
over a planning horizon but by assuming that the baseline
timings and schedules are available. Using the cameras of
windshield-mounted mobile phones, Koukoumidis et al. in [11]
present a speed advisory service that detects the current
phase of signals; however, the mobile nodes need a database
from TMC for the settings of fixed-time signals. In [12],
Zhu et al. use the maximum a posteriori (MAP) estimation and
an optimization algorithm to estimate the state of a traffic light.
The system’s capability in estimating the next phase-change of
a signal (which is needed for most in-vehicle applications) was
not specifically addressed by the authors in [12].

The goal of this paper is to obtain deterministic knowledge of
SPaT information that is applicable to pre-timed signals using
only low-frequency probe data. As an example data source,
this paper uses the public feed of the San Francisco’s GPS-
enabled buses provided by NextBus Incorporated [13]. This
input probe data includes the GPS coordinates, and velocities
of the public buses at timestamps. The feasibility of gathering
traffic signal data from these crowdsourced probe vehicle data
is demonstrated in authors’ previous work [14]. The obtained
SPaT is ultimately fed into the in-vehicle applications in situa-
tions where no data is available via TMC.

To the best of authors’ knowledge, to date, three works by
Kerper et al. [15], Cheng et al. [16], and Chuang et al. [17]
are deterministic approaches related to our proposed approach,
although, those require high frequency probe data sets. The
simulation results in [15], [16] are based on the assumption
that the penetration level is high, and full velocity profiles of
vehicles are available via high-frequency probe data. However,
the results in this paper are achieved under low penetration of
probe data: probe vehicles are buses that arrive on average once
every 5–10 minutes during day times.

Chuang et al. in [17] use smartphones installed in vehicles
to collect velocity profiles at a sampling rate of 1 Hz. In [17],
the crowdsourcing part is directly implemented on smartphones
which decreases the number of reporting events; however the
impact on smartphone battery usage was not addressed in [17].
Although the probe data stream used in this paper is not sent
from smartphones of individual contributors, we expect that
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the battery usage of a smartphone implementation be minimal
because not only no crowdsourcing application needs to run
on the smartphones, but also we have demonstrated that our
crowdsourced-based engine only needs a low-frequency data
stream given that each probe vehicle (or smartphone) sends an
update only sporadically (every 200 m or 90 seconds).

Furthermore, the aforementioned studies are only applicable
to signals that their timings are fixed during the day. Neverthe-
less, the SPaT estimation proposed in this paper also operate
on pre-timed signals that may have different timings for day
segments such as A.M.-peak, P.M.-peak, and off-peak.

The SPaT estimation in authors’ previous work [14] did not
consider the influence of queue delay, and it was based on
filtering out the vehicle passes that appeared to be influenced by
heavy traffic and long queues. This is why the position in queue
was not considered in [14]. However, a considerable number of
vehicle passes occur in heavy traffic and excluding them will
negatively influence accuracy of SPaT estimation algorithms.
In [14] many of the movements during heavy traffic period were
filtered, reducing the number of available data points, causing
estimation errors during heavy traffic conditions. This is why
the approach of [14] is suitable for intersections that have light
traffic condition with occasional short periods of heavy traffic
throughout the day.

This paper first explains the architecture of the computa-
tional back end that processes the incoming crowdsourced data,
estimates SpaT information and broadcast it to subscribing
vehicles. The general crowdsourcing mechanisms are presented
in Section III, and the detailed crowdsourcing methodologies
are explained with estimation results in Section IV. Section V
describes how SPaT estimations are affected by idling periods
in queue. Finally, more ground truth verifications are provided
to evaluate the SPaT estimations, and the queue dissipation
formulations.

II. BACK-END ARCHITECTURE

If traffic signals of a city are connected to TMC, then
access to their real time state may be granted either directly
from local and federal entities, or indirectly through third
party data providers. Nevertheless, what we are proposing in
this manuscript as a crowdsourced-based SPaT estimator is a
complementary solution in situations where timing information
is not available directly from a city’s Traffic Management
Center. The implemented system, as shown in Fig. 1, is actually
capable of receiving SPaT directly from TMC as well as from
a crowdsourcing server.

The input data source of the crowdsourced-based SPaT es-
timation is probe vehicle data which can be gathered from
vehicles of any kind reporting at least their GPS coordinate
and velocity at a timestamp, as long as the location privacy
of contributing vehicles is preserved. This input data feed is
collected by the Crowdsourcing Server, as shown in Fig. 1. The
data is then recorded in a SQL database so that the same server
can access it to estimate a collection of traffic signal phase and
timing information (SPaT) including cycle length, phase length,
green-initiation (start-of-green), and signal schedule changes.
The traffic signal information of each phase of each intersection

Fig. 1. The overall hardware architecture of the back-end system.

(Intersection–Phase pair) is then accessed by a Cloud-based
Server, specially configured for the infrastructure-to-vehicle
(I2V) communications via wireless cellular networks, such as
4G/LTE. In fact, the Cloud-based Server allows for fluctuations
in number of connected vehicles requesting SPaT information.
A Web Server is also set up for initialization, maintenance and
ground-truth verification purposes.

III. CROWDSOURCING

The output of the crowdsourcing engine consists of two
parts: First is traffic signal baseline timing that includes cycle
time, phase lengths (red and green intervals), and signal offset
changes. Second is phase-change (sync) data, that is green-
initiation or start-of-green. Here we explain the general crowd-
sourcing mechanisms that the Crowdsourcing Server uses to
predict and estimate this collection of traffic signal information,
as shown in Fig. 2. After being initialized, the Crowdsourcing
Server goes through three processes which are separated by
dashed lines in Fig. 2:

• Data Collection, in which probe vehicle data is continu-
ously collected and stored in the MySQL database.

• High-Frequency Process (Phase-Change Prediction), in
which only the green-initiations are predicted with high
frequency. In fact, the green-initiation prediction is the
process of predicting the next transition to green; and
because of the clock drift of a traffic signal throughout
a day, the next green-initiations should be continuously
predicted based on the most recent probe data. In our
application, every time the execution of this process cycle
begins, the most updated probe data collected during the
last few hours is first retrieved from the MySQL database,
as shown in Fig. 2. After preprocessing this data, the
green-initiations of each Intersection–Phase are predicted
and finally stored in the MySQL database.

• Low-Frequency Process (Baseline Timing Estimation), in
which the traffic signal baseline timings including cycle
time, red and green intervals, as well as signal schedule
changes are estimated. Based on the assumption that the
penetration level is low, this process is executed with
very low frequency (once per month in our application).
The drawback is that when a traffic signal is re-timed,
it takes a fairly long time to have an accurate baseline
timing estimation. This is because a large number of
probe vehicle passes needs to be recorded after re-timing
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Fig. 2. The functional architecture of the Crowdsourcing Server.

takes place. However, the traffic signals are re-timed in-
frequently. Also, as more contributors share their location
in the future, a large number of probe vehicle passes can
be collected in a considerably shorter time.

IV. METHODOLOGIES

This section presents the algorithms applied in the aforemen-
tioned crowdsourcing processes. First, the basic steps, named in
Fig. 2 as Initialization, Data Collection, and Data Preprocess-
ing, are described. Finally, all the algorithms involved in the
SPaT estimations and predictions are explained along with
results.

A. Initialization

The Crowdsourcing Server initializes its objects and vari-
ables once it’s fired up. The initial values such as the geometry
of the desired intersection–phase pairs should be predefined
by either the web user or the server administrator. In fact,
the coordinates of three points should be defined by the user
in order to define and initialize every Intersection–Phase pair.
The three-point definition method covers all the possible move-
ments at intersections. This definition includes one point on the
upstream, one point on the downstream, and a middle point at
the intersection center. As an example, Fig. 3(a) and (b) shows
through movement and left turn definitions respectively, al-
though using the three-point definition, other movements can
also be defined in different directions and in intersections with
different geometries. It should be emphasized that a right-
turn is usually permitted during the through movement, and
an intersection is less likely to have a protected right turn.
However, if needed, a protected right turn can be covered by the
proposed estimation process only by defining three points. Note
that with additional algorithms, not described in this paper, it

Fig. 3. Three-point definition of an intersection–phase. (a) Through movement.
(b) Left turn. (The intended intersection is shown in shaded color.)

would be possible to automatically crowdsource the geometry
instead of manually defining it.

B. Data Collection

1) Data Feed: A public feed of bus location and velocity
data in the city of San Francisco is used here to crowdsource
the traffic signal information. The feed is provided by NextBus
Incorporated through eXtensible Markup Language or XML
[18] which can be accessed using URLs with parameters
specified in the query string [13]. Each vehicle (bus) sends a
probe update every 200 meters approximately or 90 seconds,
whichever comes first [14]. The communication load imposed
by this data feed is minimal given that the penetration level
is also low. As higher frequency and larger number of probe
reports becomes available in the future from more contributors,
more accurate estimates of parameters of traffic signals can be
obtained. However, beyond a point, the accuracy improvement
ceases to be worth the extra communication costs [19].

As shown in Fig. 2, the Data Collection process periodically
inquires the XML feed data of each route. It is crucial to
set this process in such a way that its clock is automatically
synchronized to a Network Time Protocol (NTP) server; in this
work the clock is synchronized with the NIST time server [20]
every 10 minutes.

2) Location Data Privacy: Although collecting location data
from public buses eliminates the privacy concerns, privacy
protection precautions need to be implemented if location data
is provided to our system by individuals through their smart-
phones for example. Based on the success of some location-
based applications it is possible to conclude that at least some
people would be willing to automatically share their locations
with third parties [21]. However, privacy breach should be
prevented against all location samples stored in databases. It
means that not only all location samples must be anonymized
but also it must not be possible for any intruder to reconstruct
individual traces.

What we store in our database as location data are the
vehicle passages over the desired intersections. Each passage
actually consists of few probe reports sent within the three-point
definition as previously shown in Fig. 3. The following mea-
sures makes it almost impossible for an intruder to reconstruct
full traces by looking for correlations between the recorded
passages: 1) We do not store vehicle identification numbers on
our server. 2) Only passages over arterial roads are recorded.
No location data is recorded on other areas such as highways.
3) Passages over intersections without a traffic signal are not
recorded. 4) No location data is recorded if a passage cannot be
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fitted into any of predefined desired trajectories. Even if they fit
then at most three probe reports are recorded: Two reports sent
before and after the stop-bar of the intended intersection; and
one report sent while waiting in a queue, if available.

Even in a worst-case scenario that a probe vehicle’s trace
from origin to destination happens entirely in an urban area and
includes successive signalized intersections and surprisingly
all her individual traces at intersections fits to our desired
trajectories, only the origin and destination intersections can be
identified (not the accurate positions of origin\destination). An-
other privacy precaution that can be added to hide the sensitive
places that drivers have visited is to avoid crowdsourcing SPaT
information for the intersections that are near specific privacy
sensitive locations (see [22] for a similar approach on virtual
trip lines).

C. Data Preprocessing

The first step in data preprocessing is Data Cleaning which
consists of identifying the useful probe data to be mined. The
second step prepares the probe data for possible use in SPaT es-
timations; this step is named Data Transformation and actually
transforms the single probe updates to travel trajectories which
are desirable for SPaT estimation purposes. These two steps can
be seen in Fig. 2 and are described as follows:

1) Data Cleaning: The Data Cleaning in this manuscript
refers to the process of identifying the desired probe data
out of the collected probe data. This process consists of:
(1) identifying the probe vehicle reports that are within the
three-point definition, (2) detecting and separating each pass of
each vehicle, and finally (3) discarding the vehicle passes not
on the desired direction.

As described in Section IV-A, each three-point definition in-
cludes upstream and downstream parts. Here, we are interested
in identifying the probe vehicle reports that have happened
within either the upstream or downstream part. Fig. 4 shows the
upstream part as an example; where dupstream is the distance
of a probe report to the upstream point, dmiddle is the distance
of the same probe report to the middle point, and Lupstream

is the length of the upstream part. It is obvious that if the
condition Lupstream = dupstream + dmiddle is satisfied then it
can be concluded that the vehicle had sent the location report
exactly on the straight line between the upstream and middle
points. However, it is less likely for the vehicle to be exactly
on the straight line between the two points, especially on wide
streets. Because of this and the inevitable error in GPS position
reports, the following conditions are verified instead:

dupstream + dmiddle <Lupstream +ΔL1

dupstream <Lupstream +ΔL2

dmiddle <Lupstream +ΔL2 (1)

where ΔL1 and ΔL2 are values added to account for the street
width as well as for the errors in the probe vehicle reports. A
similar approach is used to verify whether a probe report is
within the downstream part or not.

Finally, the distinct passes of vehicles are detectable due
to the fact that each probe vehicle report is labeled with a

Fig. 4. Identifying if a probe vehicle report is sent around the intended
Intersection–Phase located at the middle point. A similar approach is repeated
for the downstream part of the Intersection–Phase.

Fig. 5. The probe reports fitted to the desired velocity-vs-time trajectories.
(a) Full trajectory with a stop at red but not influenced by delay in queue.
(b) Full trajectory with a stop at red and with a probe report sent in
queue. (c) Partial trajectory with a stop at red and with a probe report sent
in queue.

random vehicle ID number. And the direction of a distinct
vehicle pass is detectable by inspecting the distance between
the corresponding probe location reports and the upstream point
of the intended Intersection–Phase.

As a note on the values assigned for ΔL1 and ΔL2, a high
precision (very small values for ΔL1 and ΔL2) may cause
some missing data. For example, a probe vehicle report in
a wide street, far from the two upstream and middle points
may be ignored as it does not satisfy all the aforementioned
conditions of (1). On the other hand, a low precision (higher
values for ΔL1 and ΔL2) may cause some duplicate data. For
example, a probe vehicle report close to the middle point of
Fig. 4 may be considered as a report in both upstream and
downstream parts. As a result, it is better to avoid a high
precision and then discard the duplicate detected reports. As an
example, for a street of width≈9 meters, the values ofΔL1 = 9
meters and ΔL2 = 2 meters were assigned.

2) Data Transformation: There should be sufficient probe
data points in an identified vehicle pass for SPaT estimations.
But because the utilized probe data is sparse and the consecutive
data points of each pass are far away from each other, we need
to approximate a vehicle trajectory between each two probe
reports. This is actually a data transformation process where
low frequency probe data are transformed and consolidated into
vehicle trajectories.

The most beneficial trajectory for our purposes is the trajec-
tory which includes a stop at red signal. Fig. 5(a)–(c) demon-
strates the reconstructed velocity-time trajectories that include
such a stop; and they may be used to estimate the green-
initiation, the red interval, the cycle time, and perhaps more.
There is also statistical patterns in travel trajectories with no
stop and with constant acceleration [14].
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Fig. 6. Equivalent velocity-vs-position trajectory. (applicable to Fig. 5(b) and
also to Fig. 5(a) and (c) with modifications).

The Data Transformation process first checks the consistency
of the previously identified probe vehicle passes with the trajec-
tories shown in Fig. 5. If successful then the process records
the estimated trajectory to be used later by SPaT estimation
processes.

Each identified vehicle pass is a series of three-tuple
[vi, ti, xi] shown by filled circle points in trajectories of Fig. 5;
where vi is the reported velocity, ti is the timestamp of the
report, and xi is the distance between each location report and
the upstream point of the Intersection–Phase calculated using
Haversine Formula [23]. The points with index i = 1 are the
reports sent within the three-point area and right before the
stop-bar of the intended intersection; and the points with index
i = 2 are the reports sent within the three-point area and right
after the stop-bar of the intended intersection. The reports sent
while waiting in a queue, if available, are also denoted with
index q. Fig. 5(b) and (c) have both a probe report sent in queue
with approximately zero reported velocity.

Each reconstructed travel trajectory consists of a vector of
[velocity, time, position, aacc, adec] where aacc and adec are the
average acceleration and deceleration as denoted in Fig. 5. We
use deceleration and acceleration of 2.2 m/s2 and 1.0 m/s2

respectively as obtained in [14].
The equivalent velocity-position trajectory is demonstrated

in Fig. 6. The variable xq , if available, is the reported position of
the vehicle while waiting in queue and xsignal is the location of
light or more specifically stop-bar. The variables d1 = xq − x1

and d2 = x2 − xq are areas under the velocity-time curve, and
dq is position in queue. It should be emphasized that position in
queue is different from the term queue length used in literature
such as in [24].

The major extractable information from reconstructed trajec-
tories is the time that a waiting vehicle starts moving at green
(tstart) and the time that a moving vehicle comes to a stop at
red (tstop) estimated as follows:

tstart = t2 −max

{
d2
v2

− v2
2aacc

, 0

}
− v2

aacc
(2)

tstop = t1 +max

{
d1
v1

− v1
2adec

, 0

}
+

v1
adec

(3)

where the function max(.) in (2) decides whether the estimated
trajectories of Fig. 5(a)–(c) include a constant velocity move-
ment after the vehicle accelerates at green-initiation, and the
function max(.) in (3) decides whether the estimated trajectories
of Fig. 5(a) and (b) include a constant velocity movement
before the vehicle comes to a stop.

TABLE I
COUNTS OF PASSES DURING ONE YEAR AT FOUR INTERSECTIONS

Fig. 7. Δtwaiting is the waiting time for moving after the green-initiation or
Start-of-Green (tSoG).

Table I reports the percentage of total vehicle passes in a year
which are fittable into the desired trajectories. It can be seen
that by not ignoring the probe data that are influenced by queue
delay, a larger number of the vehicle passes will be available to
the SPaT estimation algorithms.

It should be emphasized that if a green wave is already
implemented along an arterial road then the successive signals
switch to green light as a backward-propagating wave. This has
significantly decreased the percentage of the vehicles that their
passage fits into the desired trajectories with stop at red.

D. SPaT Estimation and Prediction

The goal of this section is to estimate signal timing consid-
ering the probable delay in queue. The methods described here
cover the Phase-Change Estimation\Prediction, and Baseline
Timing Estimation executed within the Crowdsourcing Server
(shown in Fig. 2).

1) Green-Initiation Estimation: When a traffic light changes
to green, drivers should wait for the queue in front to move
before they can start moving. As shown in Fig. 7, this waiting
time is denoted by Δtwaiting in this paper.

As a result, based on estimates of Δtwaiting and tstart, the
green-initiation (tSoG) can be estimated as:

tSoG = tstart −Δtwaiting. (4)

However, depending on which travel trajectory the probe data
can be fitted to, there are two approaches to estimate green-
initiation:

• First approach uses the probe data that appears to be less
influenced by heavy traffic and delay in queue. For this
reason only the probe reports fittable to the trajectory of
Fig. 5(a) with high upstream velocity (v1) are selected to
estimate the time tstart. Because it is assumed that there is
no long queue in front, an average value of Δtwaiting for
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Fig. 8. Extracting the variance (σ2) trajectory from the green-initiations.

the first few vehicles in queue is used in green-initiation
estimation (6 seconds in our application for transit buses).

• Second approach uses the probe reports that reveal the
position of the probe vehicle in queue. This actually
includes the reports that are fittable to the trajectories of
Fig. 5(b) and (c) where at least one probe report sent while
in queue is available. Knowing the position of the vehicle
in queue, the queue waiting time (Δtwaiting) can be
estimated using the queue clearance time model explained
later in Section V. This approach is expected to be more
accurate than the first one in persistent heavy traffic condi-
tions, mainly because actual position in queue is available.

2) Signal Schedule Change Estimation: An offset (toffset)
is usually added to the timings during the rush hour schedule.
The approach described below estimates not only the time that
the schedule of a traffic light changes but also the offset that is
added to the timings.

First, the green-initiations estimated using the second ap-
proach of previous subsection are sorted based on the weekday
and the time of the day. Then, the variance of the average (σ2)
of few consecutive green-initiations (e.g. 5 green-initiations)
is calculated; and according to Fig. 8 this process is repeated
for the next consecutive green-initiations till the whole list of
green-initiations of each weekday is covered. By putting the
calculated variances together, a trajectory is constructed which
demonstrates the change of the variance with respect to time
of each week-day (see Fig. 9 for a sample plot of the variance
trajectory).

The spikes in the variance plot of Fig. 9 actually show the
times that a timing schedule is changed. The more probe data
is used, the sharper the spikes are. As a result, the probe data
collected of almost ten months is used in depicting Fig. 9, al-
though one month of collected probe data is also enough to have
detectable schedule change spikes. The variance trajectories of
[14] include some extra and misleading large spikes due to
heavier traffic in the middle of rush hour; however, considering
the influence of queue waiting time on SPaT estimation, all the
spikes in this paper are solely the results of the schedule change.

The value of the offset (toffset) imposed on the timings at
schedule change can be extracted by comparing the green-
initiation estimations before and after the schedule change.

Fig. 9. The variance of estimated green-initiations for Lombard intersection.
The actual schedule-changes happen at the dashed vertical lines which are
comparable to the jumps in the trajectories.

3) Green-Initiation Prediction: The green-initiation predic-
tion is the process of predicting the next transition to green.
Because of the clock drift throughout a day, the next green-
initiations should be continuously predicted using the most
recent reconstructed trajectories of vehicles that accelerate at
green. As a result, a moving average of the most recent esti-
mated green-initiations (t̄SoG) is used to predict the next transi-
tion to green. However, three adjustments should be conducted
before averaging the estimated green-initiations:

• First, the green-initiation estimations should be adjusted
by the estimated offset if they happened during the rush
hour schedule change. This is done by simply adding
toffset to the estimated tSoG. In this way, all the green-
initiation estimations are synchronized to a same time
reference.

• Second, the adjusted green-initiation estimations are
mapped to one cycle interval before being averaged.

• Third, a filter is used to filter out the outliers and wrong
estimations. The filter works based on the fact that the
smaller the variance of t̄SoG average is, the more accu-
rate prediction is expected. As a result, having n latest
estimated green-initiations, we propose to calculate t̄SoG
using all possible combinations of k ≤ n samples and
select the one that produces the minimum variance. In
mathematical language, let ti be the latest green-initiation
estimation which is adjusted and mapped based on the
aforementioned steps. And let S be the set of n-recent
green-initiation estimations as:

S = {ti−n+1, ti−n+2, . . . , ti−1, ti} (5)
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Let s be the set of k-subsets of S so that s has
(
n
k

)
elements

as follows:

|s| = nCk = k − combinations of set S s ⊆ S, k ∈ Z

(6)

As a result, s can be partitioned into unique subsets of
s1, s2, . . . , s|s| where:

sj = {(ts1, ts2, . . . , tsk) ∈ S|ti−n+1 ≤ ts1

< ts2 < · · · < tsk ≤ ti} (7)

Finally, one of the subsets sj (j = 1, 2, . . . , |s|) with
minimum variance of average is chosen and its average
value is used to predict the next transition to green.

One of the outliers that we expect the filter to eliminate from
set S before averaging is any green-initiation estimated from
the stop-and-go event that has no correlation with traffic signal
changes, for example stopping for passengers at bus stop. The
delay in bus stops needs to be studied in depth and remains
for future work. Nevertheless, according to the proposed filter
design, we expect the filter to eliminate the bus stop correlated
stop-and-go events if they lack the cyclic periodicity which
can be found in traffic light correlated stop-and-go events. The
results on green-initiation prediction are demonstrated later in
Section VI-A.

4) Red Split Estimation: The duration of red “observed” by
a particular vehicle can be calculated using the trajectories of
Fig. 5(a) and (b) as:

tred = tSoG −
(
tstop − v1

adec

)
(8)

where v1/adec is the deceleration time after a driver detects
the signal is red. The trajectory of Fig. 5(c) is also used in
calculating the observed red interval by verifying (9) if tSoG >
tq; where tq is the timestamp of the zero-velocity probe data
sent while waiting in queue, i.e.,

tred = tSoG − tq (9)

Fig. 10 shows scatter plots of tred calculated using the
aforementioned equations for four intersections. It is expected
that the maximum of the aggregated calculations would be
actually an upper bound estimate to duration of the actual red
phase. Please note that the red split scatter plots at Vallejo and
Broadway intersections shown in Fig. 10 are spread out com-
pared to that of Lombard an Green Intersections. One reason
for this could be the bus stop right after Vallejo intersection and
the two bus stops before and after the Broadway intersection.
There is no bus stop around Lombard and Green.

5) Red-Probability Estimation: This section demonstrates
how to extract the probability distribution of red signal by
aggregating the reports that are sent from the vehicles waiting
in queue at red. For this purpose, the timestamps of the zero-
velocity reports that has been sent while waiting in queue are
collected [more specifically the tq timestamps of Fig. 5(b)
and (c)]. Nevertheless, the tq timestamps do not necessarily
denote the times at which the signal is red; and the condition

Fig. 10. The red time observed by vehicles throughout the day of ten months
at intersections along VanNess St. (the actual intervals were available through
city timing cards and are shown by dashed horizontal lines). (a) Lombard
intersection. (b) Green intersection. (c) Vallejo intersection. (d) Broadway
intersection.

of tq < t̄SoG should be verified before collecting tq as a sample
corresponding to red signal.

In order to synchronize all the collected tq timestamps to a
same time reference, the estimated offset (toffset) is added to
the timestamps that has occurred during the rush hour schedule
change. Before aggregating the adjusted timestamps, all the
timestamps should be mapped to one cycle interval by (10)
where C is the cycle time estimated by the method explained
in [14], i.e.,

tq,mapped = tq − round

(
tq
C

)
C. (10)

Equation (10) maps all timestamps of tq onto a reference
interval of [0, C] in Unix-Time. These mapped timestamps are
all aggregated and can be plotted in polar histograms such as
Fig. 11. As shown in this figure, the interval [0, C] can be
mapped to an interval of [0, 2π] because of the cyclic period-
icity. The longer each triangle of histograms is, the more red
samples it includes. The shaded portions of the cycle time are
the actual red intervals which are depicted according to the city
timing cards and the ground truth observations. The histograms
represent the probability distributions of red intervals which
have much stronger concentration of mapped red-samples in
the shaded portions (actual red intervals). However, moving
counter clockwise on the polar plots, a short time span can
be identified at the beginning of red phase with a very few
red samples. This makes sense, because there are no stopped
vehicles at the instant that light changes to red. Even if there
are, then it is more probable to receive a zero-velocity report
from them anytime later waiting at red phase than at the
beginning of the red. The method proposed here to extract
theses distributions completes the method of our previous work
in extracting the probability of green in [14].

V. QUEUE WAITING TIME

As explained in Section IV-D1, the key feature of the SPaT
estimator is inclusion of an estimate of the wait time in queue
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Fig. 11. Polar histogram of the red signal timestamps compared to the actual
red splits (the data was collected for ten months at four intersections along Van
Ness street).

Fig. 12. The time–space diagram of a probe vehicle (bus) waiting for moving
after the start of the green signal; the clearance time is the time from tSoG to
the instant at which the probe vehicle passes the stop-bar.

after green-initiation. The following subsections describe: how
to formulate this waiting time based on the expected queue
clearance time, how to find an estimate of the queue clearance
time via a queue discharge model, and how to estimate the
unknown parameters of the model.

A. Waiting Time Formulation

Let’s assume that a probe vehicle is the N th vehicle waiting
in a queue at red, as shown in the time–space diagram of
Fig. 12. Then, the clearance time, denoted by Δtclearance, is
the discharge time that it takes all of the N waiting vehicles to
pass and leave the stop-bar after the start of the green signal.
However, as it is plotted in Fig. 12, the clearance time of N
queued vehicles consists of two parts: the waiting interval that
it takes the N th vehicle to start moving after green-initiation
(Δtwaiting) plus the interval that it takes that vehicle to travel all
the way up to the stop-bar and cross the stop-bar (Δttravel). As
a result, the following formulation is proposed here to estimate
the waiting time in queue:

Δtwaiting = Δtclearance −Δttravel. (11)

With the queue clearance time and the estimated travel
time in hand, then it is quite straightforward to compute the

Fig. 13. Green-initiation estimation knowing the position of the probe vehicle
in queue.

Fig. 14. Average discharge headway.

waiting time and finally the green-initiation (tSoG). This is
demonstrated in Fig. 13 where the expected Δtclearance is
derived from a model proposed in the following subsection; and
Δttravel is estimated1 using Fig. 6.

B. A Model for Queue Clearance Time

The clearance time of queued vehicles can be represented
by the summation of discharge headways. Fig. 14 shows the
average discharge headway, according to the specifications
given in [25]. The Headway(n = 1) is the interval between
green-initiation and the time that rear wheels of first vehicle
cross the stop-bar, the Headway(n = 2) is the interval between
the first vehicle and the second vehicle leaving the stop-bar, and
so on. As a result, the summation of headways, as introduced
in [26] and as given in (14), equates to the time from green-
initiation to the instant at which the N th vehicle of the queue
crosses the stop line, i.e.,

Δtclearance =

N∑
n=1

Headway(n) = hN +

N∑
n=1

Δn. (14)

Due to the start-up reaction and acceleration, the headways
for the first few vehicles are greater than saturation headway
h and are shown as h+Δn in Fig. 14 where Δn is the
incremental headway for the nth vehicle [25]. In this paper, the
incremental headways are assumed to decrease exponentially

1The Δttravel is the expected travel time between xsignal and xq :

Δttravel = max

{
dq

v2
− v2

2aacc
, 0
}

+
vs

aacc
(12)

where vs is the velocity at stop-bar (xsignal) and can be a value equal or lower
than v2 as follows:

vs =

√
2aacc ×min

{
dq ,

v22
2aacc

}
(13)
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with the position in queue. As a result, an empirical formu-
lation for the queue clearance time is achieved by rephrasing
(14) as:

Δtclearance = hN +Δ1

N∑
n=1

e−(n−1). (15)

According to Highway Capacity Manual [25] and also [27],
the effect of the start-up reaction and acceleration will be
dissipated after the fourth vehicle (please see Fig. 14). This
means that the steady headway h (saturation flow) will be
reached after the fourth vehicle (this is true only if the headway
compression, as studied in [28], is ignored). As a result, we
should assume that incremental headways decrease in such
a way that their value reaches ≈0 after the fourth vehicle.
Although one may assume a linear decreasing function, an
exponentially decreasing function is used as given in (15)
because the incremental headway decreases more rapidly as the
vehicle position in queue increases.

C. Parameter Estimation

The clearance time model provided in (15) is in fact a linear
combination of saturation headway (h) and the first incremental
headway (Δ1). As a result, Multiple Linear Regression model
(MLR) can be used to estimate these parameters. However,
there are two challenges:

First, the regression variable is the vehicle position number in
queue (N) which is not available. However, it can be estimated
by (16), whereLv is the average distance that a vehicle occupies
(20 ft), and �.� is the flooring function, i.e.,

N =

⌊
dq
Lv

⌋
+ 1. (16)

Second, gathering enough observational data on queue clear-
ance time is time consuming. For this reason, an approach is
proposed here which provides enough samples of queue clear-
ance time without the need of gathering them locally at inter-
sections. This is achieved using (17) where the green-initiation
timestamp of a sample Intersection–Phase (tSoG,observed) was
locally collected from direct observation, and tstart is estimated
based on the reconstructed trajectories. Multiple of C seconds is
also included in (17) because tSoG,observed is a locally collected
green-initiation and might be days before or after the estimated
tstart, i.e.,

Δtwaiting = tstart − tSoG,observed ± kC k ∈ Z

Δtclearance =Δtwaiting +Δttravel.
(17)

The clearance time model in (15) is then verified to fit
the aforementioned data, as shown in Fig. 15. However, this
data shown in Fig. 15, represented by the blue circles, do
not seem to be symmetrically distributed. The queue clearance
data is skewed most probably because there are many real
world factors, such as lane blockage and downstream queue
spillback, that would prolong the time needed for a queue to
dissipate. On the other hand, usually there is no factor that
could possibly make the queue clearance time shorter than its

Fig. 15. The queue clearance time model fit to data.

expected value. This explains why data is skewed to the right
and not to the left. As a result, in order to reduce the influence
of the unwanted events such as lane blockage, not all the data
shown in Fig. 15 was used for fitting purposes. For each one
meter increment in distance to stop-bar, we had labeled the data
points that were more than 1.0 times the inter-quartile range
above the 75th percentiles as outliers. These outlier points were
removed from data and are cross-marked in Fig. 15. Please
note that the clock drift could also be a reason that the queue
clearance calculated by (17) is spread out.

The estimated regression coefficients of this curve fit are
h = 1.47 s and Δ1 = 5.08 s for the through movement which
are consistent with the measurements in literature [29], [30].
However, the first incremental headway Δ1 looks slightly
greater than expected because of the low acceleration of buses
compared to conventional passenger vehicles, and also because
of our slightly different definition of headway which considers
the rear wheels crossing the stop-bar instead of the front wheels.
As an empirical verification of the estimated parameters, as-
sume there is no queue in front of the vehicle then the model
estimates the clearance time to be equal to h+Δ1 = 6.6 s. This
yields a waiting time (somewhat akin to first driver’s reaction
time) of about 1.6 s–2.6 s considering that it takes a vehicle in
front of queue about Δttravel = 4 s − 5 s to completely pass the
stop-bar. This is consistent with our observations in street and
also with results in [30].

It must be emphasized that the aforementioned curve fitting
was conducted only to get an idea of the queue clearance
parameters values, and as it is verified in Section VI-B, it is
not necessary to repeat the process for every intersection–phase.
However, the results are only applicable to through movement,
and similar parameter estimation should be repeated for left
turn or shared left/through lanes.

VI. GROUND TRUTH VERIFICATION

A. Verification of Green-Initiation

In order to verify the accuracy of green-initiation predictions,
we collected the actual green-initiations locally at a sample
intersection. These time samples were actually collected by
a computer program that would log the time whenever the
observer pressed a key at the change of red to green. The
program was synchronized to the NIST time server [20] and
was used to record the actual green-initiations between hours
of 2 P.M. and 10 P.M.. This period of the day was selected so
that the proposed green-initiation estimator could be evaluated
during the evening rush hour traffic.
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Fig. 16. The error between the predicted and actual green-initiations (south-
bound phase at Lombard intersection as recorded on April 25, 2013).

Concurrent with the aforementioned ground truth data col-
lection, the green-initiations were also predicted by crowd-
sourcing the probe data sent from the public buses passing
over the same intersection. The error between these predicted
green-initiations and the collected actual green-initiations is
shown in Fig. 16. The error shown in solid red line is the
error of the estimation method when only using data from the
probe vehicles that stop at red, send a report while waiting in
queue, and leave the intersection at green. These vehicle passes
should fit Fig. 5(b) or (c) though. The error shown in dashed
black line is the error of the estimation approach of previous
work [14] that only took into account those probe vehicles that
stopped at red, and left the intersection at green without sending
any report while in queue. Because the position in queue is
not available in this case, these vehicle passes should not be
influenced by queue delay and should fit Fig. 5(a) with high
upstream velocity.

As it was expected in Section IV-D1, Fig. 16 demonstrates
that during the persistent heavy traffic conditions, the probe re-
ports that include the position in queue, result in more accurate
phase-change predictions compared to the reports that do not
reveal any queue information.

Please note that the jumps in error plots in Fig. 16 correspond
to the times when new qualifying bus passes occurred in this
particular scenario. These times are shown with filled or open
circles depending on the trajectories that the corresponding
passes are fitted to. Also the drift in plotted error in between
the passes is due to the actual drift of the signal clock.

B. Verification of Queue Formulations

Three ground truth data collection sessions were arranged at
10 intersections along Van Ness street, San Francisco. One of
the colleagues physically sat in buses and recorded the trajec-
tory with a GPS tracking device at high frequency. In this way,
GPS location and velocity data was collected at the frequency of
1 Hz while traveling on the transit buses. Fig. 12 shows a sample
collected high-frequency GPS trace plotted over time–space
diagram, wherein the timing of the lights are plotted using the
baseline timings given in the city timing cards and the locally
collected green-initiation timestamps.

We first searched the aforementioned plotted GPS traces for
the stops at red at any of the 10 intersections along Van Ness

street. Knowing the stop-bar positions of the intersections, the
plots reveal the instant at which the buses pass the stop-bar
at green phases. Furthermore, the corresponding time–velocity
diagrams (not shown in Fig. 12) reveal the instant at which the
waiting buses in queues start moving at green (tstart). Using
the aforementioned extracted timestamps, the bus actual travel
time, and also the queue waiting and clearance intervals are
extracted as shown in Fig. 12. These values are tabulated in
Table II as Ground Truth (G.T.).

The estimations of the queue waiting and clearance times and
the travel time are also given in Table II denoted by Estimations
(Est.) which are calculated by applying the proposed queue
formulations in Section V to the collected ground truth data.
The Root Mean Square Error (RMSE) between the estimations
and the collected ground truth data, observed at 10 intersec-
tions, was 2.68, 1.37, and 1.98 seconds for Δtclearance, Δttravel,
and Δtwaiting respectively which are accurate enough for the
application in this manuscript. The box plot of the errors are
also given in Table II.

The correlation between the estimated values and the ob-
served values of Table II is shown in Fig. 17 for queue waiting
time. In the same figure, the proposed technique of waiting
time estimation is compared and found to be consistent to two
other formulations used in related works: First, the formulations
proposed by Akçelik et al. [29] to estimate the queue depar-
ture response time for through closely-spaced intersection sites
(used by Kerper et al. [15]). Second, the queue discharge shock-
wave speed formulations proposed by Lighthill [31] (according
to the way it is used by Cheng et al. [16], Chuang et al. [17],
and also [32]).

In addition to RMSE, Fig. 17 also provides the coefficient
of determination R2. The R2 value of our proposed estima-
tion technique is closer to 1.0 which indicates slightly better
correlation with the observed values. This is achieved mainly
due to taking account of incremental headways for the first
few vehicles in queue as well as the downstream velocity
into our proposed queue dissipation formulations. It should be
emphasized that, although our obtained values for root mean
square error (RMSE) and coefficient of determination (R2) in-
dicate more accurate estimations and better correlation with the
observed values, the fact that our estimation method needs the
downstream velocity (v2) as extra information makes it difficult
to conclusively claim that our queue dissipation formulation is
better than the other two formulations mentioned above.

VII. CONCLUSION

A complementary approach to estimating traffic Signal Phase
and Timing (SPaT) from probe data is proposed in this man-
uscript for pre-timed traffic signals. The input probe data
stream is a low-frequency bus data feed; and the results are
achieved under low penetration of probe data: the accuracy of
the crowdsourcing algorithms are experimentally evaluated for
a selection of intersections in San Francisco, CA where the bus
passages are infrequent and happen every 5–10 min on average.

In case of a low-frequency data source, less challenge is
expected in the estimation procedure if we only use the probe
data that can be fitted into the predefined desired trajectories.
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TABLE II
COMPARISON BETWEEN THE COLLECTED GROUND TRUTH (G.T.) DATA
AND ESTIMATIONS (EST.) OF TRAVEL TIME, AND QUEUE CLEARANCE

AND WAITING TIMES FOR ALL THE INTERSECTIONS COMBINED

Also if we identify and remove the probe data that appear to
be influenced by heavy traffic then the more complex queue
formulations are not needed in estimations. However, these

Fig. 17. Estimated versus observed queue waiting time.

measures eliminate a large portion of data; and any SPaT
estimation method that filters out huge amount of data is subject
to error. This is mainly due to the signal clock drift throughout
a day that makes it crucial to have recent SPaT.

In this manuscript, it is shown that adding the trajectories
that have been influenced by queue delay allows us to access
a larger portion of data. This is the reason that the phase-
change estimation results remain accurate even during heavy
traffic. Also as it was expected, more accurate baseline timing
estimations are achieved if we use the trajectories that include at
least one report sent while waiting in queue. Obviously, this has
been achieved at the price of more complex queue formulations
in crowdsourcing algorithms.

In summary, the results presented in this paper can be cat-
egorized as: i) The improvements in SPaT estimation, com-
pared to [14], by investigating the probe data influenced by
the heavy traffic and the delay in queues. More specifically,
the improvements are in Signal Schedule Change Estimation
and Green-Initiation Estimation. ii) Extra SPaT information
(Red-Probability Estimation) which is hidden in probe reports
sent from stopped vehicles waiting in queues. iii) The verifica-
tions to evaluate the proposed queue dissipation formulations.
In addition to these results, the back-end implementation of
some algorithms which could not fit in [14] are explained in
this paper that hopefully paves the way for future endeavors in
this area.
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