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Abstract— Finding the optimal charging profile of an ultra-
capacitor energy storage system during a regenerative braking
event is the focus of this paper. After showing that resistive
losses can be high during a high power regeneration event, we
formulate the charging problem in an optimal control frame-
work with the objective of maximizing the energy recuperated
into the ultracapacitor bank while satisfying braking power
demands. We employ Pontryagin’s maximum principle to
understand the necessary conditions the solution should satisfy
and use numerical techniques to find such optimal solution(s).
The result should provide more insight into the maximum
achievable regeneration efficiency with ultracapacitors under
different braking conditions and can also aid in sizing an
ultracapacitor energy storage system and the associated power
electronics device.

I. INTRODUCTION

In fully electric or hybrid electric vehicles, the capability
to recover part of vehicle’s kinetic energy during braking
events plays an important role in increased energy efficiency
of the vehicle. The role of regeneration may be even more
important when ultracapacitors are used for energy storage,
because of their high power but low energy density. High
resistive losses in this case can substantially reduce the
recuperation efficiency. To provide a better understanding
of the fundamental limitations with ultracapacitor energy
storage and to confirm what the best charging patterns are,
we formulate the charging problem as an optimal control
problem in which the goal is to maximize the energy
recuperated into the ultracapacitor bank while satisfying
braking requests. Pontryagin’s maximum principle provides
the necessary conditions that candidate solutions should
satisfy. We resort to numerical techniques to find the optimal
charging current profile in a regenerative braking event.

We start by showing the (known) fact that when a
discharged ultracapacitor is fully charged by a constant
voltage source, exactly 50 percent of the charging energy is
lost to the line resistance independently of how small this
resistance may be. In stand-alone ultracapacitor charing, it
is straightforward to show, via application of Pontryagin’s
Maximum Principle, that charging with constant current is
energy optimal [1]. However, it is not obvious if constant
charging is energy optimal during regenerative charging due
to the coupling with vehicle velocity and motor dynamics
and contraints. While the optimal control formulation of the
problem is relatively straight-forward, its solution is not,
as now the necessary conditions for optimality are more
complex. In this paper we resort to a numerical technique
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to find solutions that satisfy the optimality necessary con-
ditions and present the preliminary results.

In our group, we have previously demonstrated via
detailed full driving cycle simulation analysis that, with
the power assistance provided by a stand-alone bank of
ultracapacitors the fuel economy of heavy trucks could be
improved up to 40% in a stop and go driving cycle [2].
For mild hybrid passenger cars we found 15% gain in fuel
economy in city driving was possible [3]. However it is
difficult to isolate the real efficiency bottlenecks via a full-
scale powertrain simulation over an entire driving cycle.
The objective of this paper is to provide more in-depth un-
derstanding of the fundamental efficiency limitations during
an isolated regenerative braking event.

As a recent article [4] correctly points out there is much
”confusion” and ”uncertainty” in the literature regarding
power, cost, and weight advantages that can be gained with
ultracapacitors over advanced batteries. Perhaps because of
these uncertainties, ultracapacitors have not yet made their
way to mass produced hybrid vehicles. Only at a limited
scale they have been used as the main energy storage
units in fleets of buses [5]. Quantifying how efficiently
ultracapacitors can store (and release) energy provides a
better understanding of their potentials and can also aid in
sizing an ultracapacitor energy storage system.

II. MOTIVATION

It is well known that charging a capacitor and similarly
an ultracapacitor, from zero charge to full charge, with a
constant voltage source results in 50% energy loss irrespec-
tive of the internal and line resistances. This can be easily
shown by writing the differential equation governing the
ultracapacitor stored charge, q(t), for the circuit shown in
Figure (1):

RC
dq
dt

+q =CEdc (1)
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Fig. 1. Schematic of the charging circuit.

where C is the capacitance of the ultracapacitor, R is the
lumped resistance of the ultracapacitor and connecting ca-
bles, and Edc is the charging voltage. If Edc remains constant



over time, the solution to the above differential equation
from a zero initial charge condition can be obtained to be:

q(t) =C.Edc.
(

1− e−t/RC
)

(2)

and the charging current ichg is then:

ichg(t) =
Edc

R
e−t/RC (3)

One can find the resistive energy loss by integrating the
resistive power loss Ri2chg over the entire charging interval
[0,+∞),

E2
dc
R

∫
∞

0
e−2t/RCdt

to be equal to 1
2CE2

dc which is also equal to the total energy
stored in the ultracapacitor. In other words the efficiency of
charging an empty ultracapacitor with a constant voltage
source is 50% independently of resistance R. Note that the
charging efficiency depends on both the initial and final state
of charge; for example charging an ultracapacitor from half
to full charge with constant voltage has an efficiency of 75
percent1.

It is then natural to ask what charging current (or voltage)
profile maximizes the charging efficiency. That is the current
that would charge the ultracapacitor to a desired level of
charge with minimum resistive losses. Let’s choose the opti-
mization variable to be the charging current, u1(t) = ichg(t).
The ultracapacitor state of charge SOC = q(t)

qmax
quantifies

the amount of charge stored in the ultracapacitor bank
normalized by the maximum charge it can accept qmax. We
can think of ultracapacitor’s state of charge as a dynamic
state x1 with the following dynamics:

d
dt

x1 =
u1

CEmax
(4)

where Emax is the voltage across the ultracapacitor at
maximum charge. Let’s assume the ultracapacitor is initially
free of charge x1(0) = 0 and in t f units of time is charged
to its final desired state of charge SOC f , therefore x1(t f ) =
SOC f . The optimal input u1(t) is one that minimizes the
resistive losses in the time period [0, t f ] characterized by
the following cost function:

J =
∫ t f

0
Ru1(t)2dt (5)

This is an optimal control problem and can be solved using
Pontryagin’s maximum (also called minimum) principle [6].
First form the Hamiltonian:

1Efficiency of charging an ultracapacitor from initial state of charge
SOCi to final state of charge SOC f with a constant voltage source is:

ρ =
1

1+ (1−SOCi)2

SOC2
f−SOC2

i

H(x1,u1, t) = Ru1(t)2 +λ1
u1

CEmax
(6)

where λ1 is a co-state. The optimal co-state should satisfy
the following dynamic equation:

d
dt

λ1 =−
∂H
∂x1

= 0 (7)

implying that in this problem the optimal λ1 must be
a constant. The unconstrained optimal solution will also
satisfy the following condition:

∂H
∂u1

= 0→ u1(t) =−
1
2

1
RCEmax

λ1 (8)

showing that the optimal input (charging current) must be
a constant. One can now integrate Eq. (4) and use the
boundary conditions x1(0) = SOCi and x1(t f ) = SOC f to
find the value of this optimal and constant input:

u∗1(t) =
C.Emax.(SOC f −SOCi)

t f
(9)

where ∗ denotes the optimal solution. This is in fact the
minimizing solution since ∂2H

∂u2 > 0. The optimal charging
efficiency, ρ∗, is

ρ
∗ =

1
2CE2

max(SOC2
f −SOC2

i )∫ t f
0 Ru∗1(t)2dt + 1

2CE2
max(SOC2

f −SOC2
i )
,

Substituting for u∗1 from (9) yields:

ρ
∗ =

1

1+( 2RC
t f

).(
SOC f−SOCi
SOC f +SOCi

)
(10)

which implies larger charging times and/or smaller RC
values improve the charging efficiency. When t f approaches
infinity the charging efficiency approaches 1, which is a
100% improvement over the case with constant voltage
charging. Another interesting observation is that charging
from a higher initial state of charge will result in higher
efficiencies. Note that we assumed that both the input
u1 and the state x1 were unconstrained. Treatment of the
constrained case in this problem is straightforward.

Still, one cannot assume that constant current charging is
the energy optimal approach during a regenerative braking
event: i) In braking from a given speed to a desired final
speed, the available charging energy is fixed; different from
the implicit assumption in the above derivations that an
unlimited source of charging energy exists, ii) Losses are
not only resistive but also due to friction brakes if applied,
iii) When braking from high speeds, available kinetic energy
may be much more than the capacity of the ultracapacitor;
therefore minimizing resistive and friction braking losses
may not be even necessary. And iv) The optimal charging
profile is influenced by the electric motor characteristics.

Next we formulate a new optimal control problem to
address the particular nature of regeneration. To understand



the subsystem level efficiency, we first ignore the motor
dynamics and losses and focus only on the subsystem shown
in Figure (1).

III. FORMULATION OF OPTIMAL CHARGING DURING
REGENERATION - EXCLUDING MOTOR DYNAMICS AND

CONSTRAINTS

Going back to Figure (1) the following relationship is
observed:

Edc(t) = Emax.SOC(t)+R.ichg = Emax.x1 +R.u1 (11)

where Edc is the voltage of the power electronic device
on the ultracapacitor side. This is related to the available
regeneration power Pregen as follows:

Pregen(t) =
1

η(x1,u1)
Edc(t).ichg =

(Emax.x1 +R.u1).u1

η(x1,u1)
(12)

where 0 < η 6 1 is the charging efficiency of the dc/dc
converter and in general a function of its current and
voltage, therefore η(x1,u1).

In addition to the state of charge which is a dynamic state,
the vehicle velocity also constitutes a state. The governing
equation for velocity x2 = v can be written using Newton’s
second law of motion:

d
dt

x2 =−
1
m
·

Pregen +Pf riction

x2
(13)

d
dt

x2 =−
1

mx2

(
Emax.x1 +R.u1

η(x1,u1)
u1 +u2

)
(14)

where u2 = Pf riction is the power dissipated by friction
braking and considered a second control input and m is
the total mass of the vehicle. For a regeneration period we
need to require that:

u1(t)> 0, u2(t)> 0 (15)

Given a braking event during which the vehicle speed
is reduced from x2(0) = vi to x2(t f ) = v f the goal is to
maximize the regeneration efficiency. The objective function
to be maximized then can be chosen to be the charge stored
in the ultracapacitor at the end of the braking event at time
t f :

J = x1(t f ) (16)

The objective is to find the control inputs u1(t) and u2(t)
that maximize J subject to the input constraints in (15). The
equality constraints to be satisfied are the state dynamics
in Equations (4) and (14). The boundary conditions for the
case when the ultracapacitor is initially discharged are:

x1(0) = 0, x1(t f )6 1
x2(0) = vi, x2(t f ) = v f

(17)

Because of the monotonically increasing state of charge
in the ultracapacitor during regeneration, the imposed ter-
minal constraint of x1(t f )6 1 satisfies also the requirement

that x1(t) 6 1 ∀ t ∈ [0, t f ]. The braking time t f can be
assumed to be fixed or left to be free with an upper bound,
i.e. t f 6 tmax.

Practical limitations may impose constraints on maxi-
mum allowable current, dc/dc converter output voltage, and
maximum regeneration and braking powers or forces. Such
hard constraints must be included a-priori when solving the
optimal control problem analytically or numerically.

Following a standard optimal control routine, one first
forms the Hamiltonian:

H = λ1
u1

CEmax
−λ2

1
mx2

(
Emax.x1 +R.u1

η(x1,u1)
u1 +u2

)
(18)

where λ1 and λ2 are the co-states. Because in the opera-
tional range of a dc/dc converter, its efficiency does not vary
significantly, here we assume the dc/dc converter efficiency
is constant, i.e. η(x1,u1) = η. This assumption reduces the
complexity in the following derivations. Subsequently the
differential equations governing the dynamics of the co-
states λ1 and λ2 can be found to be:

d
dt

λ1 =−
∂H
∂x1

=
Emax

mη

λ2

x2
u1 (19)

d
dt

λ2 =−
∂H
∂x2

=
1
m

λ2

x22

(
Emax.x1 +R.u1

η
u1 +u2

)
(20)

The optimal solution should satisfy the co-state equations
(19) and (20) in addition to the state equations (4) and
(14). The boundary conditions are the three equalities in
(17) and also after observing x1(t f ) is free, on can obtain
λ1(t f ) = 1 (more details can be found in [6]). In the absence
of any input or state constraints, the optimal solution(s)
should also satisfy ∂H

∂u1
= 0 and ∂H

∂u2
= 0 from which one

obtains a relationship between the control inputs and the
states and the co-states. In the above problem the control
inputs are constrained as shown in (15), so we must resort
to Pontryagin’s maximum principle instead:

H(x∗(t),λ∗(t),u∗(t), t)>H(x∗(t),λ∗(t),u(t), t), ∀ t ∈ [0, t f ]
(21)

where ∗ denotes the optimal solution, and the vectors x,
λ, u stack the states, the co-states, and the control inputs
respectively. In other words the optimal control input should
maximize the Hamiltonian given the input constraints. As
opposed to the case of direct charging shown in Section II,
the necessary conditions for optimality are more complex
and it is not clear what the optimal charging profile is.

This is a two-point boundary value problem which is
generally hard to solve. In the simulations of this paper,
we employ the software package PROPT [7] that uses
pseudospectral collocation methods to obtain a candidate
optimal solution. The solution is mathematically equivalent
to one obtained from application of Pontryagin’s Maximum
Principle; and satisfies the necessary conditions for optimal-
ity, but not guaranteed to be the globally optimal solution.



A. Simulation Results
The mass of the vehicle was assumed to be 9700 kg

corresponding to the heavy hybrid electric truck simulated
in [2]. The energy storage is a 145 Volt ultracapacitor bank
with total capacitance of C = 56 Farads and lumped line
resistance of R = 0.07 Ohms2. These values are adopted
from previous work in our group where performance of an
ultracapacitor-assisted heavy truck had been studied over a
whole drive cycle [2]. To isolate the influence of the DC/DC
converter, its efficiency η is assumed to be 1.

Figure 2 shows the (candidate) optimal solution, obtained
using the software package PROPT [7], for a first case study.
The ultracapacitor had zero initial charge and the car was
stopped from an initial velocity in a maximum of 20 seconds
(0 6 t f 6 20). The only constrained inputs are those in (15)
on the control inputs. The initial velocity is chosen such that
the available kinetic energy is equal to the energy storage
capacity of the ultracapacitor, i.e.

1
2

Mv2
i =

1
2

CE2
max(SOC2

f −SOC2
i )

→ vi = Emax

√
C.(SOC2

f −SOC2
i )

M
= 11 m/s

Interestingly, the optimal solution found seems to be a
constant current solution ichg(t) ≈ 344 Amperes; with the
optimal final time equaling its maximum of 20 seconds.
This charges up the empty ultracapacitor to the final state
of the charge of SOC f = 0.8475 yielding a regeneration ef-
ficiency of 72%. These numbers are consistent with those in
equations (9) and (10). A lower line resistance or increasing
the charge time will results in increased charging efficiency
according to the relationship in (10). Here the friction
braking power is practically equal to zero as expected.
We note that if the current that the system can accept
is lower than 344 Amperes, current constraints should be
imposed, in which case friction brakes will be activated
and the regeneration efficiency will be lower than 72%.
A constrained current simulation case study (not shown
here) revealed that, if only current was constrained, the
optimal charing current would remain constant but at the
constraint boundary. Deceleration limits and upper bounds
on regenerative and friction braking powers may also be
imposed if needed. Limiting the deceleration rate to−1m/s2

did not have a considerable influence on the results and on
the efficiency reported above; it only limited the charging
current and power at a fraction of the last second of the
simulation when the velocity was nearly zero.

Another interesting observation is that the resulting opti-
mal velocity profile is not a linear function of time. This is
different from linear slow-down profiles in many standard
drive cycles. In the above simulation, imposing a linearly
decreasing profile, v(t) = vi(1− t

t f
), will require very high

2Note that this value is meant to include the resistance of the motor and
connecting wires and may be an overestimate. The internal resistance of
the ultracapacitor module is much lower.
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Fig. 2. Case Study I: The ultracapacitor is initially empty of charge.

charging currents initially (ichg > 500 Amps for the first
5 seconds). Even if such large currents can be allowed,
the regeneration efficiency will only be 62% which is 10%
lower than the optimal efficiency. If the current has an upper
bound, friction brakes will need to be activated to maintain
a linearly decreasing velocity, reducing the regeneration
efficiency to below 62%.

The above simulation was repeated with initial ultraca-
pacitor state of charge of 0.5. The initial velocity in this
case is chosen at nearly 9 m/s such that the available kinetic
energy is equal to the remaining energy storage capacity of
the ultracapacitor. Figure 3 shows the simulation results.
The charging current profile is constant as expected and the
charging efficiency in this case is much higher and nearly
90%, indicating operating an ultracapacitor in a higher and
narrower state of charge range has efficiency advantages.

IV. FORMULATION OF OPTIMAL CHARGING DURING
REGENERATION - INCLUDING MOTOR DYNAMICS AND

CONSTRAINTS

The above results are based on the assumption that the
regeneration power Pregen in Equation (13) does not have
speed dependent bounds. Consequently one observes large
values of regeneration power at low speeds in Figures 2
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Fig. 3. Case Study II: The ultracapacitor is initially 50% charged.

and 3. This assumption is not realistic as the regeneration
capability of an electric motor significantly reduces at low
speeds. The power regenerated by a DC motor can be
calculated by:

Pregen = (Ktωm−Rmim−Lm
dim
dt

)im (22)

where im, Rm, Lm, and Kt are the motor current, resistance,
inductance, and back-emf constant respectively. The rota-
tional speed of the motor ωm is proportional to vehicle
speed, ωm = v

rw
, where rw is the driven wheel radius.

Obviously the maximum regeneration power is reduced as
the vehicle speed drops.

To account for the constraints and losses due to the motor,
the motor dynamics should be augmented to the equations
developed in the previous section by introducing a third
state variable x3 = im. Substituting for Pregen from Eq. (12)
in Eq. (22) and rearranging yield:

d
dt

x3 =−
1

ηLm
(Emax.x1 +R.u1)

u1

x3
− Rm

Lm
x3 +

Kt

Lm

x2

rw
(23)

where the regeneration mode is enforced by requiring x3 >
0. The optimal control problem formulations remains the

same as that in Section III; only the motor state dynamics
and the state constraint are added. We again use PROPT to
obtain a solution that satisfies the necessary conditions for
optimality.

A. Preliminary Simulation Results

A preliminary simulation case study was performed to
illustrate the impact of the motor on optimal regeneration
efficiency and on optimal charging profile. A DC motor
with Rm = 0.02 Ohm, Lm = 0.0025 Henry, and Kt = 30
Volts per radians/sec was used. It was assuming that this
motor is directly connected to the wheels of radius rw =
0.57 m matching the truck in [2]. Other parameters of the
energy storage system are those reported in Section III-A.
These parameter values are not necessarily optimal or even
realistic and are for preliminary illustration of the impact of
the motor. Future work is needed for appropriately sizing
and selecting a DC or AC motor that best matches the
energy storage system.

The ultracapacitor’s initial state of charge is assumed
to be 0.5 and the initial velocity is chosen to be nearly
9 m/s. Our preliminary results in Figure 4 indicate that the
charging current profile is no more a constant profile, the
regeneration power drops at low speeds and friction brakes
are activated. The regeneration efficiency is now 87%, lower
than the result of case II in Section III-A. The optimal
velocity profile is closer to a line but not completely linear.

V. SUMMARY AND FUTURE WORK

Previous research has studied the positive impact that
ultracapacitor-assist can have on fuel economy of vehicles
over entire drive cycles. The goal of this paper was to
provide more insight into the efficiency bottlenecks of an
ultracapacitor energy storage system by focusing on an
isolated regenerative braking event and using a bottom-
up subsystem-level approach. The objective of maximizing
energy recuperation was formulated in an optimal control
framework and candidate optimal charging profiles were
calculated based on Pontryagin’s Maximum Principle. We
showed, analytically, that an ultracapacitor can be charged
more efficiently and with lower currents if operated in a
narrower and higher state of charge band. This implies that
a larger ultracapacitor operated at higher state of charge
can be charged more efficiently than a smaller size ul-
tracapacitor. Because larger capacitance or resistance (RC)
negatively influence the rapid charging efficiency; the trade-
off between the ultracapacitor size and its operating range
should be observed and will be addressed in our future
work. The motor and the dc/dc converter specifications play
an important role in the overall efficiency and future work
can benefit from the approach in this paper for appropriately
sizing each component. We also observed that linearly
decreasing velocity profiles, as commonly seen in standard
drive cycles, do not necessarily lead to the best regeneration
efficiency.
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