
Prediction on Travel-Time Distribution for Freeways
Using Online Expectation Maximization Algorithm

Nianfeng Wan
Department of Mechanical Engineering,

Clemson University
nwan@clemson.edu

Gabriel Gomes
University of California, Berkeley

gomes@path.berkeley.edu

Ardalan Vahidi
Department of Mechanical Engineering,

Clemson University
avahidi@clemson.edu

Roberto Horowitz
Department of Mechanical Engineering,

University of California, Berkeley
horowitz@berkeley.edu

Paper submitted to TRB Annual Meeting 2014
July 30, 20135

3300 words + 8 figure(s) + 0 table(s)⇒ 5300 ‘words’

1



2

ABSTRACT
This paper presents a stochastic model-based approach to freeway travel-time prediction. The
approach uses the Link-Node Cell Transmission Model (LN-CTM) to model traffic and provides
a probability distribution for travel time. On-ramp and mainline flow profiles are collected from
loop detectors, along with their uncertainties. The probability distribution is generated using Monte5

Carlo simulation and the Online Expectation Maximization clustering algorithm. The simulation
is implemented with a reasonable stopping criterion in order to reduce sample size requirement.
Results show that the approach is able to generate an accurate multimodal distribution for travel-
time. Future improvements are also discussed.

Keywords: Travel-time Distribution, Model-based Prediction, Link-Node Cell Transmission Model,10

Monte Carlo, Online Expectation Maximization.



INTRODUCTION
Travel-time is one of the most important traffic performance measures. Accurate travel-time infor-
mation enables drivers to understand the traffic conditions, and hence to choose routes or manage
trip schedules to avoid congested road sections. Most of today’s state-of-the-art navigation systems
like Google Maps provide travel-time information. From the traffic control prospective, travel-time5

information also helps to monitor and control traffic with signal lights, ramp metering, etc. (1)
However, travel-time is difficult to predict. Since it is affected by many different kinds of

traffic parameters: flow, density, speed, route length, geometry, etc. These parameters are obtained
through various sources, which carry different kinds of uncertainties, making the prediction more
challenging. There have been many methods for predicting travel-time. One method involves com-10

puting travel-time from historical data using data mining techniques. Methods have been developed
based on linear regression (2), time series (3), Kalman filter (4) and (5), artificial neural networks
(6). However, these data-based prediction methods requires large amount of traffic data, which can
be missing or incorrect for some road sections due to missing or bad sensors. Solving this problem
requires large investment in new sensors, which is often infeasible. Another prediction technique15

is to build a traffic flow model and to obtain travel-time forecasts through simulation. Model-based
prediction does not depend as much on real time measurements as data-based techniques, and the
data it needs is easy to access. To the authors’ knowledge, most current model-based prediction
methods are based on microscopic simulation (7) and (8), which model the behavior of each in-
dividual vehicle. As compared with macroscopic models, these models require large amounts of20

computation and are often difficult to calibrate. In this paper, a macroscopic model is used, which
formulates the relationships among aggregate traffic quantities.

One of the main challenges is to predict a distribution of travel-time rather than a deter-
ministic value. There are various uncertainties in the traffic model. Hence the travel-time is not a
deterministic quantity but a probabilistic one. The range of the distribution grows with the size of25

the uncertainties, and with the length of the predicting horizon. A single travel-time sample along
a route is usually not helpful, since it does not provide a sense of the reliability of the information.
Therefore it is difficult to evaluate how reliable the predicted travel-time is. Rather than giving
one sample travel-time, this paper aims to provide the travel-time probability distribution. Such a
distribution has important uses in traveler information as well as traffic control systems.30

Another challenge is the multidimensionality of the problem. Travel-time is affected by
various factors, each of which may be generated by different kinds of distributions (Gaussian,
uniform, etc.), and small changes of the parameters may significantly alter the outcome. Because
of the nonlinearity of the traffic model, real travel-time distributions often present multiple modes,
and may be sensitive to the inputs.35

Finally there is the challenge of the finite availability of computation time and memory.
The Online Expectation Maximization clustering method is selected in part for its economy of the
resources.

The rest of the paper is organized as follows: First, the model of the simulator is intro-
duced, then we describe the computation of travel-time samples and the estimation of a travel-time40

distribution. Simulation results and analysis are discussed next. Discussion and conclusion are
shown at last.
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MODEL DESCRIPTION
This paper uses BeATS (Berkeley Advanced Transportation Simulator) as the traffic simulator.
BeATS is an implementation of the Link Node Cell Transmission Model (LN-CTM), described in
(9) and (10).

The LN-CTM is a macroscopic model of traffic suitable both for freeways and arterials.5

It is an extension of CTM which simulates traffic behavior specified by volume (flow), density,
and speed. In LN-CTM, the traffic network is modeled as a directed graph. Links represent road
segments and nodes are road junctions. Source links introduce traffic to the network and sink links
absorb traffic. The fundamental diagram, a diagram relating densities to flows, is used to specify
the parameters of each link. A split-ratio matrix at each node defines how vehicles are directed10

from input to output links. The required data can be obtained from the Performance Measurement
Systems (PeMS): an online repository, which provides a rich archive of sensor detector data for
freeways in California.

In general, the LN-CTM requires mainline and on-ramp demand profiles, calibrated fun-
damental diagrams and split ratio matrices as inputs. The model can be calibrated to match actual15

observation results(11).

METHODOLOGY
In this section, we first discuss how to calculate travel-time in simulation. Then we introduce the
Monte Carlo sampling method to obtain travel-time samples. Then we illustrate how the Online
EM algorithm computes distribution parameters. Finally the methodology flow process is given.20

Travel-time Calculation
In microscopic simulation, one can track individual vehicles to estimate travel-time. Macroscopic
models, because they compute only aggregate quantities, cannot provide direct estimates of travel-
time for individual travelers. They are better suited, however, for estimating the probabilistic
characteristics of travel-time.25

We next describe the technique for calculating travel-time for a driver starting a trip at time
tstart and traveling over a route R.

The route R is composed of a sequence of links {ri}, i = 1, 2, ...n. The driver starts at the
beginning of link r1 at time t = tstart. The objective is to find the time tend when the driver will
exit link rn as a function of the history of macroscopic flows and densities along the route. Then a30

sample of travel-time for route R at time tstart is:

TT (R, tstart) = tend − tstart (1)

The process can be repeated over an ensemble of simulations to obtain the distribution of
TT (R, tstart). The following steps are followed to obtain the distribution of travel-time:

1. Initialization: ρi(tstart), the initial state of each link i at time tstart, must be computed,
using either a state estimator or by advancing the simulator from a previously known state. For the35

purpose of this paper, the simulation was started with and empty initial condition at midnight and
advanced deterministically to the starting time. Thus, the ensemble of runs was given a determin-
istic initial condition at time t = tstart.

2. We use the technique described in [ref33] for computing travel-time on a single link.
Take the ith link in the route and denote its incoming and outgoing flow with f iin(k) and f iout(k) at40



5

FIGURE 1 Cumulative Counts for a Link

time step k. Then the “cumulative counts” N i
in(k) and N i

out(k) are:

N i
in(k) =

k∑
α=0

f iout(α) ·∆t+N i
in(0) (2)

N i
out(k) =

k∑
α=0

f iout(α) ·∆t+N i
out(0) (3)

where ∆t is the length of time step, and N i
in(k) and N i

out(k) are in vehicle units.
Since the flows are non-negative, the cumulative counts are non-decreasing functions of

time. They are shown in Figure 1 for a particular link. The travel-time in the link is the time it5

takes for the output flow to accumulate the total number of vehicles present in the link when the
vehicle entered. Thus the travel time τ is the solution to the following equation:

ρi(tin) · li = N i
out(tin + τ)−N i

out(tin) (4)

where tin is the time when the vehicle entered the link, ρi(tin) is the initial density at time tin, and li
is the length of the link i. Equation 4 is solved numerically by searching the N i

out(k) vector for the
value ρi(tin) · li +N i

out(tin). The only subtlety that arises is that the initial time tin and/or the final10

time tin + τ may not fall on the time grid. In this case we also count N i
in and linear interpolation

is used to calculate accurate tin.
The computation of travel-time on a route is performed by computing travel times on each

link of the route in sequence, and noting that the exit time for link i is the entering time for link
i+ 1.15

Monte Carlo Method
As mentioned before, travel-time is affected by factors such as capacity and demand. Considering
that they are themselves non-Gaussian random quantities, and the system is inherently nonlinear,
the travel-time estimation problem becomes analytically intractable. Therefore, in this paper, the
Monte Carlo method is chosen to obtain the travel-time results.20
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(a) Mainline, Weekdays (b) Mainline, Weekends

FIGURE 2 Six Months of Mainline Flow Data, and Their Average

(a) On-ramp, Weekdays (b) On-ramp, Weekends

FIGURE 3 Six Months of On-ramp Flow Data, and Their Average

The Monte Carlo method samples randomly from a probability distribution. It approxi-
mates the distribution when it is infeasible to apply a deterministic method. The number of sam-
ples needed in Monte Carlo does not depend on the dimension of the problem, which makes it
suitable for solving multidimensional problems. Another feature of Monte Carlo is that it is easy
to estimate the order of magnitude of statistical error(12).5

In this paper, the uncertainties are added to the mainline and on-ramp demand profiles. The
on-ramp uncertainty is assumed to be Gaussian, and the deviation is generally on the order of 5%
of the demand in the morning rush hour. Mainline demands are also considered as a Gaussian
distribution, and the reasonable deviation is around 2.5%. Figures 2 and 3 show six months of loop
detector readings gathered every five minutes from detectors on I-15 in California. These plots10

illustrate the typical variations in 5-minutes average flows.
With each simulation, the Monte Carlo method randomly samples from the demand dis-

tributions. Each simulation generates one sample travel-time. Because each simulation requires
considerable computation and execution time, it is important to estimate how many samples will be
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needed to produce statements about the travel-time distribution with a given level of confidence.
Also, it will be important to parameterize the distribution in a way that captures its important
features, while using a relatively small number of parameters.

EM Algorithm and Bayesian Inference Criterion
The shape of the travel-time probability distributions is not known a-priori. Based on the current5

literature(13), the travel-time distribution can be represented as a Gaussian Mixture Model (GMM).
GMM represents the data as a sum of several Gaussian distributions. The probability density
distribution is then represented as:

P (x|π, µ,Σ) =
∑K

i=1
πiN (x|µi,Σi) (5)

Where P is the probability density function, N is the Gaussian distribution, K is the number of
the components, or clusters, µi is the mean, Σi is the covariance matrix, and πi is the weight. The10

weights are such that, ∑K

i=1
πi = 1 (6)

We use a clustering technique to find out the values of the parameters from a group of
samples. The Expectation Maximization (EM) method was chosen here for clustering the data for
GMM(14). EM method starts with a random guess of the unknown parameters, and iteratively
alternates between an expectation (E) step and a maximization (M) step. The E step produces the15

responsibilities {γi(x)}, i = 1, 2, .., K, where γi(x) represents the conditional probability that the
data x came from the ith cluster , given the current parameters {µi,Σi, πi}. That is,

γi(x) =
πiN (x|µi,Σi)∑K
i=1πiN (x|µi,Σi)

(7)

The M step updates the parameters {µi,Σi, πi} to maximize the expectation of the log-
likelihood. The parameters are updated with,

µi =

∑N
j=1γi(xj) · xj∑N
j=1γi(xj)

(8)

20

Σi =

∑N
j=1γi(xj) · (xj − µi)(xj − µi)T∑N

j=1γi(xj)
(9)

πi =
1

N

∑N

j=1
γi(xj) (10)

where N is the number of data points.
By iterating sufficiently between the E step and the M step, the parameters can converge.

However, EM is not guaranteed to converge to a global maximum of the log-likelihood function. In
this paper, we initiate several different random guesses to avoid getting stuck in local maxima(15).25
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Another important point is that the number of clusters in the distribution is unknown. This
paper uses a Bayesian Inference Criterion (BIC) to estimate the optimal number of clusters(16).
The BIC criterion can be represented as:

BIC = −lnP (D|µ,Σ) +
KQ+ 1

2
lnN (11)

where lnP (D|µ,Σ) is the log-likelihood function, D represents the samples, Q is the number
degrees of of freedom (here since the travel-time has one freedom, Q = 1), K is the number of5

clusters, and N is the sample size. The optimal cluster number would generate maximum the BIC
value. With different initial conditions, BIC may converge to different optimal numbers of clusters.
In this paper, we choose the most frequent result as the optimal one.

Online EM Algorithm
Statistically when doing Monte Carlo sampling, more samples provide more accurate results. How-10

ever, the computation time of the simulation has linear relation with the number of samples. The
more it samples, the longer time it requires. If the prediction time is too long, the traffic condition
may significantly change, and the “delayed” prediction is less reliable. Moreover, for the method
to be applicable to real-time systems, it must be capable of hading streaming data. That is, given a
new data packet (30 samples, for example), the clustering method should be able to use that to up-15

date a running estimate. It stops requesting new data only if the results meet the stopping criterion.
The advantage of this “data stream” structure is that it minimizes the number of simulations as well
as the amount of memory needed to store the samples. Both of these are essential requirements for
travel advisory as well as traffic management systems.

Since the target distribution is considered to be GMM, the Online Expectation Maximiza-20

tion (On-line EM) method(17) is suitable for clustering the data. In this paper, the Online EM
method applies EM only to newly arrived data rather than to the whole historical data. And the
incremental GMM estimation algorithm merges Gaussian components that are statistically equiv-
alent, and maintains other components.

The W statistic test is used for equality of covariance. Let newly coming samples xi with25

i = 1, 2, .., n have a covariance matrix Σx, and a given target covariance matrix Σ0. The null
hypothesis is Σx = Σ0. Define L0 as a lower triangular matrix by Cholesky decomposition of Σ0,
that is, Σ0 = L0L

T
0 . Let yi = L−1

0 xi, i = 1, 2, .., n, then the W statistic is represented as:

W =
1

d
tr[(Sy − I)2]− d

n
[
1

d
tr(Sy)]

2 +
d

n
(12)

Where Sy is covariance of yi, d is the dimension, n is the sample size, and tr(·) is the trace of the
matrix. From (18), nWd

2
has χ2 distribution, that is:30

nWd

2
∼ χ2

d(d+1)/2 (13)

Once we set a significance value for the χ2 distribution, we can decide whether the test has passed
or failed.

The Hotellings T 2 statistic is used for equality of mean. Let newly coming samples xi, i =
1, 2, .., n have a mean µx, and a given target mean µ0. The T 2 is defined as:

T 2 = n(µx − µ0)
TS−1(µx − µ0) (14)
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Where S is covariance of xi. From (19),
n− d
d(n− 1)

T 2 has F distribution, that is:

n− d
d(n− 1)

T 2 ∼ Fd,n−d (15)

Once we set a significance value for the F distribution, we can decide whether the test has passed
or failed.

Since the it is essential to stop the Monte Carlo simulation properly to avoid too many
samples, several rules are added:5

1. When a cluster can be merged with more than one other clusters, the one with the highest weight
is chosen;
2. A cluster is eliminated whenever its weight falls below a threshold;
3. The clustering algorithm is stopped if a certain number of iterations pass without new clusters
being created.10

Simulation Flow Process
In summary, the process of generating a distribution of travel-time from stochastic simulation is as
follows:
1. The simulator advances to the given starting time.15

2. (Monte Carlo step) The simulator applies uncertainties to the model, and runs a certain number
of times to get travel-time samples. Each travel-time is calculated through the method mentioned
at the start of this section.
3. (Online EM step) The simulator clusters the incoming samples, and calculates the parameters
using EM algorithm.20

4. (Merging or Maintaining step) The simulator merges qualified new clusters to the old ones, and
maintains the rest.
5. (Eliminating step) If the clusters have less weight than a threshold, the simulator merges them
into the nearest cluster.
6. If there is no more new cluster in several steps, stop the simulation and return the parameters,25

otherwise go to step 2.

EXPERIMENTAL SETUP AND RESULTS
A section of I-15 southbound was used to test the algorithm. The stretch is located between Es-
condido and San Diego in California. Figure 4 shows the section in Google Maps. The section30

contains more than 120 nodes and 100 links. A route withs 9 consecutive links was created. The
total length of the route is 1.47 miles. It contains two on-ramps and no off-ramp. The demand
profiles and the split ratio data was obtained from PeMs for Monday, January 7, 2013.

Figure 5 shows the density contour plot of one simulation sample. The vertical axis is the
time, the horizontal axis is the spatial dimension, and the color represents the amount of density35

on each link. The stretch over which travel-time was computed is highlighted. The contour plot
shows that on the route the congestion begins around 7:15 AM and ends about 9:45 AM, which
illustrates the Monday morning rush hour on I-15. With reasonable uncertainties, the boundary of
the congestion changes and the travel time changes too.
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FIGURE 4 A Section of I-15 South

FIGURE 5 The Density Contour Plot

FIGURE 6 Deterministic Travel-time
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(a) The first case (starting time=8:00:08 AM) (b) The second case (starting time=7:18:23 AM)

FIGURE 7 Travel-time Distributions and Their Components

(a) The first case (starting time=8:00:08 AM) (b) The second case (starting time=7:18:23 AM)

FIGURE 8 Travel-time Distributions and the Sample Histogram

The travel-time curve resulting form a simulation with mean values of demands is shown
in Figure 6.

The significance level for the Online EM algorithm was set to 0.05. The threshold for
eliminating cluster was set to 0.05, and the number of steps for convergence to 3.

Results5

Two starting times were selected. The first one is 8:00:08 AM. At this time, the route is heavily
congested. Figure 7(a) shows the results. Although it looks like a Gassian distribution, the Online
EM clustering algorithm found two clusters. The GMM distribution result is more accurate. In
this heavily congested example, the travel-time distribution is unimodal. The second starting time
is 7:18:23 AM. At this time, the route is on the edge of congestion. With variable uncertainties, in10

some cases it is congested while in others it is in freeflow. Since vehicles cannot travel faster than
freeflow speed, the minimum travel time is the freeflow speed travel time, which is 69 seconds.
Figure 7(b) shows that there are two well separated modes in the distribution. In the first mode, the
travel-time stays around freeflow speed travel time, which indicates that there is no congestion or
only a small number of links in the route are congested while others are in freeflow. In the second15



12

mode, more links become congested. In that case the travel-time distribution resents multiple
modes.

By using the On-line EM algorithm, the clusters are eliminated, merged, or maintained
and after several steps, the clusters number and parameters become stable. In the first case, the
simulation stops with 170 samples. In the second one, 290 samples were needed. Figure 8 com-5

pares the travel-time distribution prediction results with the histogram of 1000 travel-time samples,
which more precisely capture the shape of the distribution. The comparison shows good agree-
ment,suggesting that the Online EM algorithm and the stopping criterion works well and requires
fewer samples.

Travel-time distributions can be used by drivers and traffic managers to make more in-10

formed decisions about expected traffic patterns. For example, from Figure 7, drivers could expect
with a high degree of certainty to take between 470 seconds and 490 seconds to travel the given
route if they start at 8:00 AM. On the other hand, they will be sware that at 7:20 AM the situation
is less reliable and a wider range of outcomes are possible.

DISCUSSION15

The travel-time prediction method is not only suitable for freeways, but also is suitable for arterials.
since this method is based on LN-CTM, which also models arterial traffic. In arterials, because
of the signal lights, the travel-time distribution will usually have multi-modal shape. In that case,
the problem of minimizing the number of samples becomes essential. One of the direction of the
work is to model more complicated arterial traffic, and predict travel-time distributions for urban20

drivers.
Another future work of this method is to calibrate the model states. Since a lot of ramp

detector data are found to be partially or entirely missing, when modeling the traffic, estimation and
imputation techniques have been used to solve the missing data problem. Currently it is difficult
to calibrate the imputed data. On the other hand, increasing mobile technology allows us to obtain25

travel-time easier and more accurate by learning from probe data. In that case, suppose we could
calibrate model states (density) through the travel-time, we could compare the predicted travel-time
through this method with the real travel time through probe data. This ’closed-loop’ mechanism
definitely could help us to model the traffic more accurately.

EM v.s Variational Bayesian method: As the distribution becomes multimodal, EM may30

require longer time to be converged. In this case, alternative clustering methods such as Variational
Bayesian (VB) method might be employed to reduce computation time. Early experimentation
with VB suggests that it performs better than EM for larger number of clusters.

CONCLUSION
This paper developed a method to predict the travel-time distributions for freeways. We used the35

BeATS simulator, an implementation of the Link-Node Cell Transmission Model, to model traf-
fic. Due to uncertainties on the input demands, the problem is multidimensional and could not be
solved analytically. Monte Carlo method is introduced to obtain travel-time samples, and the On-
line Expectation Maximization algorithm is used to compute the Gaussian Mixture Model cluster
parameters and decide when to stop the simulation. Experiments with data from I-15 southbound40

showed that the method could provide the travel-time distribution and requires small number of
simulations. This method could be used for arterials as well as for freeways in the future.
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