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Abstract— This paper presents an application of decentral-
ized model predictive control (MPC) to a fuel cell-ultracapacitor
hybrid. Dedicated subsystem level MPC controllers are devel-
oped that control a fuel cell and an ultracapacitor current
and enforce point-wise-in-time constraints of each subsystem
independently of each other. A simple supervisory scheme
determines the power split between the fuel cell and the
ultracapacitor. Nonlinear simulations show that the decentral-
ized control design is successful in enforcing subsystem level
constraints while achieving system-level power demand. The
proposed decentralized approach has practical advantages over
a centralized MPC design because of its potential to decrease
online computations and more importantly because of its
compatibility with a modular software/hardware architecture.

I. INTRODUCTION

Power management of hybrid electric vehicles, including
fuel cell hybrids, requires a well-designed control strategy
to ensure best use of multiple power sources at the system
level while conforming to the requirements and limitations
of the subsystem level components. To meet the system
and subsystem level (possibly conflicting) requirements, the
traditional powertrain control approach is mostly logic-based
with a large set of logical checks, pre-calculated tables, and
simple control loops. Most power management strategies run
based on the instantaneous state of the system and are not
predictive in nature. Recent research and practice utilizes
more advanced control and optimization techniques to max-
imize the efficiency of the power management scheme while
allowing a systematic control design. Dynamic programming
[1], unconstrained optimal control [2] and model predictive
control (MPC) [3] methods have been proposed in the past
few years for off-line or even real-time solution of the
power management problem. In [3], the first author and his
colleagues have shown the benefits attainable by a centralized
MPC design in power management of a mild fuel cell hybrid
which uses an ultracapacitor module during power transients.

In theory, a centralized model predictive control scheme
could provide a systematic solution to the increasing com-
plexity of a hybrid electric powertrain with several mechan-
ical and electrical components. However, there are practical
limitations to such a centralized MPC design; in particular:
1) The size of the optimization problem can easily exceed
the real-time computational capability of current automo-
tive micro-controllers 2) The model-based nature of MPC
requires re-tuning of the whole power management scheme
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if any of the subsystem level components is modified. In
other words a centralized controller will not lend itself to a
modular software/hardware system architecture.

More recently use of decentralized or distributed MPC
has been proposed for controlling large-scale systems such
as distributed power grids [4] and control of unmanned air
vehicles [5]. The idea in a decentralized MPC approach is
to break a large-scale optimization problem into smaller size
optimizations, each handled by a dedicated MPC controller.
Recent results show that even when the subsystems are cou-
pled in their optimization objective function and constraints,
the decentralized approach can generate solutions which are
close to the optimal solution obtained by a centralized MPC
scheme [4]. Stability of some decentralized MPC algorithms
has been recently studied in [6], [7].

Decentralization can be an enabler for modular software
and hardware architectures and a hierarchical control design
which may be suitable in power management of hybrid elec-
tric vehicles. The control computation task can be effectively
distributed among multiple processors which communicate
with each other through the vehicle control area network
(CAN). The purpose of this paper is to demonstrate a simple
decentralized MPC design and its performance in power
management of hybrid electric vehicles. We have chosen
the fuel cell-ultracapacitor power management problem dis-
cussed by the first author and his colleagues in [3] as both
a challenging and an interesting control problem.

The power response of the 75kW PEM fuel cell system
discussed in [3] was limited during power transients due to
surge and choke limits of its centrifugal compressor and also
a long inlet manifold which slowed supply of air to the cath-
ode. It was shown in [3] that a small ultracapacitor module
could be used as a buffer during load transients. Because of
the pointwise-in-time constraints that the fuel cell faced and
also the need to limit voltage variations of the ultracapacitor
module, a centralized MPC design was proposed and was
tested successfully in nonlinear simulations of the hybrid
system.

In this paper, we evaluate a decentralized MPC design,
one in which the fuel cell and ultracapacitor each have its
own MPC controller. Figure 1 provides a schematic of the
proposed decentralized design as compared to a centralized
MPC. Each controller determines the constraint-admissible
and optimum value of current that can be taken from the
fuel cell or ultracapacitor at each instant in time. While the
dynamics and constraints of the fuel cell and the ultracapac-
itor are decoupled, the controllers are coupled through their
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Fig. 1. Decentralized and centralized MPC architectures in a hybrid fuel
cell powertrain.

objective functions and the fact that together they should
match the power demand. We evaluate the performance of the
overall system with decentralized MPC based on nonlinear
simulations. Compared to the centralized MPC approach
presented in [3], the proposed decentralized approach may
have practical advantages because of its potential to decrease
online computations and more importantly because of its
compatibility with a modular software/hardware architecture.

In the work presented here, we assume that the ultracapac-
itor module is connected to the BUS through a bi-directional
dc/dc converter which extends the range of operation of
ultracapacitors beyond what was shown in [3] and ensures
a constant BUS voltage. Moreover inclusion of the internal
resistance of the ultracapacitor module and a brief discussion
of the lower-level power electronics addresses some of the
practical issues in implementing such an algorithm.

Section II summarizes the fuel cell system model previ-
ously obtained in [8] and more recently discussed in [3], [9]
and also outlines the design of an MPC scheme for the stand-
alone fuel cell. In section III, a model of the ultracapacitor
interfaced to the BUS through a dc/dc converter is presented
and MPC-based power management of the ultracapacitor is
explained. Section IV is on integration of the closed-loop
fuel cell and ultracapacitor systems and demonstrates the
performance of decentralized MPC in nonlinear simulations.
Section V presents the conclusions.

II. THE FUEL CELL SYSTEM AND ITS MPC
CONTROLLER

A schematic of a PEM fuel cell system is shown in Fig. 2.
Hydrogen is supplied from a hydrogen tank and its flow is
directly controlled by an inlet valve. A compressor supplies
high pressure air to the cathode. A control input to the
system is the compressor command vcm, which influences
the speed of the compressor and consequently the amount of
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Fig. 2. Schematic of air supply control system

air that is supplied to the cathode. The current taken from
the fuel cell I f c can also be controlled through the power
electronics, and determines the rate at which hydrogen and
oxygen are consumed. Given the current taken from the fuel
cell I f c, and the voltage supplied to the compressor motor
vcm, (and also the ambient conditions), the state of species in
the stack can be determined. In this paper we will keep track
of the compressor flow Wcp and the pressure downstream
of the compressor psm since they together indicate if the
compressor is near choke saturation or surge instability as
shown in Fig. 3. The dashed lines shown in this compressor
map represent boundaries beyond which compressor surge
and choke can occur. Figure 3 shows the evolution of the
compressor flow and pressure ratio in the compressor map
during the transients of Fig. 4. In this open-loop simulation
the 9-state nonlinear fuel cell model described in [8] is used
and the compressor command vcm is simply determined as
an increasing linear function of current. During a step-up
in vcm command, the compressor flow increases faster than
the pressure psm downstream the compressor. As a result
the compressor operates near the choke boundary. During a
step-down in vcm, the operating trajectory nears the surge
boundary. Larger steps in current require larger compressor
commands that if applied instantaneously may result in surge
or choke. Therefore we would like to enforce pointwise-in-
time constraints in the control design to ensure operation of
the compressor inside the bounded region and away from
the surge and choke regions. Figure 4 also shows a variable
called oxygen excess ratio λO2 , which is defined as the
ratio between oxygen supplied and the oxygen reacted in
the cathode. Low values of λO2 may indicate low oxygen
concentration in the cathode (oxygen starvation) which could
negatively affect the fuel cell voltage response and even
permanently damage the cells. To prevent such a condition,
we enforce a lower bound on oxygen excess ratio as well.

The 9-state fuel cell model used in the simulation above
represents the anode, cathode and return manifold dynamics
in addition to the compressor and inlet manifold dynamics.
While these subsystems interact, the compressor and oxygen
flow dynamics might still be approximated well by a lower
order model. A reduced model of the 9-state fuel cell system
is obtained in [10] for simulation of the air supply side. The
reduced model has only four dynamic states: partial oxygen
pressure inside the cathode pO2 , partial nitrogen pressure
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Fig. 3. The compressor response to step changes in current demand.
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Fig. 4. The fuel cell model response to step changes in current demand.

inside the cathode pN2 , compressor motor speed ωcp and
the supply manifold pressure psm. We use this model in
the remainder of this paper. Due to the complexity of the
model all the governing equations cannot be easily shown in
a concise closed-form. However the general state-space form
is:

ẋnl = h(xnl ,vcm, I f c)
ynl = g(xnl ,vcm, I f c),

(1)

where the dynamic state vector of the nonlinear system is:

xnl = [pO2 pN2 ωcp psm]T ,

and the outputs of our interest in this paper are

ynl = [λO2 Wcp psm Vf c Pcp Ibus
f c ]T

representing, respectively, oxygen excess ratio λO2 , compres-
sor air flow Wcp, manifold pressure psm, fuel cell stack volt-
age Vfc, a normalized variable denoting compressor power
consumption Pcp and the fuel cell current delivered to the
BUS Ibus

f c . Note that using conservation of energy we have
η1I f cVf c = Ibus

f c Vbus where η1 is the DC converter efficiency.
We will design an MPC controller for the fuel cell which

imposes constraints to prevent compressor surge and choke,
oxygen starvation and low fuel cell stack voltage, minimize
the compressor power usage while tracking a current request
from the fuel cell as closely as possible. For control design,
the nonlinear fuel cell model is linearized at a representative
operating point. We choose the nominal stack current at Iof c =
192 A. The nominal value for oxygen excess ratio is selected
at λo

O2
= 2.0, which provides maximum fuel cell net power

for the nominal current [8]. The compressor motor voltage
needed, to supply the optimum air flow that corresponds
to Io

f c and λo
O2

= 2.0, is vo
cm = 164 volts. In the resulting

linearized state-space equation there is a direct injection of
the input I f c in the output equation. To cast the state-space
model in the standard MPC format with no direct injection of
input to output, we augment a fast first-order linear filter to
the system which results in a linearized model with 5 states
and 6 outputs. Furthermore for asymptotic rejection of output
disturbances by the controller, a step disturbance model and a
disturbance observer is augmented to the system. The details
are omitted here in the interest of space. A similar process
is explained in more detail in [3]. Interested reader can find
more in depth discussion of disturbance models for MPC in
[11], [12].

The MPC problem can be formulated by first defining a
performance index that penalizes 1) the deviations of the fuel
cell current delivered to the BUS Ibus

f c from the requested
current at the BUS from the fuel cell Ibus

f c,req 2) compressor
power use Pcp 3) deviations from the desired oxygen excess
ratio of 2.0 4) the rate of change of fuel cell current:

J =
P

∑
j=1

(‖Ibus
f c,req(k+ j)− Ibus

f c (k+ j|k)‖2
r1( j)+

‖Pcp(k+ j|k)‖2
r2( j) +‖λO2(k+ j|k)−2.0‖2

r3( j)+
‖ΔI f c(k+ j−1)‖2

r4( j))

(2)

Here k + j|k denotes the prediction at instant k for instant
k + j and P is the length of the prediction horizon. The
scalars ri( j) i = 1,2,3,4 are the penalty weights at step j;
in other words time-varying penalty weights may be chosen
if needed. The control horizon is in general N ≤ P. Since
the future current request is not known, we assume that
the current request over a prediction horizon is equal to the
current demand in the beginning of the optimization window:

Ibus
f c,req(k+ j) = Ibus

f c,req(k)

At each instant k, N future current values

[Ibus
f c (k+1) Ibus

f c (k+2) . . . Ibus
f c (k+N)]

are sought that minimize the above performance index sub-
ject to the linear state-space equations of the fuel cell system



(augmented with the disturbance model) and the following
inequality constraints enforced ∀ j = 1,2, ...,P:

• The nonlinear surge and choke boundaries shown in
Fig. 3 can be approximated by straight lines for most
part of the operating region. The constraints can then be
represented by two linear inequalities and as a function
of compressor flow and supply manifold pressure:

−0.0506δWcp +δpsm ≤ 0.4,
0.0155δWcp −δpsm ≤ 0.73.

(3)

where the operator δ indicates the deviation of the
variables from their operating conditions.

• The lower limit on oxygen excess ratio is set to 1.9 to
avoid large drops in the cathode oxygen partial pressure
and hence prevent stack oxygen starvation. Also an
upper bound of 2.5 is imposed to prevent large oxygen
pressure at the cathode1:

1.9 ≤ λO2 ≤ 2.5 (4)

• Bounds on the fuel cell voltage are needed in accordance
with the requirements of the dc/dc converter. Here we
impose the following bounds:

200 ≤Vfc ≤ 300 (5)

The above constrained optimization problem is solved
in a receding horizon fashion. The solution determines the
feasible and optimal current that can be delivered by the
fuel cell at each instant. Our assumption is that once the
optimum value of current is determined by the MPC scheme,
the delivery can be facilitated by the lower level converter
controller. The converter dynamics is typically much faster
than power dynamics of the fuel cell and therefore is not
considered here.

We have designed and tested the MPC controller for the
fuel cell by running simulations on the nonlinear fuel cell
model described above. After several iterations, we chose the
horizons P = N = 5 and the control weights r = [0.5 1 1 0.1]
for all values of j. Figures 5 and 6 summarize the simulation
results of the nonlinear fuel cell closed-loop system during
step changes in current demand. The fuel cell follows the cur-
rent demand as closely as possible; voltage and compressor
surge and choke constraints are met at all times, the oxygen
starvation constraint is also met almost always except at two
instances when small excursions occur due to infeasibility of
the constraints.

III. THE ULTRACAPACITOR AND ITS MPC CONTROLLER

A fuel cell system buffered with a small ultracapacitor
module will have better load following capability than a
stand-alone fuel cell. High power density of ultracapacitors
which is an order of magnitude higher than batteries [13]
and the capability to deliver currents instantaneously, make
ultracapacitors an excellent power boost device.

1These bounds are design variables selected to reduce the risk of oxygen
pressure fluctuations; other bounds or provisions may be used in different
setups.
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Fig. 5. Fuel cell response to step-changes in current demand. The horizontal
dashed lines represent the constraints.
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Fig. 6. Compressor map shows both surge and choke constraints are enforced
during the variations in the fuel cell current shown in the insert plot.

The stored charge in an ultracapacitor is characterized by
a normalized measure called the state of charge, SOC ∈ [0,1].
The state of charge of 0 represents no stored charge and 1
corresponds to full charge. The rate of change in ultraca-
pacitor state of charge is proportional to the discharging or
charging current Icap (positive or negative values of current
denote discharging or charging respectively):

d
dt

SOC(t) =
−1

CVmax
Icap(t) (6)

where C is the capacitance of the ultracapacitor module in
Farads and Vmax is its voltage at full charge. In our design we
assume the maximum voltage of Vmax = 360 volts. We choose
the capacitance to be 0.65 Farads which is a sufficiently
large power buffer during fuel cell load transients. One
possible configuration that realizes this value of capacitance,
is a bank of 120 ultracapacitors, each with capacitance of
80 Farads and a rated voltage of 3 volts, connected in
series. Together the package of ultracapacitors can provide



a maximum voltage of 360 volts and a storage capacity of
11 Watt-hours. This size of ultracapacitors can shield the
fuel cell from starvation or prevent compressor surge. Note
here that larger capacitances will be potentially needed for
start-up or other power requirements.2

The net voltage generated by the ultracapacitor is a func-
tion of ultracapacitor state of charge and the voltage lost
to internal resistance of the ultracapacitor module and the
connecting cables:

Vcap(t) = SOC(t)Vmax −RIcap(t) (7)

where R denotes the lumped resistance of ultracapacitor mod-
ule and cables. The ultracapacitor dynamics is represented
by the first-order ordinary differential equation (6) in which
the input is Icap and the single states is SOC. The outputs
of interest are ycap = [SOC, Vcap, Icap]. The system is is
linear in both the state and output equations. The system is
discretized with sampling time of Ts. Similar to what was
described in the previous section for the fuel cell, a fast first
order filter is augmented to avoid direct injection of input
in the output equation. Also a step disturbance model and
an observer are augmented to the system. The details are
omitted here in the interest of space.

In our proposed architecture, the ultracapacitor is con-
nected to the BUS via a bi-directional dc/dc converter
which facilitates active control of charge and discharge of
the ultracapacitor3. We neglect the dynamics of the dc/dc
converter as its dynamics is much faster than ultracapacitor’s
charge/discharge dynamics; instead we use a static model for
the converter. Conservation of energy yields:

VbusI
bus
cap = η2VcapIcap (8)

where Ibus
cap is the contribution of the ultracapacitor to the BUS

current, Vbus is the BUS voltage and 0 < η2 < 1 denotes the
converter efficiency during a discharge cycle4. Equations (7)
and (8) yield:

Ibus
cap(t) =

η2

Vbus
Icap(t)(SOC(t)Vmax −RIcap(t)) (9)

The power request from the ultracapacitor is Pcap,req =
VbusIbus

cap,req in which Ibus
cap,req is the current request from

the ultracapacitor on the BUS downstream the converter.
Equivalently we can formulate the problem in terms of
Icap,req which is the required capacitor current upstream of
the dc/dc converter5. By writing the balance of energy across

2In [14], Rodatz et al. have used ultracapacitors in a hybrid fuel cell
vehicle to assist the fuel cell during hard accelerations and for storing the
energy from regenerative braking. A much larger buffer size is required for
their purpose. They have provided this buffer by 282 pair-wise connected
capacitors, each with capacitance of 1600 F. The storage capacity is 360
Watt-hours.

3Our assumption is that the fuel cell converter maintains the BUS voltage
constant.

4This equation is valid during a discharge cycle. During a charge cycle
we replace this equation by η3VbusIbus

cap =VcapIcap where η3 is the converter
efficiency during a charge cycle.

5The ultracapacitor model is nonlinear with Ibus
cap,req as an output but linear

with Icap,req as an output; therefore working with Icap,req simplifies the
control design.

the dc/dc converter we obtain:

Pcap,req = η2Icap,req(t)(SOC(t)Vmax −RIcap,req(t)) (10)

Solving the resulting quadratic equation, we find:

I1,2
cap,req =

SOCVmax ±
√

(SOCVmax)2 −4RPcap,req/η2

2R
(11)

For the equation to have solutions, the following condition
should hold:

(SOC(t)Vmax)2 −4RPcap,req(t)/η2 ≥ 0

⇒ Pcap,req(t) ≤ η2(SOC(t)Vmax)2/4R

Which imposes an upper limit to the power that can be
taken from the ultracapacitor and is a function of ultracapac-
itor state of charge. The supervisory controller should take
this constraint into account when requesting power from the
ultracapacitor controller. Moreover, note that equation (11)
provides two feasible solutions for Ireqcap. Both currents satisfy
the power request, since the resistive losses are larger for the
larger current, the smaller current is selected:

Icap,req =
SOCVmax −

√
(SOCVmax)2 −4RPcap,req/η2

2R
(12)

In the proposed decentralized control architecture, a dedi-
cated controller should maintain state of charge and voltage
of the ultracapacitor within allowable bounds while deliver-
ing the power requested from the ultracapacitor as closely
as possible. While rule-based control laws can be devised
for active control of the ultracapacitor, multiple explicit
hard constraints may be better handled by resorting to a
model predictive control strategy. The MPC problem can
be formulated by first defining a performance index that
penalizes 1) the deviations of the ultracapacitor current from
the requested current 2) the deviations of ultracapacitor state-
of-charge from its nominal value SOC0 and 3) the rate of
change of ultracapacitor current, over a finite future horizon
of length P:

J =
P

∑
j=1

(‖Icap,req(k+ j)− Icap(k+ j|k)‖2
q1( j)+

‖SOC0(k+ j)−SOC(k+ j|k)‖2
q2( j) +‖ΔIcap(k+ j−1)‖2

q3( j))
(13)

similar to the fuel cell problem, P is the prediction horizon
and qi( j) i = 1,2,3 are the penalty weights at step j. At each
instant k, a finite future current sequence

[Icap(k+1) Icap(k+2) . . . Icap(k+N)]

is sought that minimizes the above performance index subject
to the linear state-space equations of the system (augmented
with the disturbance model) and the following inequality
constraints enforced ∀ j = 1,2, ...,P:

• Bounds on the ultracapacitor state-of-charge to prevent
complete discharge or overcharge of the ultracapacitor
module:

0.6 ≤ SOC(k+ j) ≤ 0.8



• Operational bounds on the dc/dc converter input voltage
Vcap, specified by the converter manufacturer are also
imposed. Here we assume the following bounds:

200 ≤Vcap(k+ j) ≤ 300

This constrained optimization problem is solved in a re-
ceding horizon fashion. The solution determines the feasible
and optimal value of current that can be delivered (or ac-
cepted) by the ultracapacitor at each instant. Our assumption
is that once this optimum current is determined by the MPC
scheme, the lower level converter controller can achieve it.

We have designed and tested the MPC controller for the
ultracapacitor by running simulations on the ultracapacitor
model described above. The nominal state-of-charge was
selected at SOC0 = 0.7. After several iterations we chose the
horizons P = N = 20 and the penalty weights q1 = 1,q3 =
0.1 ∀ j. We determined that a fixed “large” penalty weight
on the state-of-charge limits utilization of the ultracapacitor,
and a fixed “small” weight compromises charge-sustaining.
To remedy this problem, a time-varying penalty weight q2

was selected to penalize deviations from the nominal state-
of-charge:

q2( j) = j2 j = 1,2, ...,P

during each optimization horizon; lower initial weighting
allows better utilization of the ultracapacitor while larger
terminal weights enforce recharging when a charging power
source like a fuel cell is available. Figure 7 shows results of
a sample simulation during step changes in current demand.
It should be noted that here, in the absence of the fuel cell,
the ultracapacitor is not charged back to the nominal state of
charge at steady-state. However the constraints imposed on
the state-of-charge ensure that the ultracapacitor is always
partially charged.
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Fig. 7. Ultracapacitor response to step-changes in current demand. The
horizontal dashed lines represent the constraints.

IV. COORDINATION OF THE FUEL CELL AND

ULTRACAPACITOR

In this paper we use a simple strategy to determine the
current split between the fuel cell and ultracapacitor. We
postpone rigorous theoretical investigation of this proposed
scheme and its influence on convergence of the decentralized
MPC algorithm to a future publication.

The current demand on the ultracapacitor is chosen to be
the difference between the total current demand and current
delivered to the BUS by the fuel cell:

Ibus
cap,req(k) = Idemand(k)− Ibus

f c (k) (14)

Similarly the current demand from the fuel cell is deter-
mined by the difference between the current demand and the
current delivered to the BUS by the ultracapacitor:

Ibus
f c,req(k) = Idemand(k)− Ibus

cap(k) (15)

This formulation couples the cost functions (2) of the
fuel cell MPC and (13) of the ultracapacitor MPC. In
[4], a number of approaches for solving such optimization
problems in a decentralized MPC framework is proposed.
In this paper we use the simpler approach which solves
the optimization problems independently without iterative
communications between the solvers. Future research can
build on our proposed approach and 1) use communication
between the solvers at each sampling instant and solve the
optimization problems iteratively 2) utilize the future control
sequence of each MPC as preview information for the other
MPC.

Note that summation of both sides of equations (14) and
(15) yields:

Ibus
cap,req(k)+ Ibus

f c,req(k) = 2Idemand(k)− (Ibus
f c (k)+ Ibus

cap(k))
(16)

Since both MPC controllers have zero steady-state tracking
errors when the constraint are inactive, we have:

Ibus
f c → Ibus

f c,req

Ibus
cap → Ibus

cap,req,

at steady-state assuming inactive constraints, therefore from
(16):

Ibus
f c (k)+ Ibus

cap(k) → Idemand

We ran a nonlinear simulation with the decentralized
MPCs and the power management strategy given by (14)
and (15). Figures 8 and 9 show the time history of system
and compressor response during step changes in the BUS
current demand denoted by δIbus

demand . It can be seen that
the sum of the currents delivered to the BUS by the fuel
cell and the ultracapacitor δIbus

total = δIbus
f c + δIbus

cap matches
the current demand. In other words, while the controllers
do not communicate the value of their states or objective
functions, they are able to collaboratively meet the system
level current demand while each enforces the constraints
of its own subsystem. Therefore, the decentralized design
can match a centralized design with some added advantages:
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Fig. 8. Time response of the closed-loop fuel cell and ultracapacitor
systems during step changes in current demand. The operator δ denotes
current deviations from nominal. The horizontal dashed lines represent the
constraints.
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Fig. 9. Compressor map trajectory during fuel cell current transients shown
in Fig. 8 and also shown in the insert plot.

1) The modular decentralized design, allows to run the two
controllers on two different processors if needed, 2) each op-
timization problem is smaller, 3) unlike a centralized design
and as shown in the simulations here, the prediction horizon
used for the fuel cell controller can be different from that of
the ultracapacitor controller 4) If needed and depending on
the speed of each subsystem, different sampling times can
be used for each controller.

V. CONCLUSIONS

We demonstrated that coordination of multiple power
sources in a hybrid electric powertrain could be achieved
by lower level decentralized MPCs which enforce the con-
straints and a simple rule-based supervisory scheme which
coordinates the closed-loop subsystems. The concept is ap-
plied to a fuel cell-ultracapacitor hybrid for which we demon-
strate a decentralized MPC can meet the system level power

request while enforcing all the subsystem level constraints.
The advantage over a centralized control scheme is reduced
computations and more importantly compatibility with a
modular powertrain architecture. We believe it is now time to
consider decentralization in powertrain control applications
as the complexity of modern powertrains is increasing and at
the same time there are multiple processors onboard a vehicle
that can share the computational load. Dedicated controllers
for each subsystem which impose operational bounds in the
form of pointwise-in-time constraints could help realize a
“plug-and-play” powertrain in which subsystems provided
by various suppliers can more easily and with minimal
calibration be integrated in the powertrain.
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