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DESIGNING A GENERAL NEUROCONTROLLER FOR WATER TOWERS

By Abdolreza Joghataie1 and Ardalan Vahidi2

ABSTRACT: This study deals with the capabilities of artificial neural networks in learning to control water
towers of different structural properties that are subjected to earthquakes. To this end, water towers were con-
sidered as single-degree-of-freedom systems. First, a number of water towers of different structural properties
were controlled by the predictive optimal control method, and then the data collected through this control were
used in the training of a general neural network controller, called the general neurocontroller. Capabilities of
the general neurocontroller were tested in the control of a number of water towers with structural parameters
different from, but in the range of, those used in its training. One of the aims of this study was the introduction
of general neurocontrollers as ready-to-use devices that may be used in the design of actively controlled struc-
tures, in this case, water towers. Results of this numerical study were promising.
INTRODUCTION

In the conventional design of structures, the aim is to design
structural members so that the structure can withstand both
normal and exceptional loads of high intensity during its useful
life span. In most cases, this results in structural members of
large dimensions. It has been proposed to use passive and ac-
tive methods of structural control for the design of a structure
for normal service loads and then to equip it with adequate
devices that can help the structure withstand the exceptional
loads of high intensity earthquakes, hurricanes, etc. Whereas
passive control strategies and devices have been well studied
and used in a number of structures such as high-rise buildings,
the area of active control is still in its childhood. However, in
the last two decades special attention has been paid to the
subject, and considerable literature has been produced by
many authors [e.g., Rodellar et al. (1987, 1989) and Soong
(1990)]. The First World Conference on Structural Control,
which was held in 1994 with the purpose of promoting com-
munication among the interested persons in the field, was the
first international conference on the subject and can be con-
sidered as a milestone in the development of passive, active,
and hybrid control of structures theory and application (Proc.
1994). With the advent of the theory and application of neural
networks in engineering, including civil engineering, attention
of researchers has been attracted toward the use of neural net-
works in all areas of structural engineering including active
control of structures, where strategies and mechanisms have
been proposed for this purpose (Nikzad and Ghaboussi 1991;
Chassiacos and Masri 1996). Among the many contributions
to the field, Joghataie and his coworkers designed a control
scheme based on the use of a neural network emulator that
can learn to predict the response of a structure from its pre-
vious response. The predictions are then used by a neural net-
work that gradually learns, through adaptation, to control the
structure by sending control signals to the actuators. The writ-
ers and other researchers also have numerically studied the
proposed control scheme in the control of a three-story frame
structure by an active tendon mechanism (Joghataie and Gha-
boussi 1994; Ghaboussi and Joghataie 1995). Although such
algorithms may prove applicable to many types of structures,
it seems too complicated for some of the structures, such as
the simple model of the water towers of this study that can be
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FIG. 1. General Shape of Water Towers and Active Tendon
Control Mechanism Used in Study

simulated as single-degree-of-freedom (SDOF) systems. Con-
ventional active control methods such as the predictive optimal
control method may be applied easily to such structures.

In this paper, use was made of both the simplicity of the
predictive optimal control method and the learning, filtering,
and generalization capabilities of neural networks in the con-
trol of water towers. First, a number of water towers of dif-
ferent structural properties (i.e., mass and stiffness), which
were designed for their dead loads only, were controlled by
the predictive optimal control method. Then a neural network
called the general neurocontroller was trained based on the
data obtained through this control. The general neurocontroller
contains the filtered and general information required for the
control of not only the water towers, for which their controlled
response has been used in obtaining the training data, but also
a wide range of other water towers in the space of the general
neurocontroller generalization and prediction capability. The
following sections explain the strategy and the corresponding
results in more details.

WATER TOWERS

The type of water tower used in this study is shown in Fig.
1. The tower is composed of four straight tubular columns that
support a water tank. The connections of the tank to the
ground and columns were considered fixed. Columns were tied
together by using horizontal and cross bracings and were de-
signed so that they could transfer the dead load of the tank to
the ground. However, they were not designed for the earth-
quake loading.

It was assumed appropriate to use an active tendon control
mechanism for the water tower in Fig. 1 so that it also could
withstand earthquakes. When the water tower is considered as
an SDOF system with a lumped mass on the top of its col-
umns, its dynamic response could be expressed completely by
its mass, damping, stiffness, and also external excitations. Ef-
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fects such as water sloshing, tendon elasticity, and actuator
dynamics, although important, were not considered in this first
study of the subject.

PREDICTIVE OPTIMAL CONTROL OF WATER
TOWERS

The predictive optimal control method proposed by Rodel-
lar et al. (1987, 1989) has been used in the digital control of
frame structures both numerically and experimentally. One of
the advantages of this method over the other optimal control
methods is its capability to control the structures that are sub-
jected to inherent delays and nonlinearities. For an n-degrees-
of-freedom controlled structure, with a control time delay of
d times the sampling time interval DT and a prediction horizon
of l time steps, based on the response at any sampling time
step k, motion of the structure is predicted for the next l 1 d
time steps from the following equation:

y(k 1 j ) = Ay(k 1 j 2 1) 1 B u(k 1 j 2 1 2 d ),u

j = 1, 2, . . . , l 1 d (1)

where y(l) = predicted state vector at time step l; A and Bu =
discrete time state and control matrices, respectively; and u(l)
= control force at time step l.

To find the control rule, a performance index J is defined
for each time step k

T TJ = 1/2y (k 1 l 1 d )Qy(k 1 l 1 d ) 1 1/2u (k)Ru(k) (2)

where Q and R = some weighting matrices positive semi-
definite and definite, respectively. Then the linear control rule
is found from J/u(k) = 0

d

u(k) = Dx(k) 1 H u(k 2 i ) (3)iO
i=1

where x(k) and u(k) represent the current state and control
signal, respectively; and D and Hi (i = 1, 2, . . . , d ) = constant
matrices that are calculated based on A, Bu, Q, and R matrices
and contain information about both the controlled structure
and the control objective.

The above formulation was used to construct a linear control
algorithm for the SDOF structures of water towers in this
study. Here, for the SDOF system of a water tower, x(k) =
[q(k), q̇(k)]T, where q(k) = relative displacement; and q̇(k) =
relative velocity at time step k. Also, the control signal is a
scalar quantity, u(k) = u(k), which is taken equal to the hori-
zontal component of the control force applied by the pre-
stressed tendons, as shown in Fig. 1. The following weighting
matrices were used in this study:

1 0
Q = ; R = [R] (4)F G0 0

where the appropriate R value is found based on trial and error.
Also defining F, G, and P

DT

0 1 1
F = ; G = ; P = exp(sF) ds (5)2F G F G E2v 22jv 21/m0 0 0

where v0, j, and m = undamped natural frequency, damping,
and mass of the water tower, respectively. The discrete time
state and control matrices can be found from

A = exp(DTF); B = PG (6)u

A 30-m3 water tower of 20-m height was controlled by the
predictive optimal control method. The stiffness of the struc-
ture and its natural period were 549,040 N/m and 1.51 s, re-
spectively. A 5% damping was considered for the water tower.
Also the following values were used: numerical integration
FIG. 3. Time History of Controlled Response by Predictive
Optimal Control Method Compared to Uncontrolled Response
for R = 5 3 1028: (a) Relative Displacement; (b) Absolute Accel-
eration

FIG. 2. Effect of R on Response and Control Force in Predic-
tive Optimal Control of Water Tower, Showing Maximum of: (a)
Relative Displacement; (b) Relative Velocity; (c) Absolute Accel-
eration; (d) Control Force

time step and sampling period = DT = 0.02 s; time delay = d
= 1; and prediction horizon indicator = l = 8.

The water tower was subjected to the El Centro (N00W)
1940 earthquake and the effect of R on the response and con-
trol force was studied, as shown in Fig. 2. Generally, increas-
ing R has reduced the maximum control force and also the
maximum absolute acceleration, while the maximum relative
displacement and velocity increased. Because R = 5 3 1028

produced suitable results, it was decided to use this value of
R in the rest of this study. The uncontrolled as well as the
controlled response of the structure for R = 5 3 1028 are



FIG. 4. Effect of l, Prediction Horizon, on Peak Response and
Control Force for R = 5 3 1028: (a) Relative Displacement; (b) Ab-
solute Acceleration; (c) Control Force

FIG. 5. Effect of Actuator Capacity on Peak Response for R =
5 3 1028: (a) Relative Displacement; (b) Relative Velocity; (c) Ab-
solute Acceleration

shown in Fig. 3. For this control, a maximum control force of
about 100 kN was required.

The effect of the prediction horizon indicator l on control
results also was studied, as shown in Fig. 4. In this case, the
weight of the control cost was held fixed to R = 5 3 1028. A
larger l had a significant effect on reducing the relative dis-
placement. However, it had an adverse effect on both the ab-
solute acceleration and control force. Noting Fig. 4, it seemed
appropriate to select l = 8 for the rest of this study.

Next, the effect of actuator capacity on the controlled re-
sponse of the water tower was investigated where the control
force was taken equal to minimum (actuator capacity, calcu-
lated control force assuming infinite actuator capacity). Results
are shown in Fig. 5 for R = 5 3 1028. The relative displace-
ment and velocity of the controlled structure was reduced with
the increase in the actuator capacity. However, this reduction
is not significant for capacities larger than 40,000 Nt. On the
other hand, it has an adverse effect on the absolute acceleration
and increases it. Hence, it was concluded that a 40,000 Nt
actuator is appropriate for the control of this water tower.

CONSTRUCTION OF NEURAL NETWORK
CONTROLLER

Neural networks are adaptive systems that can learn, from a
set of input-output pairs of data collected from a phenomenon,
about the cause-effect relationship governing that specific phe-
nomenon. Multilayer feedforward neural networks, also called
perceptrons, with back-propagation of error learning rule have
been proven to be universal approximators, i.e., they can learn
any mapping problem, with any desired accuracy, based on a
set of appropriate data pairs collected for mapping (Hornik
584 / JOURNAL OF ENGINEERING MECHANICS / JUNE 2000
FIG. 6. Preceptron Used in First Part of Study: (a) Architec-
ture; (b) Total Quadratic Error versus Training Cycle; (c) Shifted
Sigmoidal Activation Function Used

1991). The theory of neural networks is well developed and
issues such as representation of knowledge, learning algo-
rithms, and architecture determination have been discussed by
many authors including Mezard and Nadal (1989), Reed
(1993), and Joghataie et al. (1995), and it seems that there is
now available a strong foundation, a common knowledge, and
a number of accepted algorithms for constructing appropriate
neural networks for any application problem. So, in the fol-
lowing sections, discussion is limited only to the explanation
of the main points about the neural networks used in this study.

Neural networks have been applied recently to many civil
engineering problems. The interested reader may refer to Gha-
boussi (1993) for more information. Neural networks have also
been used in many structural control engineering problems,
both as emulators and controllers (Conte et al. 1994; Joghataie
and Ghaboussi 1994; Ghaboussi and Joghataie 1995). In this
part of the study perceptrons were used to learn to control the
water tower under study, based on the results obtained in the
previous section.

Perceptron Used in Study

A three-layer perceptron with 4 input, 10 hidden, and 1 out-
put units, as shown in Fig. 6(a), was found suitable for this
application after a number of trials and errors. The four input
units represent the input vector I = [q(k), q̇(k), u(k 2 1), u(k
2 2)]T, where q(k), q̇(k), u(k 2 1), and u(k 2 2) are the relative
displacement at time step k, the relative velocity at time step
k, and the control signals sent to the actuator at time steps k
2 1 and k 2 2, respectively. The output of the neural network
O = u(k) is the control signal that should be sent to the actu-
ator.

The shifted sigmoidal activation function, as shown in Fig.
6(c), was used for all the units. Also the input and output
values were scaled so that input and output units fell in the
range of [21, 1]. Weights were generated randomly in the
range of [20.1, 0.1] and the generalized delta rule of learning
was used for updating of the weights. Teaching samples were
collected from the records obtained, through the application of
the predictive optimal control to the water tower, as explained
in the previous section, and then the neural network was
trained offline based on the collected training samples. During
the training procedure, cases were selected randomly from the
pool of the collected training data. Also, when one training
case was fed to the neural network it was not used for training
again until all the remaining training cases in the pool were
fed to the neural network. Defining a training cycle as one
feeding of all the training cases in the pool to the neural net-
work, it was observed that it took about 10 cycles for the



FIG. 7. Comparison between Controlled Response of Water
Tower by Predictive Optimal and Neurocontrollers for El Centro
Earthquake, Where Results are Similar: (a) Relative Displace-
ment; (b) Absolute Acceleration; (c) 20 s of Control Force; (d) In-
itial 5 s of Control Force

neural network to learn the problem and fall into a minimum
with a negligibly small total quadratic error, as shown in Fig.
6(b). However, for more reduction of errors, training continued
for 130 more cycles. This random selection of training cases
strategy has been found effective in faster convergence of neu-
ral networks in the previous studies by Joghataie et al. (1996).

Testing of Neurocontroller

The neurocontroller was then tested in the control of the
same water tower, subjected to the El Centro (N00W) 1940
earthquake with a peak ground acceleration of 0.348g. How-
ever, to check the generalization capability of the neurocon-
troller and how well it performs during other earthquakes, it
was also tested in the control of the same water tower when
subjected to the Parkfield (N25W) 1966, San Fernando (N21E)
1971, and Tabas, Iran (N16W) 1978 earthquakes with peak
ground accelerations of 0.347g, 0.315g, and 0.94g, respec-
tively. The Tabas earthquake is much stronger than the three
other earthquakes and has, in fact, been used for testing the
extrapolation capabilities of the neurocontroller.

It was found that the neurocontroller could control the struc-
ture appropriately for the El Centro earthquake, and results are
comparable to those of the predictive optimal controller, as
shown in Fig. 7. However as can be seen in Fig. 7(d), the
neurocontroller used slightly smaller control forces.

Results of predictive optimal and neurocontrolling of the
water tower for the above earthquakes are summarized and
compared in Table 1. Also Figs. 8(a and b) represent the con-
trol force time history used for controlling the structure by the
predictive optimal and neurocontrollers under the effect of the
Parkfield 1966 and Tabas 1978 earthquakes, respectively. Figs.
8(a and b) indicate that the neurocontroller has learned, with
great precision, from the predictive optimal controller how to
apply appropriate control forces. Referring to Table 1, it can
be seen that for four different earthquakes, including the high
intensity Tabas earthquake, the neurocontroller reduced the
TABLE 1. Comparison between Control Results from Predic-
tive Optimal and Neurocontrolling

Response
(1)

Maximum
relative

displacement
(cm)
(2)

Maximum
relative
velocity
(cm/s)

(3)

Maximum
absolute

acceleration
(cm/s2)

(4)

Maximum
control
force
(N)
(5)

(a) El Centro (N00W) 1940

Predictive
Neuro
No control

3.12
3.08

10.54

0.3044
0.3238
0.4638

2.5782
2.1762
1.8306

70,635
57,586

0

(b) Tabas, Iran (N16W) 1978

Predictive
Neuro
No control

8.35
10.08
25.49

0.5304
0.6092
1.0981

3.6178
3.3691
4.4203

121,176
69,982

0

(c) Parkfield (N25W) 1966

Predictive
Neuro
No control

1.65
1.69
3.48

0.1844
0.1855
0.2764

1.6481
1.5836
0.5686

43,480
41,259

0

(d) San Fernando (N21E) 1971

Predictive
Neuro
No control

1.64
1.58
4.32

0.1416
0.1401
0.2181

1.2372
1.2316
0.7595

33,180
32,809

0

FIG. 8. Control Force Applied by Predictive Optimal Control-
ler and Neurocontroller for 20 s during: (a) Parkfield 1966 Earth-
quake; (b) Tabas 1971 Earthquake (Neurocontroller Has Applied
Similar, But Slightly Smaller, Forces)

peak displacement and velocity considerably, although it was
not able to reduce, in any of the cases except for the Tabas
earthquake, the absolute acceleration and increased it as ex-
pected but not as desired. This is due to high frequency noise
induced into the response by the actuator forces. In these cases,
the neurocontroller also performed very similarly to its super-
visor, the predictive optimal controller.

DESIGNING A GENERAL NEUROCONTROLLER

It was desired to design a general neurocontroller by the
same algorithm used in the design of the neurocontroller for
the water tower of the previous sections, so that it could be
used in the control of water towers with properties different
from, but close to, those of the water towers studied before.

To this end, 16 water towers, with structural properties in-
cluding mass, height, and period of vibration shown in Table
2, were controlled under the El Centro earthquake by the pre-
dictive optimal control method. To account for the effect of
water level in the reservoirs, three cases of full, half-full, and
empty situations were considered for each reservoir, resulting
in a total of 16 3 3 = 48 controlled cases. Again, as in the
previous sections, the mass of the water tower was assumed
JOURNAL OF ENGINEERING MECHANICS / JUNE 2000 / 585



TABLE 3. Interpolation Capabilities of General Neurocon-
troller in Control of 27-m-High Water Tower Subjected to Earth-
quakes When Water Tower Was Full of Water (m = 25,000 kg)

Response
(1)

Maximum
relative

displacement
(cm)
(2)

Maximum
relative
velocity
(cm/s)

(3)

Maximum
absolute

acceleration
(cm/s2)

(4)

Maximum
control
force
(N)
(5)

(a) El Centro 1940

Predictive
Neuro
No control

2.70
2.63

25.86

0.2486
0.2656
0.6581

2.7195
2.4208
1.5977

63,777
56,109

0

(b) Parkfield 1966

Predictive
Neuro
No control

1.45
—
4.65

0.1588
0.1646
0.1954

1.7547
1.7825
0.3174

40,972
41,829

0

TABLE 2. Periods of Vibration (s) for 16 Water Towers Used in
Training

Capacity
(m3)
(1)

Mass
(kg)
(2)

Height (m)

15
(3)

20
(4)

25
(5)

30
(6)

20 m1 = 21,440
m2 = 15,000
m3 = 10,000

0.92
0.77
0.63

1.41
1.18
0.96

1.97
1.65
1.35

2.59
2.17
1.77

30 m1 = 31,740
m2 = 20,000
m3 = 15,000

0.98
0.78
0.68

1.51
1.20
1.04

2.11
1.68
1.45

2.78
2.20
1.91

40 m1 = 42,050
m2 = 30,000
m3 = 20,000

1.00
0.84
0.69

1.53
1.29
1.06

2.14
1.81
1.48

2.82
2.38
1.94

50 m1 = 52,350
m2 = 40,000
m3 = 25,000

1.00
0.87
0.69

1.54
1.35
1.06

2.15
1.88
1.49

2.83
2.47
1.95

Note: m1 = full; m2 = half-full; and m3 = empty.

lumped and rigid at the top of the columns. To provide the
neural network with enough data, covering the space of water
towers to be controlled, the time history of the controlled re-
sponse and control force for each of these 48 cases were re-
corded for 20 s. With a sampling period of 0.02 s, this resulted
in 48,000 input-output pairs. The neurocontroller was then
trained based on the random selection of training cases from
the pool of these 48,000 input-output pairs. For this part of
the study too, a perceptron with 4 input, 10 hidden, and 1
output units was used as in the preceding sections. However,
to include the required information about the structural prop-
erties of the water towers, the input vector and the output of
the neurocontroller were defined as I = [q(k), q̇(k), u(k 2 1)/
m, T]T and O = u(k)/m, where m and T represent the mass and
vibration period of the water tower, respectively, as explained
before.

TESTING GENERAL NEUROCONTROLLER

The neurocontroller was tested in the control of a number
of water towers that included the cases where controlled re-
sponses were used in the training of the general neurocon-
troller and other cases. Results have shown that for all the
training cases, the general neurocontroller was able to perform
similarly to the predictive optimal controller and reduce the
response considerably but while using smaller and smoother
control forces. To show the generalization and interpolation
capabilities of the general neurocontroller, it was then tested
in the control of a water tower that was in the range of the
training cases but had not been used in the training of the
neurocontroller. This 27-m-high, 25,000-kg capacity water
tower was subjected to the El Centro 1940 and Parkfield 1966
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TABLE 6. Extrapolation Capabilities of General Neurocon-
troller in Control of 10-m-High Water Tower Subjected to Earth-
quakes When Water Tower Was Half-Full of Water (m = 35,000
kg)

Response
(1)

Maximum
relative

displacement
(cm)
(2)

Maximum
relative
velocity
(cm/s)

(3)

Maximum
absolute

acceleration
(cm/s2)

(4)

Maximum
control
force
(N)
(5)

(a) El Centro 1940

Predictive
Neuro
No control

1.34
1.31
1.85

0.2405
0.2511
0.3203

3.9723
3.8966
5.0133

51,100
41,471

0

(b) Parkfield 1966

Predictive
Neuro
No control

1.83
1.83
3.28

0.3122
0.2971
0.5439

4.5089
4.6827
8.295

48,051
47,906

0

TABLE 5. Extrapolation Capabilities of General Neurocon-
troller in Control of 10-m-High Water Tower Subjected to Earth-
quakes When Water Tower Was Full of Water (m = 70,000 kg)

Response
(1)

Maximum
relative

displacement
(cm)
(2)

Maximum
relative
velocity
(cm/s)

(3)

Maximum
absolute

acceleration
(cm/s2)

(4)

Maximum
control
force
(N)
(5)

(a) El Centro 1940

Predictive
Neuro
No control

3.13
3.02
5.81

0.3462
0.3499
0.6943

5.124
4.8795
8.016

118,794
96,268

0

(b) Parkfield 1966

Predictive
Neuro
No control

1.81
1.80
2.56

0.2927
0.3068
0.3464

3.3106
3.4265
3.5636

101,871
85,241

0

TABLE 4. Interpolation Capabilities of General Neurocon-
troller in Control of 27-m-High Water Tower Subjected to Earth-
quakes When Water Tower Was Half-Full of Water (m = 12,500
kg)

Response
(1)

Maximum
relative

displacement
(cm)
(2)

Maximum
relative
velocity
(cm/s)

(3)

Maximum
absolute

acceleration
(cm/s2)

(4)

Maximum
control
force
(N)
(5)

(a) El Centro 1940

Predictive
Neuro
No control

3.07
3.06

12.66

0.2902
0.2979
0.519

2.5828
2.4246
1.7775

28,578
26,706

0

(b) Parkfield 1966

Predictive
Neuro
No control

1.58
1.4
2.99

0.1794
0.1708
0.2434

1.6558
1.8031
0.3975

17,889
19,988

0

earthquakes and was controlled for the cases when it was full
and half-full of water. Table 3 contains information about its
uncontrolled response and the results of its control by the gen-
eral neurocontroller when the water tower was full of water.
Table 4 shows the results for the half-full water tower. As can
be seen, the general neurocontroller was able to control the
structure and reduce the maximum relative displacement and
velocity by more than 50%, although high frequency noise was
introduced into the system and hence the maximum absolute
acceleration increased in most cases.

To study the extrapolation capability and precision of the
general neurocontroller to control structures out of the range
of its training cases, a 10-m-high, 70,000-kg capacity water



tower, with structural properties out of the training range but
not far from it, was controlled by the general neurocontroller,
and results are reported in Table 5. Also Table 6 represents the
results of the neurocontrolling of the same water tower when
it was half-full of water. Again, the general neurocontroller
was able to control the relative displacement and velocity and
reduce them significantly for both cases. Also it reduced the
accelerations.

CONCLUDING REMARKS

In this paper neural networks were used in the control of
water towers of different structural properties—including
mass, height, and weight—numerically simulated as SDOF
structures. After controlling a number of water towers, which
were subjected to the El Centro earthquake, by the predictive
optimal control method, their time history of controlled re-
sponse and control force were used in the training of a neural
network, here called the general neurocontroller. The designed
general neurocontroller is a three layer perceptron consisting
of 4 input, 10 hidden, and 1 output units and was trained by
the generalized delta rule for back-propagation of error. Such
a trained general neurocontroller was found capable of con-
trolling, not only the water towers that were used for preparing
the training cases, but also other water towers with slightly
different structural properties under the effect of different
earthquakes. In all of the tests, the general neurocontroller was
able to reduce the peak relative displacement and velocity by
more than 50%, whereas in almost all cases the peak absolute
acceleration was increased compared to the uncontrolled re-
sponse.

One of the objectives of this study was to bring the idea of
neurocontrolling of structural systems, in this case the water
towers, closer to the real world of structural engineering de-
sign. Once such a general neurocontroller is designed for a
specific type of structure, covering a wide range of structural
properties, a designer can use it directly as a black box for the
active control of other structures of similar type without the
need to go through the design of a specific controller for it.
However, there is still much left to be done to bring such ideas
of active control and neurocontrol of structures to the real
world of structural engineering design and practice. It is hoped
that this study will serve as another step toward this objective.
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