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Recursive Least Squares With Forgetting

for Online Estimation of Vehicle Mass

and Road Grade: Theory and Experiments
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SUMMARY

Good estimates of vehicle mass and road grade are important in automation of heavy duty vehicle, vehicle

following maneuvers or traditional powertrain control schemes. Recursive Least Square with multiple

forgetting factors accounts for different rates of change for different parameters and thus, enables

simultaneous estimation of the time-varying grade and the piece-wise constant mass. An ad-hoc modi-

fication of the update law for the gain in the RLS scheme is proposed and used in simulation and experi-

ments. We demonstrate that the proposed scheme estimates mass within 5% of its actual value and tracks

grade with good accuracy provided that inputs are persistently exciting. The experimental setups, signals,

their source and their accuracy are discussed. Issues like lack of persistent excitations in certain parts of the

run or difficulties of parameter tracking during gear shift are explained and suggestions to bypass these

problems are made.

1. INTRODUCTION

In vehicle control, many control decisions can be improved if the unknown

parameters of the vehicle model can be estimated. Weight of the vehicle, coefficient of

rolling resistance, and drag coefficient are examples of unknown parameters. Road

grade is a major source of external loading for heavy vehicle longitudinal dynamics

and is normally unknown. Both mass and grade are found to be critical in brake-by-

wire and vehicle-following maneuvers. The mass of a heavy duty vehicle can vary as

much as 400% depending on the load it carries. Mild grades for passenger vehicles,

are serious loadings for heavy vehicles. An anti-lock brake controller relies on an

estimate of mass and road grade for calculating vehicle’s cruise speed which is

necessary for estimation of wheel slip. In longitudinal control of platoons of mixed

vehicles, knowledge of the participating vehicle mass and road grade is necessary for
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avoiding issuing infeasible acceleration and braking commands [1]. Moreover, mass

estimation is essential to the engine control unit (ECU) for reduced emission, and

to transmission control for reduced gear hunting. The closed loop experiments

performed by Yanakiev et al. [2] indicate that the longitudinal controllers with fixed

gains have limited capability in handling large parameter variations of an HDV.

Therefore it is necessary to use an adaptive control approach with an implicit or

explicit online estimation scheme for estimation of unknown vehicle parameters.

Examples of adaptive controllers for vehicle control applications can be found in

the work by Liubakka et al. [3], Ioannou and Xu [4], and Oda et al. [5]. Yanakiev and

Kanellakopoulos [6, 7] have developed an adaptive controller for longitudinal control

of an HDV using direct adaptation of PIQ controller gains. Recently, Druzhinina et al.

[8] have developed an adaptive control scheme for longitudinal control of HDV’s.

Within this scheme they provided simultaneous mass and road grade estimation. They

demonstrated convergence in estimates for constant mass and piecewise constant

grade. This method is an indirect estimation method since estimation is achieved in

closed-loop and as a by-product of a control scheme.

As HDV automation is increasing, there are more controllers that could benefit

from on-line estimation of the vehicle mass and road grade. Moreover many times

estimates independent of a controller are required. In other words a direct estimation

scheme is more appealing. The proposed schemes for direct estimation of vehicle

parameters, particularly mass and grade can in general be classified in two categories:

sensor-based and model-based methods. In sensor based methods some type of extra

sensor is used on the vehicle to facilitate estimation of one or more parameters.

Model-based schemes use a model of the vehicle and data like engine torque, vehicle

speed, engine speed and gear ratio which are available through the CanBus to estimate

the unknown parameters. Since longitudinal dynamics of the vehicle depends on both

mass and grade, knowing one will facilitate estimation of the other. Therefore some

suggest estimating the grade which is in general time varying with some type of

sensor and then estimating the mass with conventional parameter-adaptive algorithms

[4, 9]. Bae et al. [10] use GPS readings to obtain road elevation and calculate the grade

using the measured elevations. With the grade known, they estimate the mass with a

simple least square method based on the longitudinal dynamics equation. In [11]

using an on-board accelerometer is proposed for grade estimation. The mass is then

estimated based on a good approximations of the grade.

A model-based method can provide a cheap alternative in estimation or it can be

used along with a sensor-based scheme to provide some redundancy. One approach

[12] which has been patented and has been used in industry is estimation of mass

based on the velocity drop during a gearshift. The idea is that since the gearshift

period is short, the road load can be rendered constant. The change in velocity before

and during gearshift can be used to calculate an estimate for the mass based on the

longitudinal dynamics equation. However based on a fair amount of trial, we observed
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that the velocity drop is normally minor during a gearshift and this limits the accuracy

of the method due to the small signal-to-noise ratio. Besides, this approach does not

address estimation of the grade.

In the rest of this paper a direct approach for simultaneous estimation of mass and

time-varying grade is pursued. We first formulate vehicle longitudinal dynamics and

explain experimental setups and validation of longitudinal model. We then investigate

implementation of a recursive least square (RLS) method for simultaneous online

mass and grade estimation. We briefly discuss the recursive least square scheme for

time varying parameters and review some key papers that address the subject. The

difficulty of the popular RLS with single forgetting is discussed next. For estimation

of multiple parameters which vary with different rates, RLS with vector-type

forgetting is previously proposed in a few papers. We analyze this approach and

propose an ad-hoc modification of the update law for the gain in the RLS scheme.

Although, we could not prove the algorithm convergence, nor define a region of

convergence for the algorithm, we demonstrate, with both simulated and test data, that

incorporating two distinct forgetting factors is effective in resolving the difficulties in

estimating mass and time-varying grade. The experimental setup and particular issues

with experimental data are also discussed.

2. VEHICLE LONGITUDINAL DYNAMICS

Our estimation approach is a model based approach. That is, we rely on a physical

model of vehicle’s longitudinal dynamics and use this model and the data that is

recorded from the vehicle’s CanBus for estimating mass and grade and possibly other

unknown parameters which affect vehicle’s longitudinal motion. Therefore we first

formulate the vehicle longitudinal dynamics equation.

A vehicle’s acceleration is a result of combination of engine and braking torques

and the road loads on the vehicle. When the torque convertor and the driveline are

fully engaged we can assume that all the torque from the engine is passed to the

wheel. Further assuming that there is no wheel slip, which is a good assumption for

most part of the motion, the longitudinal dynamics can be presented in the following

simple form:

M _vv ¼ Te � Je _!!

rg

� Ffb � Faero � Fgrade ð1Þ

In this equation M is the total mass of the vehicle, v is the forward speed and ! is

rotational engine speed. Te is the engine torque at the flywheel. If engine is in fuelling

mode the torque is positive and if it is in the compression braking mode the torque is

negative. If the transmission and the torque convertor are fully engaged then most of

the torque is passed to the wheels as assumed in the above equation. To model the
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possible torque losses, engine torque can be scaled down by a coefficient of efficiency.

Je is the powertrain inertia and therefore the term Je _!! represents the portion of torque

spent on rotating the powertrain. rg is the wheel radius divided by total gear ratio:

rg ¼ rw

gdgf

where rw is the wheel radius, gd is the gear ratio and gf is the final drive ratio. Ffb is

the generated friction brake (service brake) force at the wheels. The force due to

aerodynamic resistance is given by

Faero ¼ 1

2
Cd�Av2

where Cd is the drag coefficient, � is air density and A is frontal area of the vehicle.

Fgrade describes the combined force due to road grade (�) and the rolling resistance of

the road (�). It is given by

Fgrade ¼ Mgð� cos� þ sin�Þ;
where g is the gravity constant. Here � ¼ 0 corresponds to no inclination, � > 0

corresponds to uphill grade and � < 0 represents downhill. Equation (1) is valid when

the wheels do not have considerable slip.

We are interested in using this equation along with the data obtained from vehicle’s

CanBus for online estimation of mass and grade. In Section 3 signal measurement and

identification of model parameters are explained.

Equation (1) can be rearranged so that mass and grade are separated into two

terms:

_vv ¼
�

Te � Je _!!

rg

� Ffb � Faero

�
1

M
� g

cosð��Þ
sinð� þ ��Þ ð2Þ

where tanð��Þ ¼ �. We can rewrite Equation (2) in the following linear parametric

form,

y ¼ �T	; � ¼ ½�1; �2�T 	 ¼ ½	1; 	2�T ð3Þ

where

	 ¼ ½	1; 	2�T ¼
�

1

M
; sinð� þ ��Þ

�T

are the unknown parameters of the model, which we try to estimate and

y ¼ _vv; �1 ¼ Te � Je _!!

rg

� Ffb � Faero; �2 ¼ � g

cosð��Þ

can be calculated based on measured signals and known variables.
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Had the parameters 	1 and 	2 been constant, a simple recursive algorithm, like

recursive least squares, could have been used for estimation. However while 	1

depends only on mass and is constant, the parameter 	2 is in general time-varying.

Tracking time-varying parameters needs provisions that we directly address later in

this paper.

3. EXPERIMENTAL SETUP

We planned experiments on a Freightliner truck owned by California PATH.3 The

signals are measured through different interfaces. The CanBus, which is available on

the vehicle, is responsible for communication between the engine and powertrain

controllers. Many of the signals are obtained by accessing the CanBus. The signals are

transferred under certain standards set by SAE.4 Currently the J1939 [13] and its

extensions like J1939-71 [14] are standard for heavy duty vehicles. Older equivalents

are SAE J1587 for powertrain control applications. Other sources are EBS, GPS and

customized sensors installed by PATH staff. The EBS is the electronic brake control

system and measures signals like wheel speed. A GPS antenna is available on the

PATH truck that provides, longitude, altitude and latitude coordinates as well as

the truck’s cruise speed. A few sensors had been installed on the truck including

accelerometers in x, y and z directions, tilt sensors, and pressure transducers for

measuring brake pressure at the wheels.

The real time QNX operating system was used for data acquisition. The system

was wired to the Canbus and other sensors and data was sampled at 50 Hz. A

computer specialist monitored the flow of data and logged the instructions and actions

by the driver and other researchers in a text file that was available to us after the test.

The whole test was carried out open-loop except for some periods when cruise control

was activated. Each run concentrated on gathering data required for identification of

one or more components such as service brakes, compression brake, gear scheduling,

etc. For successful identification we made sure that the dynamics is sufficiently rich,

many times by asking the driver to pulse the commands like throttle and braking. To

generate different loading scenarios, the loading of the trailer was decreased gradually

from full to empty in stages during the test. At each stage the total mass of the truck

was known. Abundant amount of data in distinct driving scenarios was obtained

during two days of test. In the next sections we explain how the data was used for

system identification and parameter estimation.

3Partners for Advanced Transit and Highways.
4Society of Automotive Engineers.
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3.1. Measured Signals

Numerous signals are recorded during the experiments, based on different sensors,

each with certain degree of accuracy, and different levels of noise. The update rates

and sampling rates for the signals might also vary from one to the other based on the

sensors and the port they are read from. In this section we discuss the source and

accuracy of data. Then we proceed to estimate the parameters based on this measured

data.

Velocity is available from J1939 as well as the EBS sensors which measure the

wheel speed. GPS also provides an accurate measure of the velocity. Engine speed is

known from J1939 with good accuracy. Engine torque, compression brake and

transmission retarder torques are available through the J1939 port. These engine and

compression torques are calculated based on static engine maps and do not reflect the

very fast dynamics of the engine. However they are fast enough for our purpose.

Pressure transducers are installed to measure the brake pressure at the wheels.

Determining the actual force developed by service brakes will depend on a model that

translates the pressure into a torque. At this stage we do not have such a model and

therefore in our analysis we will dismiss portions of data in which service brakes were

activated. The transmission status is available form J1939. That determines if the

driveline is engaged and whether the torque convertor is locked or if a shift is in

process. The driveline is always flagged engaged when not in neutral. The torque

convertor was shown locked whenever the vehicle was in the third or a higher gear.

Shift in process denotes the period of a gear shift when the transmission controller is

in effect. The gear number could not be accessed through J1939 at the time of the test.

So the J1587 port was used to get the gear numbers. Each gear ratio and the final drive

ratio were available from the transmission manufacturer and were also verified using

data available from J1939.

The signals recorded from the accelerometers were noisy and therefore we decided

not to use these signals for obtaining accelerations. Also the signals recorded from tilt

sensors had a small signal to noise ratio and therefore we could not investigate

possibility of using tilt sensors for measuring the road grade. The actual road grade

was extracted from the profile plans of the road.

3.2. Road Grade

The road tests were carried out on a part of the HOV lane of Interstate 15 north of San

Diego. Within the two days of test, various driving cycles were completed in a number

of round trips on a 12 km stretch of highway. The test route included some overpasses

with steep grades. This grade was later determined using the road plans and served

as a comparison with the estimated grade. Although the GPS elevation signal was

available in the test-run, the information was often noisy or corrupted as shown in the
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upper subplot of Figure 1. The most accurate source for the road grade is the as-built

plan available for roads and highways. Therefore we obtained the profile plans of

the experimental track from Caltrans.5 We then carefully digitized the plans and

determined the grade based on the elevations. Figure 1 shows the digitized elevation

and grade. Note that the grade is either constant or varies linearly with distance. That

is a natural result of highway design where the transition between slopes are

parabolic. We used the information from GPS to determine the starting point of each

test run on the digitized elevation map.

3.3. Determining Unknown Parameters

In the vehicle longitudinal dynamics Equation (2), wheel radius, rw, driveline inertia,

Je, drag coefficient, Cd , and coefficient of rolling resistance, �, were unknown. Extra

Fig. 1. Digitized road elevation and grade.

5California Department of Transportation.
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care was taken to obtain an accurate value for tire rolling radius, rw, since other

parameters are sensitive to this value. It was calculated based on the gear ratios

available from the transmission manufacturer, engine speed and vehicle velocity

which are available from J1939. This value was also verified by tape measurement of

the drive wheel radius on site. rg could be calculated based on this tire radius and gear

ratios. Je was not available for the experimental truck. We used a value available from

another truck. However sensitivity to this parameter is not very high and deviations

from this nominal value can be tolerated.

A range for values of drag coefficient and coefficient of rolling resistance for

different vehicles is available in handbooks of vehicle dynamics (e.g., [15]). To select

the values that fit our available data we used the vehicle longitudinal dynamics

Equation (1) and tuned the parameters of the model to make the outcomes roughly

match the experimental data. The model used the engine or the retarder torque, the

road grade and the selected gear that were recorded during the test and based on these

inputs the accelerations were calculated. The accelerations were compared to the

accelerations obtained from the test data. The drag coefficient and rolling resistance

Fig. 2. Comparison of the model and real longitudinal dynamics.
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were tuned in the feasible range so that calculated and actual accelerations roughly

matched each other. We found coefficient of rolling resistance of 0.006 and drag

coefficient of 0.7 suitable candidates that result in good match between experiments

and simulation. Figure 2 shows a typical test run with good match between test data

and simulation results for most part of the trip. During gear changes experiments and

simulation results do not have a good match. This is due to the fact that the gear shift

dynamics is not considered in the longitudinal dynamics model. In the model we have

assumed that velocity and engine speed are always proportionally related and that

transmission is always engaged. These assumptions only result in local mismatch

between model and experiments and in general the model represents the longitudinal

dynamics adequately well.

Having identified the model of vehicle longitudinal dynamics, we continue with

the theory of RLS estimation and the proposed algorithm.

4. RECURSIVE LEAST SQUARE ESTIMATION

In least square estimation unknown parameters of a linear model are chosen in such a

way that the sum of the squares of the difference between the actually observed and

the computed values, is a minimum [16]. For a linear system [e.g., model shown in

Equation (3)] this translates into finding the parameter(s) that minimizes the following

‘‘loss-function’’,

Vð	̂	; nÞ ¼ 1

2

Xn

i¼1

ðyðiÞ � �TðiÞ	̂	Þ2 ð4Þ

Solving for the minimizing parameters we get the closed form solution as follows:

	̂	 ¼
�Xn

i¼1

�ðiÞ�TðiÞ
��1�Xn

i¼1

�ðiÞyðiÞ
�

ð5Þ

Most of the time we are interested in real-time parameter estimation. Therefore it is

computationally more efficient if we update the estimates in Equation (5) recursively

as new data becomes available online. The recursive form is given by:

	̂	ðkÞ ¼ 	̂	ðk � 1Þ þ LðkÞðyðkÞ � �TðkÞ	̂	ðk � 1ÞÞ ð6Þ

where

LðkÞ ¼ PðkÞ�ðkÞ ¼ Pðk � 1Þ�ðkÞð1 þ �TðkÞPðk � 1Þ�ðkÞÞ�1 ð7Þ

and

PðkÞ ¼ ðI � LðkÞ�TðkÞÞPðk � 1Þ ð8Þ
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PðkÞ is normally referred to as the covariance matrix. More detailed derivation can be

found in books on parameter estimation such as [16]. For convergence proof see for

example the book by Johnson [17].

Equation (6) updates the estimates at each step based on the error between the

model output and the predicted output. The structure is similar to most recursive

estimation schemes. In general most have similar parameter update structure and the

only difference is the update gain LðkÞ. The scheme can be viewed as a filter that

averages the data to come up with optimal estimates. Averaging is a good strategy if

parameters of the model are constant in nature. However many times the parameters

that we are estimating are time-varying and we are interested to keep track of the

variations. In the next section the generalized RLS for time-varying parameters is

discussed.

4.1. Recursive Least Square Estimation With Forgetting

If the values of the parameters of a system change abruptly, periodic resetting of the

estimation scheme can potentially capture the new values of the parameters. However

if the parameters vary continuously but slowly a different heuristic but effective

approach is popular. That is the concept of forgetting in which older data is gradually

discarded in favor of more recent information. In least square method, forgetting can

be viewed as giving less weight to older data and more weight to recent data. The

‘‘loss-function’’ is then defined as follows:

Vð	̂	; kÞ ¼ 1

2

Xk

i¼1


k�iðyðiÞ � �TðiÞ	̂	ðkÞÞ2 ð9Þ

where 
 is called the forgetting factor and 0 < 
 � 1. It operates as a weight which

diminishes for the more remote data. The scheme is known as least-square with

exponential forgetting and 	 can be calculated recursively using the same update

Equation (6) but with LðkÞ and PðkÞ derived as follows:

LðkÞ ¼ Pðk � 1Þ�ðkÞð
þ �TðkÞPðk � 1Þ�ðkÞÞ�1 ð10Þ

and

PðkÞ ¼ ðI � LðkÞ�TðkÞÞPðk � 1Þ 1



: ð11Þ

The main difference with the classical least square method is how the covariance

matrix PðkÞ is updated. In the classical RLS the covariance vanishes to zero with time,

losing its capability to keep track of changes in the parameter. In Equation (11)

however, the covariance matrix is divided by 
 < 1 at each update. This slows down

fading out of the covariance matrix. The exponential convergence of the above
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scheme is shown in some textbooks and research papers (See e.g., the proof provided

in [18] or [17]) for the case of unknown but ‘‘constant’’ invariant case. In general

exponential convergence in the constant case implies certain degree of tracking

capability in the time varying case [19]. However rigorous mathematical analysis of

tracking capabilities of an estimator when the parameters are time-varying is rare in

literature and many properties are demonstrated through simulation results. Campi

[19] provides rigorous mathematical arguments that if the covariance matrix of

the estimator is kept bounded the tracking error will remain bounded. Ljung and

Gunnarsson present a survey of algorithms for tracking time-varying systems in [20].

The RLS with forgetting has been widely used in estimation and tracking of time-

varying parameters in various fields of engineering. However when excitation of the

system is poor this scheme can lead to the covariance ‘‘wind-up’’ problem. During

poor excitations old information is continuously forgotten while there is very little

new dynamic information coming in. This might lead to the exponential growth of the

covariance matrix and as a result the estimator becomes extremely sensitive and

therefore susceptible to numerical and computational errors [21]. This problem has

been investigated by many researchers in the field and several solutions, mostly ad

hoc, have been proposed to avoid covariance ‘‘wind-up’’. The idea of most of these

schemes is to limit the growth of covariance matrix for example by introducing an

upper bound. A popular scheme is proposed by Fortescue et al. [21] in which a time-

varying forgetting factor is used. During low excitations, the forgetting factor is closer

to unity to enhance the performance of the estimator. In another approach, Sripada

and Fisher [22] propose an on/off method along with a time-varying forgetting factor

for improved performance. The concept of resetting the covariance matrix during low

excitations has been also investigated in [23]. Both papers provide good discussions

about behavior of the system during low excitations. Kulhavy and Zarrop discuss the

concept of forgetting from a more general perspective in [24].

One other popular refinement to the RLS with forgetting scheme is the concept of

‘‘directional forgetting’’ for reducing the possibility of the estimator windup when the

incoming information is non-uniformly distributed over all parameters. The idea is

that if a recursive forgetting method is being used, the information related to non-

excited directions will gradually be lost. This results in unlimited growth of some of

the elements of the covariance matrix and can lead to large estimation errors.

Implementation of the concept of directional forgetting is again ad hoc and is reflected

in updating the covariance matrix, PðkÞ. That is, if the incoming information is not

uniformly distributed in the parameter space the proposed schemes perform a

selective amplification of the covariance matrix. Hagglund [25] and Kulhavy [26]

have developed one of the early versions of this algorithm. Bittani et al. discuss the

convergence of RLS with directional forgetting in [27]. Cao and Schwartz [28]

explain some of the limitations of the earlier directional forgetting scheme and

propose an improved directional forgetting approach.
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The estimator wind-up can also occur if we are estimating multiple parameters that

each (or some) vary with a different rate. This scenario is of particular interest in the

problem of mass and grade estimation where mass is constant and grade is time-

varying. It will be shown by simulation later in this chapter that the single forgetting

algorithm is not able to track parameters with different variation rates. Therefore it is

desirable to assign different forgetting factors to different parameters. This problem is

somehow similar but not equivalent to the case when excitations are non-uniform in

the parameter space. Even when all the modes are uniformly excited, different rate of

variations of parameters can cause trouble in estimation. An ad hoc remedy to this

problem has been suggested in a few publications and is known as vector-type

forgetting [29, 30] or selective forgetting [31]. The idea is again implemented in the

update of covariance matrix. Instead of dividing all elements by a single 
, P is scaled

by a diagonal matrix of forgetting factors:

PðkÞ ¼ ��1ðI � LðkÞ�TðkÞÞPðk � 1Þ��1 ð12Þ

where

� ¼ diag½
1; 
2; . . . ; 
n�

in an n-parameter estimation and 
i is the forgetting factor reflecting the rate of the

change of ith parameter. We found this method an effective way of keeping track of

the parameters that change with different rates. The few examples of application of

this scheme, to the best knowledge of the authors, can be found in [32], and [5].

Yoshitani and Hasegawa [32] have used a vector-type forgetting scheme for parameter

estimation in control of strip temperature for the heating furnace. For a self-tuning

cruise control Oda et al. [5] propose using vector-type forgetting for detecting step

changes in the parameters of a transfer function.

Like most other modifications to RLS with forgetting, mathematical proofs for

tracking capabilities of the method, to the best knowledge of the authors, do not exist.

However a proof for convergence to constant parameter values can be found in [33].

In [33] a general class of RLS with forgetting is formulated and vector type forgetting

is also included as a special case. Exponential convergence to constant parameter

values is proven for this general class of estimators.

Before employing the vector-type forgetting, and to remedy the problems

associated with different rates of variations, the authors had formulated a multiple

forgetting method which has similarities to and differences from the above-mentioned

schemes. It has shown very good convergence and tracking capabilities in simulation

and experiments and the way it is formulated makes an intuitive sense. Since it

provides some motivation on the concept of multiple forgetting, we discuss the

formulation and the structure of the problem in the next section. The convergence or

conditions for convergence of the algorithm remains open for future research.
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4.2. A Recursive Least Square Scheme With Multiple Forgetting

When working on the particular mass and grade estimation problem, the authors

noticed that the difficulties in RLS with single forgetting stem from the following

facts: (1) In the standard method it is assumed that the parameters vary with similar

rates. (2) In the formulation of the loss-function defined in Equation (9) and

subsequently the resulting recursive scheme, the errors due to all parameters are

lumped into a single scalar term. So the algorithm has no way to realize if the error is

due to one or more parameters. As a result if there is drift in a single parameter,

corrections of the same order will be applied to all parameters which results in over-

shoot or undershoot in the estimates. If the drift continues for sometime it might cause

poor overall performance of the estimator or even the so-called estimator ‘‘wind-up’’

or ‘‘blow-up’’. It is true that we are fundamentally restricted by the fact that the

number of existing equations is less than number of parameters which we are

estimating, but in a tracking problem we can use our past estimation results more

wisely by introducing some kind of ‘‘decomposition’’ in the error due to different

parameters. Therefore, our intention is to conceptually ‘‘separate’’ the error due to

each parameter and subsequently apply a suitable forgetting factor for each. Without

loss of generality and for more simple demonstration, we shall assume that there are

only two parameters to estimate. We define the loss function, V :

Vð	̂	1ðkÞ; 	̂	2ðkÞ; kÞ ¼ 1

2

Xk

i¼1


k�i
1 ðyðiÞ � �1ðiÞ	̂	1ðkÞ � �2ðiÞ	2ðiÞÞ2

þ 1

2

Xk

i¼1


k�i
2 ðyðiÞ � �1ðiÞ	1ðiÞ � �2ðiÞ	̂	2ðkÞÞ2: ð13Þ

With this definition for the loss function the first term on the right hand side of (13)

represents only the error of the step k due to first parameter estimate, 	̂	1ðkÞ and the

second term corresponds to the second parameter estimate, 	̂	2ðkÞ. Now each of these

errors can be discounted by an exclusive forgetting factor. Notice that 	1ðkÞ and 	2ðkÞ
are unknown. We will later replace them with their estimates, 	̂	1ðkÞ and 	̂	2ðkÞ. The

swapping between the estimated and the actual parameters allows us to formulate the

proposed modification to the classical LS with forgetting factors.

Here 
1 and 
2 are forgetting factors for first and second parameters respectively.

Incorporating multiple forgetting factors provides more degrees of freedom for tuning

the estimator, and as a result, parameters with different rates of variation could

possibly be tracked more accurately. The optimal estimates are those that minimize

the loss function and are obtained as follows:

@V

@	̂	1ðkÞ
¼ 0 )

Xk

i¼1


k�i
1 ð��1ðiÞÞðyðiÞ � �1ðiÞ	̂	1ðkÞ � �2ðiÞ	2ðiÞÞ ¼ 0 ð14Þ
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Rearranging (14), 	̂	1ðkÞ is found to be:

	̂	1ðkÞ ¼
�Xk

i¼1


k�i
1 �1ðiÞ2

��1�Xk

i¼1


k�i
1 ðyðiÞ � �2ðiÞ	2ðiÞÞ

�
ð15Þ

Similarly 	̂	2ðkÞ will be:

	̂	2ðkÞ ¼
�Xk

i¼1


k�i
2 �2ðiÞ2

��1�Xk

i¼1


k�i
2 ðyðiÞ � �1ðiÞ	1ðiÞÞ

�
ð16Þ

For real time estimation a recursive form is required. Using the analogy that is

available between Equations (15), (16) and the classical form (5), the recursive form

can be readily deduced:

	̂	1ðkÞ ¼ 	̂	1ðk � 1Þ þ L1ðkÞðyðkÞ � �1ðkÞ	̂	1ðk � 1Þ � �2ðkÞ	2ðkÞÞ ð17Þ

where

L1ðkÞ ¼ P1ðk � 1Þ�1ðkÞð
1 þ �T
1 ðkÞP1ðk � 1Þ�1ðkÞÞ�1

P1ðkÞ ¼ ðI � L1ðkÞ�T
1 ðkÞÞP1ðk � 1Þ 1


1

:

and similarly,

	̂	2ðkÞ ¼ 	̂	2ðk � 1Þ þ L2ðkÞðyðkÞ � �1ðkÞ	1ðkÞ � �2ðkÞ	̂	2ðk � 1ÞÞ ð18Þ

where

L2ðkÞ ¼ P2ðk � 1Þ�2ðkÞð
2 þ �T
2 ðkÞP2ðk � 1Þ�2ðkÞÞ�1

P2ðkÞ ¼ ðI � L2ðkÞ�T
2 ðkÞÞP2ðk � 1Þ 1


2

:

In the two aforementioned equations 	1ðkÞ, 	2ðkÞ are unknown. We propose to replace

them with their estimates, 	̂	1ðkÞ and 	̂	2ðkÞ, as is customary in similar situations, such

as the ‘‘separation principle’’ in optimal control [34]. The substitution is also justified

when the actual and the estimated values are very close to each other or within the

algorithm region of convergence. A convergence proof or conditions for convergence

of the algorithm under this assumption, remains open for future research. Upon

substitution for 	1ðkÞ and 	2ðkÞ and rearranging Equations (17) and (18) we obtain:

	̂	1ðkÞ þ L1ðkÞ�2ðkÞ	̂	2ðkÞ ¼ 	̂	1ðk � 1Þ þ L1ðkÞðyðkÞ � �1ðkÞ	̂	1ðk � 1ÞÞ ð19Þ

L2ðkÞ�1ðkÞ	̂	1ðkÞ þ 	̂	2ðkÞ ¼ 	̂	2ðk � 1Þ þ L2ðkÞðyðkÞ � �2ðkÞ	̂	2ðk � 1ÞÞ ð20Þ
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For which the solution is,

	̂	1ðkÞ
	̂	2ðkÞ

� �
¼ 1 L1ðkÞ�2ðkÞ

L2ðkÞ�1ðkÞ 1

� ��1
	̂	1ðk � 1Þ þ L1ðkÞðyðkÞ ��1ðkÞ	̂	1ðk � 1ÞÞ
	̂	2ðk � 1Þ þ L2ðkÞðyðkÞ ��2ðkÞ	̂	2ðk � 1ÞÞ

� �
ð21Þ

Using the fact the P1 and P2 are always positive it can be proved that the determinant

of the matrix

1 L1ðkÞ�2ðkÞ
L2ðkÞ�1ðkÞ 1

� �

is always nonzero and therefore the inverse always exists. With some more

mathematical manipulations, Equation (21) can be written in the form of Equation

(6):

	̂	ðkÞ ¼ 	̂	ðk � 1Þ þ LnewðkÞðyðkÞ � �TðkÞ	̂	ðk � 1ÞÞ ð22Þ

where LnewðkÞ is defined as follows:

LnewðkÞ ¼
1

1 þ P1ðk�1Þ�1ðkÞ2


1
þ P2ðk�1Þ�2ðkÞ2


2

P1ðk�1Þ�1ðkÞ

1

P2ðk�1Þ�2ðkÞ

2

" #
ð23Þ

The proposed method incorporates different forgetting factors for each parameter. To

this end, it does what the vector-type forgetting method does. Equation (22) is similar

in form to the standard update of Equation (6). However the gains of the standard and

the proposed form are different. Specifically the former has a crossterm P12ðk � 1Þ,
while the latter does not. In other words the covariance matrix of the proposed method

is diagonal. This will result in update of the two parameters proportional to P1ðkÞ and

P2ðkÞ.
In short, introduction of the loss-function in Equation (13) with decomposed errors

and different forgetting factors for each have two distinct implications:

(1) Parameters are updated with different forgetting factors. That is done by scaling

the covariances by different forgettings. This is more or less what is done in the

RLS with vector-type forgetting as well. However this approach is based on

minimization of a loss-function.

(2) It decouples the updating step of the covariance of different parameters. This is

different from standard RLS or RLS with vector-type forgetting. It is more similar

to the ‘‘simplified’’ algorithms mentioned in second chapter of [16]. The authors

believe that when the parameters are independent of each other this makes an

intuitive sense.
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This scheme did well in both simulation and experiments of mass-grade estimation.

The performance is very similar to the RLS with vector forgetting when similar

forgetting factors are used. However we observed in some simulations that if the value

of the forgetting factors are picked in a way that mismatches real rate of variations of

the parameters, RLS with vector forgetting sometimes winds up. In such a situation

the estimator was excessively sensitive to noise. On the other hand, the proposed

scheme behaved well in this scenario and mismatch between forgetting and true rate

of variations did not cause the windup behavior. In other words the proposed

algorithm seems to be ‘‘forgiving’’ to the choice of forgetting factors. In the following

section we carefully select the forgetting factors of the vector-type forgetting RLS so

that the response compares favorably with the decoupled multiple forgetting that we

proposed.

Fig. 3. Estimation of mass and grade using RLS with a single forgetting factor of 0.8 when grade is

piecewise constant. Sampling rate is 50 Hz. The spikes during steady-state are due to step changes

in fuelling rate.
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4.3. Simulation Analysis of Single and Multiple Forgetting Methods

We first use simulated data to test a recursive scheme for estimation of mass and

grade. The simulated data was generated using the vehicle dynamics model given in

Equation (2) and by assuming different road grade profiles and feasible mass and

parameters for a heavy duty vehicle. A feasible fuelling pattern was chosen. Variation

of fuelling is important in exciting all modes of the system and consequently allows

better estimation results. Therefore in generating the fuelling command this was taken

into account. The engine torque was then calculated based on fuelling rate and engine

speed by using the engine torque map. At this stage we assumed that no gear change

occurs during the estimation process. In the next sections, we will discuss the issue of

gear change and explain how it can be incorporated in experimental estimation. We

use a recursive least square scheme for estimating and tracking the parameters. For

Fig. 4. Estimation of mass and grade using RLS with a single forgetting factor of 0.9 when grade variations

are sinusoidal. Smaller forgetting factors for grade resulted in worsens the performance. The spikes

during steady-state are due to step changes in fuelling rate.
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initialization, we employ a direct least square on a batch of first few seconds of data.

This initializes the estimates and the P matrix. Sampling rate of all signals is 50 Hz.

First we used the RLS with single forgetting for estimation of mass and grade. For

the reasons explained in previous sections of this chapter the results were not

promising at all. First we considered a constant mass and step changes in grade. The

data that we used was clean from any noise. Figure 3 shows the estimation results. We

observe big overshoots or undershoots in both mass and grade estimates during step

changes in grade or fuelling. Nevertheless we see a relatively fast convergence back to

the real parameter values after the deviations. That is in line with the proofs of

convergence of RLS with or without forgetting to constant parameter values. The

spikes during the steady-state are due to step changes in fuelling rate which act similar

to a disturbance to the system. To this end, despite the local misbehavior we can still

get some estimates for both parameters. The main difficulty of the approach appears

when one of the parameters, here the grade, starts varying continuously (as opposed to

Fig. 5. Estimation of mass and grade using RLS with multiple forgetting factors of 0.8 and 1, respectively

for grade and mass.
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staying piecewise constant). The algorithm shows very poor tracking performance in

such a scenario.

Figure 4 shows the estimator performance when grade variations are sinusoidal.

The well-known phenomenon of estimator ‘‘blow-up’’ or ‘‘wind-up’’ can be seen

during grade changes and errors in both mass and grade estimates become very large.

The estimates converge back to the real values only when the grade becomes constant.

Here a forgetting factor of 0.9 is chosen. We noticed that reducing the forgetting

factor will only worsen the problem. When noise is introduced in the data, the

performance is sacrificed even more. Increasing the forgetting factor to 1 (classical

RLS) will eliminate the big overshoots, but will average all the past data equally. This

can result in meaningless estimates for both parameters. As explained in the

formulation of the problem, the reason for the poor performance of RLS with single

forgetting is that when an error is detected the estimates for both parameters are

updated without differentiating between the ones that vary faster and those that do not

vary as often or are constant. This causes overshoot/undershoot in the estimates. If one

Fig. 6. Estimation of mass and grade using RLS with multiple forgetting factors of 0.8 and 1, respectively,

for grade and mass.
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parameter continues drifting, the estimation errors add up to result in what was seen in

the previous figures.

We carried out simulations using RLS with multiple forgetting factors and showed

that this scheme can resolve the problems encountered with single forgetting. Figure 5

shows the performance of the estimator when grade goes through step-changes. In this

example forgetting factors of 0.8 and 1.0 are chosen for grade and mass respectively.

Unlike estimation with single forgetting, the estimation is very smooth and the

estimates converge much faster during step changes. Also the spikes due to step

change in fuelling rate disappear. Because a forgetting factor of 1.0 is chosen for

mass, the mass estimates are not as sensitive to changes in grade.

We also tried sinusoidal variations in grade. The results are shown in Figure 6. The

grade is tracked very well and with very small lag. The rate of change shown for the

grade is much faster than the norm on the roads. Even with a much higher speed of

variations, the estimator does not ill-behave. In simulation we observed that if the

forgetting factors are chosen so that they roughly reflect relative rate of change of

parameters, parameter changes are tracked well.

A summary of some other scenarios is shown in Table 1. The results shown in this

table are based on numerical data that is not noisy. Simulations with data contaminated

by noise show that noise deteriorates the performance of the single forgetting estimation.

The multiple forgetting scheme showed much better robustness in presence of noise.

5. PERFORMANCE OF THE ESTIMATOR

WITH EXPERIMENTAL DATA

In the previous sections of this chapter, the estimation problem was formulated, a

solution was proposed and it was shown in simulations that it performs well in

Table 1. Comparison of the performance of single and multiple forgetting RLS algorithms.

Scenario Single forgetting Multiple forgetting

Constant grade

Constant mass Good estimation Good estimation

Step changes in grade

Constant mass Some overshoots in estimates Good estimation

Linear change of grade

Constant mass Bad estimation Good estimation

Sinusoidal change of grade

Constant mass Bad estimation Good estimation

Sinusoidal change of grade

Linear variations of mass Bad estimation Estimates with some lag
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estimating mass and keeping track of time-varying grade. The demonstration was

either in a noise-free environment or when white noise was added to the signals. In a

real scenario the situation can become more challenging due to higher level of

uncertainties. The signals are potentially delayed and many times the signals are noisy

and biased in one direction rather than being only affected by pure white noise.

Moreover, the delay or noise level in one signal is normally different from the other

signals. Finally, note that what is available from sources like J1939 is normally not the

true value of an entity but an estimate of the true value through the vehicle/engine

management system. Unmodelled dynamics of the system might result in poor

estimation.

The signals in a natural experimental cycle may not always be persistently

exciting. As discussed before lack of good excitation results in poor estimates or even

cause estimator windup. In our case, if the acceleration is constant and there is no gear

change, we are not able to observe enough to determine both mass and grade. In this

case the longitudinal dynamics equation represents essentially a single mode, making

it literally impossible to estimate the two unknowns. Therefore it is important that

in online estimation, rich pieces of data are detected and used for estimation of

both parameters. Once a good estimate for mass which is constant is obtained track-

ing of variations of grade would be possible even during low or constant levels of

acceleration.

5.1. Modification for Reducing Signal Noise Effect

Direct implementation of Equation (2) in least square estimation requires dif-

ferentiation of velocity and engine speed signals. In a noisy environment,

differentiation is not very appealing. It will magnify the noise levels to much higher

values and the differentiated data may not be useable. In order to circumvent this

problem we will first integrate both sides of Equation (2) over time and apply the

estimation scheme to the new formulation. Assuming that mass and coefficient of

rolling resistance are constant, integration of both sides yields:

vðtkÞ � vðt0Þ ¼
1

M

Z tk

t0

�
TeðtÞ � Je _!!ðtÞ

rgðtÞ
� FfbðtÞ � FaeroðtÞ

�
dt

� g

cosð��Þ

Z tk

t0

sinð� þ ��Þdt ð24Þ

We can rewrite the above equation in the form of Equation (3),

y ¼ �T	; � ¼ ½�1; �2�T ; 	 ¼ ½	1; 	2�T
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where this time

yðkÞ ¼ vðtkÞ � vðt0Þ

	 ¼ ½	1; 	2�T ¼
�

1

M
;

R tk
t0

sinð� þ ��Þdt

ðtk � t0Þ

�T

and

�1 ¼
Z tk

t0

�
Te � Je _!!

rg

� Ffb � Faero

�
dt; �2 ¼ �ðtk � t0Þg

cosð��Þ

Notice that �2 is multiplied by ðtk � t0Þ and 	2 is divided by it. This is to keep the

unknown parameter 	2 away from growing fast with time. In this fashion if the grade,

�, is constant, 	2 will remain constant as well. Employing integration instead of

differentiation helped avoid some serious issues related to signal noise.

5.2. Estimation in Normal Cruise: No Gearshift

We first evaluate the estimation scheme with experimental data when the gear is

constant. Similar to the approach in simulations we use a batch in the first few seconds

of estimation to initialize the estimation scheme. Good initial estimates are obtained

only when the chosen batch is rich in excitations. Better estimates can be obtained

with a smaller batch when the acceleration has some kind of variation during the

batch. The RLS with multiple forgetting was used during the rest of the travel for

estimation and tracking.

To reduce the high frequency noise, the torque and velocity signals were passed

through a second order butterworth filter before they were used in the estimation. The

sampling frequency is 50 Hz, and therefore the Nyquist frequency is 25 Hz. We use

the cutoff frequency of 25 Hz for the filter, to ensure that aliasing will not occur.

Figure 7 shows the estimation results for more than five minutes of continuous

estimation. The gear was constant throughout this period. The initial four seconds of

data was processed in a batch to generate the initial estimates. For the recursive part

forgetting factors of 0.95 and 0.4 were chosen for mass and grade respectively. While

mass is constant, a slight forgetting acts as a damping effect on the older information

and makes the mass estimate a little more responsive to new information. This showed

to result in further convergence of mass to its true value. In this estimation the root

mean square (RMS) error in mass is 350 kg and the maximum error is 2.8%. During

the recursive section the error in mass reduces down to a maximum of 1.7%. The RMS
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error in grade is 0.2 degrees. It can be seen that grade is estimated well during its

variations.

Next we will remedy the estimation problem when gear changes occur.

5.3. Estimation Results During Gearshift

In the longitudinal dynamics Equation (1) we assume that engine power passes

continuously through the driveline to the wheels. This assumption is valid only when

the transmission and torque convertor are fully engaged. During a gear change,

transmission disengages to shift to the next gear and during this time the flow of power

to the wheels is reduced and in the interval of complete disengagement no torque is

passed over to the wheels. Moreover the assumption that vehicle speed is proportional

to the engine speed by some driveline ratio is not in effect during this transition and

Fig. 7. Estimator’s performance during normal cruise when the gear is constant. Forgetting factors for mass

and grade are 0.95 and 0.4, respectively. RMS error in mass is 350 kg and RMS grade error is 0.2

degrees.
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the engine speed goes through abrupt changes while the change in vehicle velocity is

much smoother. Therefore relying on Equation (1) for estimation will result in very

big deviations during gearshift. The bigger the deviations are the longer it takes the

estimator to converge back to the true parameter values.

Modelling the dynamics during a shift is not simple due to natural discontinuities

in the dynamics. Besides the period when the transmission is in control does not take

more than two seconds and therefore it is not really necessary to estimate the

parameters during this short period. Therefore we decided to turn off the estimator at

the onset of a gearshift and turn it back on a second or two after the shift is completed.

The estimates during the shift are set equal to the latest available estimates. Also the

new estimator gain is set equal to the latest calculated gain. This approach proved to

be an effective way of suppressing unwanted estimator overshoots during gear shift.

Figure 8 shows the engine torque, shift status, vehicle velocity and engine speed

Fig. 8. The response during a cycle of pulsing the throttle.
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during part of an experiment. We had asked the driver to pulse the throttle off and on

and therefore as seen in the torque plot, the torque is either at its maximum or drops

down to zero. Also two gear shifts occur during this time window. As mentioned

before the variations in velocity are smooth but the engine speed has jump

discontinuities both during gear shift and during the throttle on/off. Upon using the

estimator with no on/off logic we observed big overshoots in the estimates during both

the gearshift and the throttle on/off. The results are shown in Figure 9. The root mean

square error in mass is 420 Kg and the RMS grade error is 0.77 degrees which is a

large error.

We then used the estimator with the on/off logic. The results are shown in Figure

10. The estimation has improved considerably due to the estimator deactivation

during the shifts. The deviations due to throttle pulsation exist as before but the

magnitude of these deviations are small and they fade away quickly. In this estimation

the root means square error in mass is 310 kg and the RMS grade error is 0.24 degrees

which are quite improved due to the employed estimator logic.

Fig. 9. Estimator’s performance when it is always on. Forgetting factors for mass and grade are 0.95 and

0.4, respectively. The RMS errors in mass and grade are 420 kg and 0.77 degrees, respectively.
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5.4. Sensitivity Analysis

Earlier in this paper the coefficient of rolling resistance and the drag coefficient were

calculated based on matching the model outcomes and experimental results. We

mentioned that these estimates are rough estimates that meet our needs. We are in

general interested to know how much the mass and grade estimation results are

sensitive to these parameters. In other words we want to analyze the sensitivity of the

estimation scheme with respect to these parameters.

For this analysis we vary the rolling resistance and drag coefficient one at a time

and observe the performance of the estimates and based on these results provide a

sense on the sensitivity of the system. We perform the analysis with the experimental

set of data used in Section 5.2 of this paper. Figure 11 shows the sensitivity of the

estimates with respect to drag coefficient and rolling resistance. Variations in

the coefficient of rolling resistance only affect the grade estimate. That is because

Fig. 10. Estimator’s performance when it is turned off during shift. Forgetting factors for mass and grade

are 0.95 and 0.4, respectively. The RMS errors in mass and grade are 310 kg and 0.24 degrees,

respectively.
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the rolling resistance and grade affect the longitudinal dynamics in the same way. In a

realistic range, a 50% variation of the coefficient of rolling resistance caused, in the

worst case, less than 25% change in the RMS error of grade estimates. The drag

coefficient selection influenced both mass and grade estimates. Here 25% change in

drag coefficient within a feasible range, cause less than 25% change of error in grade

and mass estimates.

In the analysis of this paper the wheel radius was known accurately. However to

see how would an incorrect measure of wheel radius affect the estimation results, we

carried out sensitivity analysis for different wheel radii. The results are shown in

Figure 12. The results show that grade estimates are not very sensitive to errors in

wheel radius while sensitivity is roughly 1 for mass estimate. This was expected as

wheel radius directly affects the available traction torque for acceleration which in

turn directly affects mass estimates. Therefore it is important that accurate value for

wheel radius is used to successfully estimate the mass.

Fig. 11. Sensitivity of the estimates with respect to drag coefficient and rolling resistance. Forgetting

factors for mass and grade are 0.95 and 0.4, respectively. Nominal mass is 21250 kg.
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6. CONCLUSIONS

Simultaneous estimation of vehicle’s mass and road grade is a challenging problem.

Previous work concentrated on either estimating only one or assumed existence of

additional sensors on the vehicle which could be used to estimate one of the un-

knowns. In this paper a recursive least square scheme with forgetting is proposed for

simultaneous online estimation of mass and grade. We show in simulations that a

single forgetting factor could not estimate parameters with different rates of variation.

Ways to incorporate more than one forgetting factor for estimation of multiple

parameters with different rates of variation are discussed and the effectiveness of the

algorithm with multiple forgetting in estimating a constant mass and time-varying

grade is shown with simulations.

Results of estimation of mass and grade with experimental data are then shown.

The data was obtained from experiments that were carried out on Interstate 15 in

San Diego in the August of 2002 with an experimental heavy duty vehicle. The

Fig. 12. Sensitivity of the estimates with respect to wheel radius. Forgetting factors for mass and grade are

0.95 and 0.4, respectively. Nominal mass is 21250 kg.
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experiment setup, the measured signals and their source and issues like sampling rate

and accuracy are briefly discussed. Using this data we first verify that the vehicle

model captures the longitudinal dynamics accurately for most part of travel. The RLS

with multiple forgetting which was successful in simulations was tested and proved

effective with the experimental data. The real life issues like lack of persistent

excitations in certain parts of the run or difficulties of parameter tracking during gear

shift are explained and suggestions to bypass these problems are made. Without gear

shift and in the presence of persistent excitations mass and grade are estimated with

good precision and variations of grade are tracked. When gearshifts takes place, the

estimator shows large overshoots and it takes a few seconds for these deviations to

damp out. We proposed turning off the estimator during and shortly after a gearshift.

The estimation results are improved by this provision. Sensitivity analysis

demonstrates that estimation is not overly sensitive to uncertain parameters of the

system including drag coefficient and rolling resistance.

In its present form, the proposed scheme can be employed in a real-time

application with caution, since its convergence and region of convergence has not

been shown. Care should be exercised in choosing the batch initialization procedure

and in ensuring persistent excitation. There is room for including some more logical

checks and routines that can make the algorithm more robust to a variety of operating

situations. Inclusion of a logic to detect areas of high or low excitations is one

example which can save the estimator from a potential windup. With the added

robustness the proposed scheme can be used alone or along with other sensor or model

based schemes for online estimation. We are planning to test this scheme in

conjunction with the longitudinal control module and analyze potential improvements

to the heavy duty vehicle automation.
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