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Multilane Automated Driving with Optimal Control
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Abstract—Road vehicle lane changes often initiate traffic
disturbances and can therefore impact road networks’ energy
and time efficiency. Furthermore, unexpected changes in traffic
conditions may also render lane changes counterproductive for
the lane-changing vehicle. Vehicle-to-vehicle connectivity com-
bined with anticipative control could address these challenges
via improved lane change decisions by automated vehicles. In a
move toward this objective, receding horizon control cast as a
mixed integer quadratic program is used to plan lane changing
and acceleration in a coupled optimization. A long-term pacing
module, based on Pontryagin’s Minimum Principle from optimal
control theory, sets terminal and input references for receding
horizon control to target a user’s expected travel time. To remove
nonlinear vehicle dynamics from the receding horizon controller,
lane change commands are passed to a pure pursuit steering
module whose response is approximated by a 2nd order linear
model. Comparison against a rule-based reactive algorithm in
arterial and highway scenarios shows an 8.9 % to 13.7 % reduction
in energy consumption and a 5.2 % to 10.3 % reduction in travel
time, along with navigational improvements.

I. INTRODUCTION

LESS-than-ideal traffic flow due to congestion and subopti-

mal driving practices saps the time and energy efficiency

of today’s road networks. Small speed perturbations can grow,

causing significant slowdowns upstream. Such disturbances

may originate in the longitudinal direction only or result from

lateral cut-ins [1]. Multi-lane roads allow vehicles to avoid

conflicts in these cases, which could improve traffic flow.

However, conventional vehicles may not take full advantage

of this capability and their lane changes sometimes cause

capacity drop [2]. Increasing prevalence of connected and

automated vehicles (CAVs) could improve lane decisions via

higher-quality information and optimal control.

Efficient motion control has been more thoroughly re-

searched in longitudinal-only scenarios, perhaps because the

problem naturally fits well-established control techniques.

Within a single lane, the drivable region is convex and

conventional model predictive control (MPC) using a standard

quadratic program (QP) applies. In contrast, multi-lane vehicle

guidance involves a non-convex drivable region that opens the

possibility of local minima and multiple global optima.

The complexity of this problem has led some researchers

to data-driven machine learning methods. In 2007, Ngai and
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Yung [3] proposed reinforcement learning for vehicle over-

taking by targeting maximum speed and heading toward the

goal in the reward function. More recently, Wang and Chan

[4] presented a reinforcement learning algorithm for highway

merging. In the related field of off-road navigation, Pfeiffer

et al. [5] experimentally applied end-to-end learning to avoid

obstacles and reach a goal in a non-convex drivable region.

Model-based optimization has also been proposed to address

lane changing. Some of these efforts have involved integer

programming, which has also been applied to the related prob-

lem of scheduling vehicle arrivals at intersections [6]. Mukai

and Kawabe [7] proposed an explicit hybrid MPC based on

mixed integer linear programming (MILP) for two-lane roads.

More recently, Du et al. [8] considered several lanes using a

mixed logical dynamical (MLD) model where the vehicle was

assumed to fully change lanes between each discretization step.

Dollar and Vahidi [9] combined integer-valued lane decision

variables with a continuous lateral motion model and quadratic

objective to formulate a mixed integer quadratic program

(MIQP). Energy results in a two-lane passing scenario showed

an 8 % reduction in energy consumption and 6 % reduction in

travel time compared to a rule-based algorithm. All of these

approaches used a receding-horizon MPC alone, implying that

the overall trip is not directly optimized.

Another line of research does optimize over the whole trip,

that is, the process of moving the vehicle to the next stopping

point. Pontryagin’s Minimum Principle (PMP) and Dynamic

Programming (DP) are commonly used in such systems. For

example, Hu et al. [10] compared various PMP approaches to

hybrid vehicle driving and Abbas et al. [11] combined both

PMP and DP to minimize energy consumption in electric

vehicles. However, like most similar systems the impact of

obstacles including traffic is not addressed. Mensing et al.

[12] point this out and include traffic constraints using DP.

However, only car-following is considered. Wang et al. [13]

[14] proposed a hierarchical scheme where a finite state ma-

chine executes either optimal or rule-based transitions between

maneuvers e.g. following or lane-changing.

The system described in this paper takes a distinct hierarchi-

cal approach featuring one unified mode. Variational optimal

control provides a longitudinal-only trajectory ending at the

next stopping point, assuming no conflicts with obstacles. In

reality, surrounding traffic and stationary obstacles may render

this solution infeasible. Therefore, it is not used as the final

control input but rather as a reference for a receding horizon

controller (RHC) that handles complex obstacle avoidance and

lane decisions. The reference thus alleviates the RHC’s short-

sightedness in speed planning.

The following section elaborates on the proposed architec-
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Fig. 1. Block diagram of the automated driving system proposed in this paper.

TABLE I
BLOCK DIAGRAM NOMENCLATURE.

Parameter Definition

sSV Surrounding vehicle’s longitudinal position
lSV Surrounding vehicle’s lane
sf Ego vehicle’s goal position for the current subtrip

tf Ego vehicle’s goal time for the current subtrip

sfs Surrounding vehicle’s goal position

lref Constant reference lane for the current subtrip

z State vector
z̃ Longitudinal state vector
z̃∗ Reference longitudinal state vector
ũ∗ Reference acceleration command
u1 Scalar longitudinal acceleration command in the road frame
u2 Lane command
� Steering angle

ture and the corresponding structure of the methods portion of

the paper, that is, Sections III, IV, and V. Section III provides

both nonlinear and approximate linear models for simulation

and control, respectively. Section IV derives the long-term

reference trajectory using PMP. Then, Section V shows how

the reference is used in RHC and how obstacles are avoided

in a multi-lane environment. Next, simulation scenarios based

on real-world road segments are detailed in Section VI. The

results including time, energy, and lane targeting benefits are

presented in Section VII. Finally, Section VIII reviews the

contributions and looks ahead to future research in algorithms

and microsimulation.

II. ARCHITECTURE

Figure 1, with nomenclature in Table I, shows the relation-

ships between several of the components involved in model

based autonomous driving. The term “ego” in Table I refers

to the individual controlled vehicle, i.e. the host. This paper

addresses implementation of the pacing, maneuvering, and line

tracking blocks as well as modeling of actuators and vehicle

hardware. Input data from sensors and connectivity is also

used. While it is not the subject of this paper, a routing module

is assumed to choose road links and provide a goal position

sf , time tf , and lane lref . These goals apply for the current

subtrip, that is, the process of traveling from one stopping point

to the next. For an example of a routing algorithm considering

link times with traffic signal integration, see [15].

Trajectory planning involves two levels. The first level,

called the pacing module, computes a reference for RHC by

optimizing the ego’s motion over the rest of the road link

neglecting traffic. Its purpose is to enable RHC to target

the acceleration that minimizes the objective not only during

the receding horizon, but also beyond it. The pacing module

does so using Pontryagin’s Minimum Principle (PMP) in a

shrinking horizon [16] scheme as described in Section IV,

consuming a goal position and time to generate position,

velocity, and acceleration profiles.

While the pacing module’s long horizon performs well

in the absence of traffic, it does not attempt the constraint-

intensive task of collision avoidance. This is left to the

second trajectory planning component called the maneuvering

module, which controls both lateral and longitudinal degrees

of freedom to avoid obstacles. It follows the pacing module’s

references over a receding horizon and outputs acceleration

and lane commands. In addition to the longitudinal references

from the pacing module, it also consumes a fixed reference

lane directly from the routing module. The implementation of

the maneuvering module builds upon [9]. A new lane indicator

formulation enables an arbitrary number of lanes, among other

improvements detailed in Section V.

The acceleration command is sent to an acceleration con-

troller that delivers it using the powertrain and brakes. Mean-

while, the commanded lane’s centerline becomes the reference

for the line tracking module, which controls the vehicle’s

steering angle. Section III details both nonlinear and linear

approximation of the system consisting of the vehicle hard-

ware, acceleration controller, and line tracking controller.

III. MODELING

This section describes both nonlinear modeling for the simu-

lation testbed and linear approximation for online optimization.

It moves from vehicle modeling to the steering controller and

ends with linear approximation.

A. Vehicle Model

A standard kinematic bicycle model, shown in Fig. 2, is

combined with a first-order approximation of powertrain and

brake dynamics to simulate the vehicle. The inputs to this

model are the vehicle-aligned acceleration command ut and the

steering angle �. No-slip is assumed, enabling calculation of

the distance R from the instant center of chassis yaw rotation

to the rear wheel using the steering angle and wheelbase. All

vehicles are 1.9 m wide with wheelbases L = 4.52m.

R =
L

tan�
(1)

Next, the following system with time constant � determines

the tangential speed vt, which is needed to find the normal

acceleration an and the yaw rate  ̇ .

v̇t = at, ȧt = −
1

�
at+

1

�
ut (2)

an =
v2t
R

(3)

 ̇ =
vt

L
tan� (4)

Coordinate transformations then yield velocity and accelera-

tion in the road frame.

ẋa = vt cos , ẏa = vt sin (5)

ax = at cos −an sin , ay = an cos +at sin (6)
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Fig. 2. Schematic of the bicycle model with pure pursuit parameters shown.

As shown in Fig. 1, the maneuvering module provides u1 in

the road frame; however, Eqn. (2) consumes ut in the vehicle

frame. The following converts u1 into ut.

ut =
1

cos 

(
u1+

v2t sin 

R

)
(7)

It is also possible to obtain a dynamic bicycle model by

using tire slip angles to obtain the forces that act on the

chassis. These more complex models can capture the effects of

limited grip between the tires and road surface. The kinematic

model here cannot and is not intended to accomplish this;

its role is to approximate a real dynamic vehicle to motion-

planning consistency in human-like, sub-limit lane changes.

The satisfaction of this assumption is discussed further in

Section III-D.

B. Steering Control

As illustrated in Fig. 2, a pure pursuit controller [17]

tracks the rear axle’s position ya to the maneuvering module’s

commanded lane after it is converted to the lateral reference

position yd . This controller calculates a steering angle based

on the arc required to drive the vehicle’s rear axle to the point

lying a fixed distance away on the reference path, called the

lookahead point. Although this paper assumes straight, parallel

lanes to simplify location of the lookahead point, pure pursuit

can also be applied to general curves by defining them as a set

of discrete points [17]. Equation (8) determines the lookahead

distance ld , which is proportional to vehicle speed with gain

kℎ = 1.5.

ld = max

{
kℎv,

√(
yd −ya

)2
+(1.5L)2

}
(8)

The value of kℎ was set to obtain a human-like lane change

duration based on data from [18]. At low speeds, ld is saturated

to prevent instability.

The pure pursuit control law for steering angle � is given

in Eqn. (9).

� = arctan
2Lsin

(
arcsin

yd−ya
ld

− 
)

ld
(9)

Finally, the steering rate is limited to 310
deg

s
at the steering

column to match actuator specifications from [19]. This results

in a limit of �̇max = 20.4
deg

s
at the wheels, which the following

limit imposes.

� (k)−Δtℎ�̇max ≤ � (k+1)≤ � (k)+Δtℎ�̇max (10)

Δtℎ = 0.08s is the sampling time used to simulate the steering

controller and vehicle dynamics.

C. Linear Approximation for Lane Change Planning

The maneuvering module requires a linear model of the

system that it controls. This system, outlined in Fig. 1, includes

the vehicle model and steering controller described earlier in

this section. The response from acceleration and lane com-

mands u1 and u2, respectively, to vehicle position is linearly

approximated as in [9]. Position s, road-aligned velocity v,

road-aligned acceleration a, lane position l, and lane position

rate rl make up the state vector of this approximated linear

model. The latter two states use lane width as the distance

unit, with integer values of l corresponding to lane centerlines.

The lane position l is related to ya by

l =
ya
wl

+0.5 (11)

where wl denotes the lane width. For example, consider a road

with two 4 m lanes. If y in Fig. 2 equals zero on the fog line

separating the road from its shoulder, then a vehicle centered

in the right lane has ya = 2m and l = 1.0. Exactly halfway

through a lane change, ya = 4m and l = 1.5. In the remainder

of this study, wl = 3.7m. The first control input u1 ∈ R is

the desired acceleration and the second input u2 ∈ Z is the

integer-valued lane command.

An underdamped 2nd order response was selected to linearly

approximate the lateral dynamics. Intuitively, such a model

can capture the pure pursuit controller’s small overshoot in

addition to the zero initial yaw rate when steering angle is

applied. Notice that despite the discrete u2, the lane state

l is continuous. This feature helps enforce lane discipline

while still comprehending intermediate positions during lane

changes. A first-order system with time constant � represents

the lag in powertrain response. Equation (12) gives the overall

model and Table II shows the parameters that were obtained by

matching the approximate 2nd order response to the nonlinear

response using classical system identification. The static gain

K of 1 implies that u2 and l have the same unit.

d

dt

⎡
⎢⎢⎢⎢⎣

s

v

a
l

rl

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

0 0 −
1

�
0 0

0 0 0 0 1

0 0 0 −!2
n −2�!n

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

s

v

a
l

rl

⎤
⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0
1

�
0

0 0

0 K!2
n

⎤
⎥⎥⎥⎥⎥⎦

[
u1
u2

]

(12)

D. Validity

The vehicle and steering controller were simulated in a

sequence of left and right-hand lane change maneuvers at

various speeds. Figure 3 shows the correlation in lane state l

between the nonlinear and linear models. The most significant
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TABLE II
LINEAR MODEL PARAMETERS.

Parameter Definition Unit Value

� Acceleration time constant sec 0.275
� Lane change damping ratio — 0.7077
!n Lane change natural frequency rad/s 0.9666
K Lane change static gain — 1
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Fig. 3. Combined steering and controller and plant responses to lane command
steps at (top to bottom) 24.3 m/s, 7.7 m/s, and 3.9 m/s.

cause of deviation was the steering rate limit, the effects of

which diminished when high speed led to smaller steering

angles1. Correlation was sufficient for the receding horizon

controller to perform as intended when lane changes were

prohibited at low speeds. For example, constraints prevent the

maneuver of Figure 3 (bottom) from occurring in closed-loop.

As previously noted, the kinematic model is inconsistent

with real vehicle dynamics near the tire limit. Polack et al.

[20] found that a lateral acceleration limit of 0.5�rg should

be observed when using a kinematic model, where �r is the

road friction coefficient and g is the gravitational acceleration.

The lane change responses in Fig. 3 did not exceed 3.3 m/s2,

placing them below the 0.5�rg limit for dry pavement where

�r ≈ 1.

IV. PACING MODULE

This section explains the pacing block of Figure 1, which

sets the traffic-free state and control references z̃∗ (i) and ũ∗ (i)
to be consumed later by the RHC. The superscript ∗ here

indicates that the value of the base variable solves the optimal

control problem. The reference state z̃ contains position s

and speed v, while the reference control input ũ is physically

equivalent to the acceleration a. It is possible to design a

stand-alone maneuvering module as in [9] or set z̃∗ according

to a user-specified constant speed. This could be useful at

lower autonomy levels where an operator might specify a

1To understand why this occurs, refer to Eqns. (4, 5) and increase vt while
holding ẏa constant.
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Fig. 4. Optimal velocity plans for a 1 km, 50 s trip that might occur between
intersections. Various cases {a,b,c,d} are shown, with v={∞,25,25,25}m∕s
and v0 = {0,0,10,25}m∕s.

target speed. However, if the trip involves acceleration and

deceleration rather than simple cruising, the result of such

receding horizon optimization is not optimal for the whole

trip. Hence the goal of this section is to solve a simplified

but longer-term optimization whose solution will guide the

maneuvering module.

The pacing module is implemented in a shrinking horizon

manner. Similarly to the popular receding horizon control,

shrinking horizon control (SHC) operates in closed loop by

re-solving its optimization at each step. Unlike RHC, the end

of the horizon is fixed at the end of the trip and thus the

horizon shrinks as real time and position advance.

The proposed controller uses the velocity profile of Figure

4, which consists of parabolic and constant phases. The

remainder of this section will show that such a profile min-

imizes the square of the ego vehicle’s acceleration ũ over

the trip. Minimizing acceleration is expected to save energy,

deliver a comfortable ride, and prevent traffic disturbances by

reducing unneeded braking. Sciarretta and Vahidi [21] present

more complex energy-optimal velocity profiles that could be

substituted for a theoretical energy benefit.

The following optimal control problem minimizes the ob-

jective J̃ subject to boundary conditions on the states and a

pure state constraint that limits speed to v̄.

min J̃ = ∫
tf

t0

ũ2dt

s.t. s
(
t0
)
= s0, s

(
tf
)
= sf

v
(
t0
)
= v0, v

(
tf
)
= 0

ṡ = v, v̇ = ũ

v ≤ v̄

(13)

Following the direct adjoining approach from [22] with state

vector z̃ =
[
s v

]T
, the Hamiltonian  and Lagrangian  are

thus formed with costates � and Lagrange multiplier �.

 = ũ2+�1v+�2ũ (14)

 = ũ2+�1v+�2ũ+� (v̄−v) (15)



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, MMMM YYYY 5

The following conditions are necessary for optimality [22].

)
)ũ

= 0,
)
)ũ

= 2ũ+�2 ⟹ ũ∗ = −
1

2
�∗
2

(16)

�̇∗
1
= −

)
)s
,

)
)s

= 0 ⟹ �∗
1
= c1 (17)

�̇∗
2
= −

)
)v
,

)
)v

= �1−� ⟹ �̇∗
2
= −�∗

1
+�∗ (18)

�∗ ≥ 0, �∗
(
v̄−v∗

)
= 0 (19)

Combining the above conditions yields

̇̃u∗ =
1

2
c1−

1

2
�∗ (20)

Since ̇̃u∗ depends on �∗, two cases are considered: Case I

when the velocity constraint is inactive and Case II when it is

active. As explained in [23], the solutions of optimal control

problems like this one are not always described by continuous

functions. Instead, they may involve several continuous phases

joined together to form a piecewise solution. Cases I and II

result in phases of the piecewise solution to this problem. First,

the optimal control ũ∗ (t) is derived in Case I.

�∗
(
v̄−v∗

)
= 0, v̄−v∗ > 0 ⟹ �∗ = 0 (21)

̇̃u∗ =
1

2
c1 ⟹ ũ∗ =

1

2
c1t− c2 (22)

In Case II, v∗ = v̄ gives ũ∗ (t) = 0. The jump conditions [22]

result in additional restrictions at corner times tc . Let p and

q index continuous phases. First, Eqn. (23) shows that c1 is

the same for all phases, where � is the non-negative jump

parameter [22].

�∗
1

(
t−c
)
= �∗

1

(
t+c
)
+ �

(
tc
) )
)s

(v̄−v) (23a)

�∗
1

(
t−c
)
= �∗

1

(
t+c
)
, �∗

1
= c1 ⟹ c

p

1
= c

q

1
∀p,q (23b)

The second corner condition, which reduces to continuity

of the Hamiltonian, shows that ũ∗ is continuous and v∗ is

C1 continuous. Although Eqn. (24) supposes t−c is in Case I,

generality is not lost since
)

)t
(v̄−v) = 0. Recall ũ = 0 in Case

II and velocity must be continuous.

∗
(
t−
c

)
=∗

(
t+
c

)
− �

(
tc
) )
)t

(v̄−v) (24a)

ũ∗2
(
t−c
)
+c1v

∗
(
t−c
)
+�∗

2

(
t−c
)
ũ∗

(
t−c
)
=

ũ∗2
(
t+c
)
+ c1v

∗
(
t+c
)
+�∗

2

(
t+c
)
ũ∗

(
t+c
) (24b)

ũ∗2
(
t−
c

)
+�∗

2

(
t−
c

)
ũ∗

(
t−
c

)
= 0 (24c)

ũ∗2
(
t−c
)
−2ũ∗2

(
t−c
)
= 0 ⟹ ũ∗

(
t−c
)
= 0 (24d)

Since the vehicle is assumed to be static at the end of

the trip, the following piecewise arrangements are possible

depending on whether the constraint is active and whether the

initial speed is less than, or equal to the maximum speed. In

the case where the simple parabolic solution does not violate

v̄, Eqn. (22) applies for all t. When v0 < v̄ and the constraint

is active:

ũ∗ (t) =

⎧
⎪⎨⎪⎩

1

2
c1t− c

I
2

; t < t1
0 ; t1 ≤ t < t2
1

2
c1t− c

III
2

; t2 ≤ t < tf
(25)

When v0 ≥ v̄:

ũ∗ (t) =

{
0 ; t ≤ t1
1

2
c1t− c2 ; t1 ≤ t < tf (26)

The most complex case, Eqn. (25), requires six constants

to determine v∗ (t): c1, cI
2
, cIII

2
, t1, t2, and finally c3 which

arises from integrating acceleration for velocity. Two relations

come from the boundary conditions s
(
tf
)
= sf and v

(
tf
)
= 0

after integrating Eqn. (25). Two additional relations come from

the continuity of v∗ (t), which requires v∗
(
t−
1

)
and v∗

(
t+
2

)
to

equal the constraint value v̄. C1 continuity of v∗ (t) at t1 and t2
complete the set of six equations to solve for the parameters.

The two simpler cases use a reduced form of this strategy.

The unconstrained trajectory’s coefficients are first com-

puted explicitly. If a constraint violation results, the param-

eters of the appropriate piecewise solution are determined by

solving the system described above.

Finally, the solution v∗ for v (t) is integrated forward to

obtain the desired terminal position for the RHC. This is the

ideal position of the ego vehicle on the last step of the RHC’s

horizon. The maneuvering module will plan to achieve this

position if obstacles do not prevent it from doing so. N and

Δtl are the prediction steps and sampling time of the RHC,

respectively.

s∗ (N|k) = s (k)+∫
t(k)+NΔtl

t(k)

v∗ (t)dt (27)

V. MANEUVERING MODULE

With a plant model, steering controller, and pacing module

in place, the maneuvering module plans acceleration and lane

position trajectories over a receding 10 s horizon using the

linear model of Eqn. (12). This section presents the objective,

continuous-valued constraints, and mixed integer constraints.

The latter category helps handle discrete-valued lane selection

and disjunctions in the collision avoidance constraints. For

details on casting the problem as a standard-form MIQP, refer

to the Appendix.

A. Objective

The maneuvering objective J is based on the authors’

prior research [9]. Penalties on deviation from the desired

acceleration and lane are retained with weights qa and ql,

respectively. The function

J = zTe (N)Pze (N)+

N−1∑
i=0

[
zTe (i)Qze (i)+ u

T
e (i)Rue (i)

]
(28a)

Q =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 ql 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, P =

⎡
⎢⎢⎢⎢⎣

qs 0 0 0 0

0 qv 0 0 0

0 0 qa 0 0

0 0 0 ql 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

(28b)
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TABLE III
RECEDING HORIZON CONTROLLER PARAMETERS.

Parameter Definition Value

qs Terminal position weight 10
qv Terminal velocity weight 2
qa Acceleration weight 30
ql Lane weight 10
N No. of prediction steps 25
Δtl Sampling time 0.4 s

R =

[
qa 0

0 ql

]
(28c)

is minimized, where ze (i) ∶= z (i)−zref (i) and ue (i) ∶= u (i)−

uref (i). The state reference zref combines the longitudinal

position and speed z̃∗ with the acceleration ũ∗ and the routing-

based lane reference lref according to the following equation.

Since lref is constant, the reference lane rate is 0.

zref (i) =
[
z̃∗T (i) ũ∗ (i) lref 0

]T
(29)

Notice that the higher-order maneuvering model’s input u1
differs from the pacing model’s input ũ because of the former’s

first-order lag. This small difference is resolved by approximat-

ing the first-order lag as a one-step delay i.e. a (i+1) ≈ u1 (i).
Since lref is constant and u2 = lref results in l = lref at steady

state, lref is directly used as the reference for u2.

uref (i) =
[
ũ∗ (i+1) lref

]T
(30)

Thus, the pacing module’s position, speed, and acceleration

targets are combined with the constant lane reference and

used in the maneuvering module. Table III lists the relevant

parameter values. In the rest of this section, the prediction step

argument i is dropped where it is equal for all terms.

B. Standard Constraints

A set of standard continuous-valued constraints is necessary

to support basic motion planning. Many of these constraints

involve state variables. In practice, factors including model

mismatch, prediction mismatch, and measurement errors can

alter the relationship between the control inputs, states, and

constraint limits. This can render the optimal control problem

infeasible, which is unacceptable in the field because it pre-

vents the controller from returning a solution. Therefore, pure

state constraints are softened using techniques described in

[24]. The slack variables for constraint softening are denoted

� with subscripts to distinguish each particular slack variable

from the others. All of these � are non-negative.

�j ≥ 0 ∀j (31)

Velocity v is constrained to be non-negative and below a

speed limit v̄.

0− �2 ≤ v ≤ v̄+ �3 (32)

The RHC assumes a constant braking capacity u
1
. In contrast,

forward acceleration capacity varies as a function of speed.

This results from increasing aerodynamic drag at higher speed

and varying torque capacity as a function of engine speed.

As [25] shows, the maximum acceleration limit is approxi-

mated as a piecewise function with two linear phases. The

slopes of these lines in
(
v, u1

)
space are m1 = 0.285s−1 and

m2 = −0.1208s−1, and the u1-intercepts are b1 = 2m∕s2 and

b2 = 4.83m∕s2. Similar constraints on the acceleration state a

prevent engine torque from momentarily exceeding capacity

because of the lag in Eqn. (12).

u1 ≥ u1 (33a)

u1 ≤ m1v+ b1, u1 ≤ m2v+ b2 (33b)

a ≤ m1v+ b1+ �6, a ≤ m2v+ b2+ �6 (33c)

Constant minimum and maximum constraints l and l̄ on lane

position l guarantee that the vehicle drives on the general road

surface. In contrast to [9], � is defined as the maximum de-

viation from a lane’s centerline for which the vehicle remains

at least partially in that lane.

l−(1− �) ≤ u2 ≤ l̄+(1− �) (34a)

l−(1− �)− �4 ≤ l ≤ l̄+(1− �)+ �5 (34b)

C. Mixed Integer Formulation for Arbitrary Lane Count

The Big M technique [26] is used throughout this section

to model disjunctive constraints, or sets of constraints where

at least one but not all must be satisfied. First, the constant

M is set to at least the largest possible constraint violation.

Then, M is multiplied by a binary variable and added to

the constraints. Thus, the term containing M either drops

to the yield the original constraint or guarantees constraint

satisfaction depending on the binary’s value.

Each lane, identified by the integer �, is associated with two

binary indicator variables ��a and ��b. Labels are assigned �

values such that l = � at the centerline of lane �. When part of

a vehicle resides in a lane, the following constraints set both

equal to 1.

−l−M
(
1−��a

) ≤ −�+ �, l−M��a ≤ �− � (35a)

l−M
(
1−��b

) ≤ �+ �, −l−M��b ≤ −�− � (35b)

Since the ego vehicle is always either in lane �, in a lane

greater than �, or in a lane less than �, at least 1 of ��a and

��b is always equal to 1. Therefore,

2−��a−��b =

{
0 �− � ≤ l ≤ �+ �
1 otherwise

(36)

The result in Eqn. (36) can be used to relax the collision

avoidance constraints when the ego is outside lane �. This

leads to the position constraints

−s−M
(
2−��a−��b

)
−M

(
1−��

) ≤ −s
�
min

−d+ �1 (37a)

s−M
(
2−��a−��b

)
−M�� ≤ s�max−d− lv+ �1 (37b)

where lv denotes the ego vehicle’s length and the binary

variable �� allows movement either in front of or behind

obstacle � . Notice that �� = 0 only relaxes (37a) so that

the ego vehicle must drive upstream of the obstacle and

�� = 1 only relaxes (37b) so that the ego vehicle must drive

downstream of the obstacle. The buffer distance d separates

the ego vehicle from the surrounding vehicle’s (SV’s) front

and rear bumpers, located at s
�
min

and s
�
max respectively. While
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[27] briefly mentions Eqn. (37), it does not explain indicator

setup or the other constraints that follow later in this section.

The interested reader can instead refer to [27] for a study of

how these softened collision avoidance constraints perform in

an exceptionally hazardous traffic scenario.

Compared to smooth quadratic penalties on slack variables,

non-smooth linear penalties have the advantage of yielding

the exact hard-constrained solution as desired [24]. In earlier

simulations, however, linear penalties led to harsh braking

when model mismatch in dense traffic caused small constraint

violations. To retain linear penalties’ exactness in emergencies

while first attempting to avoid undue proximity to SVs, a two-

stage soft constraint strategy is adopted. In Eqn. (38), the

quadratically-penalized �1 (the first stage) is upper-bound soft

constrained to a maximum violation �v with linearly-penalized

slack �7 (the second stage). Equation (39) gives the augmented

cost.

�1 ≤ �v+ �7 (38)

Ja = J +�1�
2
1
+

7∑
m=2

�m�m (39)

The minimum distance between vehicle bumpers is set pro-

portionally to the maximum speed for the road link. However,

only the final 2 m before contact is penalized linearly with �v
comprising the difference. The forms of the penalties along

with the weight settings �1 = 1.5×102 and �7 = 1×106 cause

the controller to trade off �1 with other objectives, but maintain

�7 ≈ 0 when feasible.

On roads with more than two lanes, the RHC may output

undesirable lane change commands if left without further

constraints. Specifically, the RHC may step the lane command

through multiple lanes in one loop. The linear model would

predict a faster lane change rate in this case compared to

a step of one lane. However, the linear approximation was

not validated in such maneuvers, which are generally frowned

upon among human drivers. Furthermore, the RHC may pulse

the integer lane command to more precisely control the lane

change rate. Therefore, the following constraints are introduced

where the convergence threshold 
 = 0.05 is just larger than

the lane overshoot shown in Fig. 3.

u2− l ≤ 1+ 
, −u2+ l ≤ 1+ 
 (40)

Equation (40) prevents u2 from moving more than 1+
 beyond

the current lane l. The effect is that when crossing multiple

lanes, the RHC steps u2 by one lane and waits for l to come

within 
 of u2 before moving u2 further.

To prevent u2 from moving back to the previous lane before

lane position has converged, the following constraints are

introduced where Δu2 (i) = u2 (i)− u2 (i−1).

Δu2 (i)+ l (i)− u2 (i−1) ≤ 1+ 
 (41a)

−Δu2 (i)+ u2 (i−1)− l (i) ≤ 1+ 
 (41b)

For example, consider an increasing-lane transition in progress

where l (i) < u2 (i). In order to revert to the previous lane i.e.

set Δu2 (i) = −1, the remaining lane fraction u2 (i−1)− l (i)

must be less than 
 to satisfy (41b).

While preventing the RHC from aborting lane changes

reduces its ability to respond to disturbances, the RHC offsets

this disadvantage in two ways. First, anticipative planning

tends to obviate the abortion of lane changes, especially when

chance constraints as in [27] are used for unconnected traffic.

Second, the longitudinal acceleration u1 remains free and is

jointly optimized with the lane command.

Figure 3 shows that the linear approximation’s validity

deteriorates at low longitudinal speed. The RHC is therefore

allowed to initiate lane changes only when v≥ v. The following

equations constrain the integer change over one timestep Δu2
to a cone in

(
v,Δu2

)
space that is symmetric about the v axis.

The numerical slack �n = 0.01.

−mlv+Δu2−ml�2 ≤ �n, −mlv−Δu2−ml�2 ≤ �n (42a)

ml = v
−1 (42b)

Another set of constraints with a similar goal constrains the

lane state l to remain converged to the command u2 at low

speeds. An indicator �v is first set to 0 for v < v and 1 for

v > v.

−v−M
(
1−�v

) ≤ −v, v−M�v ≤ v (43a)

Then, the difference between l and u2 is constrained to be

smaller than 1− � when v < v. The coefficient of �v is set

just large enough in magnitude to relax the constraint when

�v = 1. (
l− u2

)
+(−2+ �)�v− �2 ≤ 1− � (44a)

−
(
l− u2

)
+(−2+ �)�v− �2 ≤ 1− � (44b)

VI. SIMULATION METHODS

A. Discretization

Two levels of discretization are used in simulation. The

low-frequency event occurs every Δtl = 0.4s and includes

maneuvering and pacing module calculations. The prediction

model’s discretization time is equal to Δtl. Five high-frequency

events with Δtℎ = 0.08s occur per low-frequency event. The

steering controller and plant dynamics are simulated at high

frequency to improve steering controller performance. This

two-timestep idea also appears in the experimental research

of [28], albeit with a 2-to-1 ratio between the step durations.

To focus on the core RHC formulation and integration with

higher and lower-level control layers, computation delay is

neglected and the agents operate synchronously. The vehicles

compute their control plans sequentially and communicate

them to other vehicles. Depending on the sequence, some

information is Δtl old when it is used by another CAV. These

trajectories are advanced in time by Δtl before incorporation

into the constraints. More formally, if zSV denotes the SV’s

state and the SV’s trajectory is Δtl old, then zSV (i) ←

zSV (i+1).

Although this paper focuses on a fully connected environ-

ment, it is sometimes necessary to predict SV motion. In

the kinematic approach used here and in [27], a constant

longitudinal acceleration of either 1.15 m/s2, 0, or -2.94 m/s2 is

expected depending on the SV’s proximity to the nearest static

obstacle or intersection stop bar. Laterally, constant velocity
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is expected until the SV reaches the next lane centerline. This

prediction applies in two situations. The first is when the

furthest-ahead SV state zSV (N) is unavailable because the

SV’s communication is old, as discussed previously. In this

case, zSV (N) is predicted from zSV (N −1). The second case

is the first simulation step when some SVs have not yet sent

their intended trajectories. At this initial step only, trajectories

are predicted for these SVs as if they were not connected.

Regarding the validity of this section’s assumptions, [29]

experimentally showed under 0.01 s communication latency

using DSRC, well below the 0.08 s simulation timestep. Fur-

thermore, the authors’ earlier two-lane MATLAB implementa-

tion ran faster than real-time on average [9] and a more recent

multi-lane C++ version computed faster than real-time in 95 %

of cases. Although computation time is promising for a decen-

tralized implementation and the simulations do include some

delayed information, the sequential computation scheme does

not model pairs of vehicles that use old information from one

another. To address such cases, the authors have devoted [30]

to the multi-agent topic including a parallel-computed variant

of the algorithm presented here. Asynchronous computation

between vehicles is left for future research.

B. Scenarios

The simulations are evaluated in three situations: two high-

way and one arterial. Figure 5 depicts the two road segments.

The highway geometry is evaluated at two initialization rates

to assess the controller’s sensitivity to traffic density. These

scenarios are either all-reactive or all-CAV, where the CAVs

communicate their intended future trajectories to form the

surrounding CAVs’ constraints. In an unconnected environ-

ment, an AV must predict these trajectories. The performance

of this paper’s RHC and steering control layers in such an

environment is examined in [27], where chance constraints

help account for the added uncertainty.

The vehicles compute their solutions in a sequential, decen-

tralized fashion with a fixed ordering, which is listed as part

of each scenario’s description below. Although the ordering

affects collective performance, it is not studied here for the

sake of brevity. However, the authors’ related research in [30]

does explore this topic by simulating various orderings and

proposing a technique for dynamically constructing higher

performing ones.

Lane changes are disallowed where solid markings, called

dividers, appear in Fig. 5. This is accomplished using a

rule-based algorithm that inserts a fictitious obstacle on the

appropriate side of the divider depending on lref and the

divider’s location relative to the host. The advantage of this

technique is that it uses only the constraints of Section V-C

without adding binary variables; the limitation is that the

controller cannot plan to traverse the off-target side of a short

upcoming divider and return to the target lane later. Such a

maneuver is not possible in this study regardless of algorithm.

1) Highway Merge: The highway scenario includes two

main lanes of traffic flow, an on-ramp, and an exit ramp. The

two ramps share a merging zone that models South Carolina

Exit 48 on US Interstate 85. To reduce memory load, the

1553m

Direction of Travel

(a) Highway

(b) Arterial

440m

500m

743m

1115m

1235m

228m 255m

3.7m

11 22 33 4Lane No. Lane No.

Fig. 5. The road geometry. Approximate vehicle initialization and deactivation
zones are shaded in green and red, respectively. Lane changes are allowed
across dashed markings and prohibited across solid markings. Longitudinal
distances are to scale, but aspect ratio is distorted for visibility.

far left lane of the real highway is omitted from the model.

Vehicles initialize on the main road’s right-hand lane at 30 m/s

with either 4 s or 2 s headways. Other vehicles initialize on the

on-ramp with a time headway 3 times that of the main traffic

flow. All of these entering vehicles have lref = 2, meaning that

they target the right lane of the highway. Among vehicles that

initialize on the highway, a randomly selected
1

3
of them have

lref = 1 and therefore attempt to exit the highway. This results

in balanced flow rates of entering and exiting vehicles.

In this case, the vehicles enter and exit the simulation

dynamically and do not reach their goal positions. The pacing

module targets either the end of the following exit ramp in the

case of highway-bound vehicles or the next intersection in the

case of exiting vehicles. That intersection’s stop bar is shown

at the end of the right lane in Figure 5(a). Boundary effects are

mitigated in post-processing by ignoring data at the extreme

beginning and end of the road link. Furthermore, only vehicles

that complete the entire link while it is full are analyzed.

This time period begins when the first vehicle reaches the

uppermost shaded area of Figure 5(a) and ends when the last

vehicle is initialized. In this higher-speed scenario, the soft-

constrained bumper-to-bumper distance is 12 m.

The computation sequence for the decentralized network

solution in the highway scenario follows the temporal order
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in which the vehicles are introduced at the upstream sources.

2) Arterial Lane Positioning: The arterial scenario models

a block of US-123 in Clemson, South Carolina. This area is

subject to changing and sometimes heavy congestion levels

depending on time of year and local events. Vehicles begin at

rest and travel to the stop bar of the subsequent intersection. A

turning lane directs some traffic into a residential area on the

right-hand side. At the next intersection, two lanes continue

straight or turn right while one lane turns left.

Vehicles are initialized in an evenly spaced grid with 4

vehicles per lane. This is the maximum number of vehicles

in the intersection’s queue before the preceding intersection

is blocked. The target lane of each vehicle is randomized

such that 1 of the 12 vehicles always targets the right-hand

turnoff, 3 vehicles target the left turn lane, and 4 target

each remaining lane. The random lane reference causes the

vehicles to rearrange their lane positions differently in each

case, thereby affecting the results. Virtual obstacles are in-

troduced downstream of the goal intersection’s stop bar to

prevent incursions into the intersection using Eqn. (37). In this

lower-speed scenario, the soft-constrained bumper-to-bumper

distance is 8 m.

The computation sequence for the decentralized network so-

lution in the arterial scenario begins with downstream vehicles

and ends with upstream vehicles. When vehicles are initialized

side-by-side, right-hand vehicles compute first.

C. Baseline Rule-Based Algorithm

The intelligent driver model (IDM) [31] is augmented

with a rule-based lane change algorithm and applied as a

baseline. This combined system will be referred to as IDM-

RB. Unlike the optimal control algorithm, it uses only current

measured information about SVs rather than a connected

preview. Pseudorandom IDM parameters that were derived in

[25] based on experimentally measured histograms from [32]

model variation in human preferences.

The full rule-based lane change algorithm is lengthy and

can be found in [27]. In summary, it reacts to a 2 m/s

slowdown in the desired lane by changing lanes if safe. Safety

is determined based on the presence of neighboring vehicles

within a velocity-based gap in the target lane. The logical flow

of the lane change decision is thus similar to the classic Gipps

model [33] without factors such as heavy vehicles that are

not needed here. The rear time headway from [27] is omitted

in this paper because doing so improved performance in the

highway merge scenario.

A Note on Applicability to Humans: The longitudinal pa-

rameters in this study are empirically based to place model

behavior within the range of human acceptability. However,

comparability to human drivers is limited by the simple lane

change model which, like all but a few lane decision models

[34], has not been empirically validated on humans. Part

of the complexity of human lane change modeling stems

from anticipation and collaboration in human lane changing

[35]. A specific limitation of IDM-RB is its lack of a gap

relaxation phenomenon, which is an anticipative feature [35].

Nonetheless, IDM-RB does indicate the performance that
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Fig. 6. Fuel consumption model output at various acceleration levels.

is possible using only direct, instantaneous measurements.

Thus, the results demonstrate the benefits of anticipation and

information-sharing in lane change combined with longitudinal

eco-driving.

D. Energy Consumption

Energy consumption is calculated using the combustion-

engine powertrain model first described in [36]. Additional

parameter details and results can be found in [25]. With

a level of detail between curve-fit models like the Willans

approximation [37] and dynamic models like Autonomie [38],

the powertrain model uses Newton’s 2nd law and static maps

to determine instantaneous fuel rate from velocity, current

acceleration, and desired acceleration. The model works in

four main steps.

1) Use Newton’s law to compute the current and desired

transmission output speed and torque based on the given

operating point. Aerodynamic drag and rolling resistance

are accounted for in this step.

2) Pass the desired operating condition from 1 to a lookup

table to determine the optimum steady-state transmission

gear. This lookup table is populated offline by computing

the fuel consumption in each feasible gear and selecting

the gear that minimizes it.

3) Using the gear ratio from 2 and the operating point from

1, compute the engine speed and torque.

4) Look up fuel consumption rate from a table computed

from brake specific fuel consumption (BSFC) data.

Figure 6 illustrates the output as a function of vehicle speed

and acceleration.

VII. RESULTS

As shown in Figure 7 and Table IV, CAVs generally resulted

in both reduced energy use and quicker travel compared to

the unconnected and reactive driver model. This indicates an

efficiency improvement by eliminating unnecessary braking,

since aerodynamic drag generally causes a trade-off between

energy use and travel time. These benefits were greatest in the
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TABLE IV
CHANGE RELATIVE TO IDM-RB.

Scenario Fuel [L/veh] Time [s/veh] Lane Success [%]

Hwy. 4 s -8.9 -5.2 +13.8
Hwy. 2 s -10.0 -9.7 +99.6
Arterial -13.7 -10.3 +12.1

arterial scenario with its high local density and frequent lane

changes.

Regarding collision avoidance, no CAV-involved collisions

occurred in either scenario. The baseline IDM-RB algorithm

did experience a collision in one arterial case, which was

removed from both the IDM-RB and CAV datasets. None of

the vehicles that stopped at intersections intruded into those

intersections. The more in-depth collision avoidance study in

[27] evaluated the CAV algorithm in a denser unconnected

environment with a perception fault and produced CAV-

involved collisions in some cases.

The remainder of this section explains the calculation of

performance metrics before more closely examining the high-

way and arterial scenarios.

A. Performance Metrics

The fuel and time metrics are expressed on a per-vehicle

basis. Lane success rate is defined as the percentage of vehicles

that ended the simulation in a lane position within 0.5 lanes

of the integer-valued reference lane.

In the highway scenarios, three groups of vehicles were

defined for statistical purposes: highway initialization with

highway reference, highway initialization with exit ramp ref-

erence, and on-ramp initialization with highway reference.

Without this grouping, the results distribution would have

three peaks and would be poorly approximated as normal.

The expectations and variances are calculated for the random

variable T , which itself represents the weighted average of the

random variables A, B, and C corresponding to each group.

T = aA+ bB+ cC, a+ b+ c = 1 (45)

The highway-to-highway fraction a = 0.5 and b = c = 0.25

based on the probabilities of any given vehicle belonging to

each group. These coefficients are certain for the population

because the groups are based on simulation inputs, e.g. refer-

ence lane, rather than outputs, e.g. actual final lane.

B. Highway Merge

Figure 8 demonstrates the optimal control system’s planned

trajectories during a highway merge with 2 s initial headways.

The ego (vehicle 1) and vehicle 2 face a potential conflict,

causing vehicle 2 to move into lane 3 to allow the ego to

merge. The prediction horizon is long enough for vehicle 2

to plan a later return to its reference lane. Meanwhile, vehicle

3 plans to exit the highway by moving in front of vehicle 1

and vehicle 6 plans to merge just ahead of the exit ramp.

Longitudinally, the ego’s maneuvering module adjusts its

acceleration plan relative to the pacing module’s reference in

order to merge smoothly and safely. Relative to the reference,

the adjustment causes slower acceleration prior to the start of
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Fig. 7. Performance comparison between the combined Intelligent Driver
Model + Rule Based (IDM-RB) and connected optimal control (CAV)
algorithms. 95 % confidence intervals are shown.

merging and more aggressive acceleration afterward, which

matches the intuitive expectation of faster traffic on the main

highway compared to the ramps.

The CAVs succeeded in attaining the target lane in all

highway simulations as shown in Figure 7. IDM-RB also

accomplished this for most vehicles in the lower-density

scenario, but performance seriously degraded at higher density.

In contrast, the density increase had little effect on CAV

performance. Velocity-smoothing trends mirrored those of

lane positioning as shown in Figure 9. As expected, a jam

formed in the merging zone and dissipated downstream of the

exit ramp. The MIQP-based lane change algorithm practically

eliminated the jam under these conditions, resulting in reduced

energy consumption and travel time compared to IDM-RB.

Counterintuitively, the energy consumption results in Figure 7

decreased when density was increased. This is likely a result

of lower average speed since travel time increased as expected.

C. Arterial Lane Positioning

The arterial scenario presented a greater lane positioning

challenge for the optimal control algorithm. While all CAVs
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Fig. 10. Position-based speed profiles and 20 m space-averages in the arterial
lane positioning scenario. Dashed reference lines mark the separation of the
right lane and the start of the left turning lane (see Figure 5).

did not reach their reference lanes before arrival at the next

stoplight, success rate was still moderately improved compared

TABLE V
STANDARD DEVIATION.

Fuel [L/veh] Time [s/veh] Lane Success [%]

Scenario IDM-RB CAV IDM-RB CAV IDM-RB CAV

Hwy. 4 s 7.6E-3 4.4E-4 1.4 1.4E-1 12.3 0
Hwy. 2 s 8.2E-3 6.8E-4 1.9 2.7E-1 31.8 0
Arterial 6.0E-3 2.6E-3 14.8 9.1E-1 44.1 37.9

to IDM-RB (Figure 7). Combined with the lack of collisions,

this result demonstrates that the optimal controller appropri-

ately sacrifices road position when it cannot be attained safely.

With all vehicles starting and ending at rest, the arterial

speed traces of Figure 10 offer insights into the benefits of

long-term planning combined with precise short-term antici-

pation. IDM-RB tended toward longer, slower acceleration and

more abrupt braking compared to the CAVs. It is shown in

[31] that this behavior is associated with relatively large com-

fortable braking b0 compared to the maximum acceleration

a0 used in the IDM. [32] showed that humans possess this

characteristic. By accelerating more strongly and starting to

decelerate earlier, the CAVs may have accessed more efficient

engine operating points and spent more time in fuel cutoff.

Furthermore, connected and anticipative lane change planning

reduced the energy-wasting mid-trip braking events of Figure

10. These were typically driven by lane cut-ins, which have

been mentioned as an opportunity for traffic improvement

with intelligent driving. The above factors led to the time

and energy benefits shown in Figure 7, whose error bars also

indicate that the CAVs performed more consistently.

Table V compares the standard deviations of each per-

formance metric between algorithms. The CAV results were

more consistent in part because their randomness stemmed

only from initial conditions, while IDM-RB also used random

IDM parameters. However, optimal control also promoted

consistency. For example, the CAVs’ consistent travel times in

the arterial scenario reflect the precise planning and closed-

loop correction of the hierarchical system, even when the

vehicle was obstructed by surrounding traffic. In contrast,

IDM-RB does not recover lost time. If the vehicle encounters

an obstruction, the trip is delayed. Even receding-horizon

systems like [9] that track a constant velocity reference are
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similar to IDM-RB in this respect.

VIII. CONCLUSION

Integrated algorithms for multi-lane automated driving were

presented from plant modeling to trip-level longitudinal pac-

ing. Pontryagin’s Minimum Principle and mixed integer re-

ceding horizon control were combined to realize the benefits

of each in long- and short-term planning, respectively. Sim-

ulations in highway merging and arterial road environments

demonstrated the combined system’s ability to approximate

the simplified optimal control solution while satisfying the

complicated constraints arising from traffic and vehicle ca-

pacities. Compared to the explicit intelligent driver model

with rule-based lane-changing using current information only,

the anticipative optimal control approach resulted in 8.9 % to

13.7 % less energy consumption. The travel time benefit of

5.2 % to 10.3 % shows that the energy savings come from more

efficient rather than slower driving.

It is emphasized that the disturbances and subsequent ef-

ficiency gains reported here result from road geometry and

vehicles’ navigational goals. This contrasts with studies like

[25] and [39] that test a controller’s response to an imposed,

drive cycle-based disturbance. It also offers an explanation of

reduced energy benefit relative to [25], since all speed fluctu-

ations in a drive cycle do not necessarily model phenomena

that are avoidable with connectivity.

Even in this study, the results were strongly scenario-

dependent. To further improve realism, the algorithms de-

scribed here are currently being implemented in VISSIM.

When fully developed, this environment will support integra-

tion with multiple links and traffic signals. It also includes a

more mature human driver model to generate more accurate

relative change results.

Along with more complex road networks, real-world im-

plementations must contend with factors like curved roads

and variable road surface conditions that influence the du-

ration of safe lane changes. To help relax these simulations’

dry-pavement and straight-lane assumptions, the authors are

currently studying lane change responses from a commercial

vehicle model that comprehends tire and suspension dynamics.

Solutions under consideration involve variable model param-

eters !n and � or simplified nonlinear models.

APPENDIX

MIXED INTEGER QUADRATIC PROGRAM ASSEMBLY

This section describes the casting of the optimization as

a standard-form MIQP. Commercial solvers including IBM

CPLEX and Gurobi [40] [41] consume problem data formatted

as the parameters of Eqn. (46).

min �TGa�+f
T
a �

s.t. Sa� ≤ Ξa
(46)

In this section, � denotes the vector of MIQP decision vari-

ables including control inputs u, slack variables �, indicator

variables �, and Big M binaries ⃖⃑�.

� ∶=
[
UT �T ⃖⃑�T

]T
(47)

U ∶=
[
u (0)T u (1)T ⋯ u (N −1)T

]T
(48)

⃖⃑� ∶=
[
� (1)T � (1)T ⋯ � (N)T � (N)T

]T
(49)

The subscript a indicates that a matrix has been augmented

relative to its standard QP contents. Retained steps from

standard QP-based MPC assembly are omitted here for brevity,

but are described well by Maciejowski [42].

Since (46) does not include state variables z explicitly, (50)

eliminates z from the formulation of Section V.

Z = Φz (0)+ΓU (50)

Z ∶=
[
z (1)T z (2)T ⋯ z (N)T

]T
(51)

The matrices Φ and Γ follow from repeated application of the

linear model (12) as in [42], except that move blocking of the

integer-valued u2 helps manage computation time [9].

The matrices G and f are constructed by standard QP

procedure. Since � and � do not enter the objective, �1 has a

quadratic penalty, and �2−7 have a linear penalties (Eqn. (39)),

G is thus augmented to size the problem for the auxiliary

variables. Let ℎ denote the total number of control inputs, m

the number of slack variables, and p the number of binaries.

Ga =

⎡
⎢⎢⎣

G 0ℎ×(m+p)

01×ℎ �1 01×(m−1+p)

0(m−1+p)×ℎ 0(m−1+p)×(m+p)

⎤
⎥⎥⎦

(52)

The linear slack variable penalties are incorporated into fa.

fa =
[
fT 0 �2 ⋯ �m 01×p

]T
(53)

The constraint coefficient matrix Sa has 3 components:

the standard QP-like constraint matrix S, the slack variable

constraint matrix Υ, and the binary constraint matrix .

Sa =

[
S Υ 
0 0

]
(54)

The right-hand side of the inequality constraints Ξ =  +

W x0 contains binary-related terms via the vector . These

result from moving known left-hand side terms in Section

V-C to the right-hand side.  is thus formed, where each bi
corresponds to a single prediction stage.

 =
[
bT
0

bT
1

⋯ bT
N

]T
(55)

Each bi is organized into three sections. The first section

b̄i does not include content related to collision avoidance.

It handles the standard Section V-B constraints, lane change

completion constraints, and low-speed lane change disable-

ment. The second section b̂i is used to set up the lane

indicator variables. The final section b̃i deals with constraints

on position for collision avoidance.

bi =
[
b̄T
i

b̂T
i

b̃T
i

]T
(56)

Since in this paper the road is modeled such that the number

of lanes nl is constant, b̂i does not depend on prediction stage.

Therefore, its subscript is dropped and it is constructed once as

follows. The symbol ⊗ denotes the Kronecker tensor product.

b̂ = 1nl×1
⊗

⎡
⎢⎢⎢⎣

�+M

−�

�+M

−�

⎤
⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎣

1

2

⋮

nl

⎤
⎥⎥⎥⎦
⊗

⎡
⎢⎢⎢⎣

−1

1

1

−1

⎤
⎥⎥⎥⎦

(57)
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TABLE VI
NON-COLLISION CONSTRAINT ROWS.

Row Description u2 Blocked

1-2 u1 bounds Present
3-4 u2 bounds Dropped
5-6 v bounds Present
7-8 l bounds Present

9-10 Low speed Δu disablement Dropped
11-12 Low speed lane convergence Dropped
13-14 Low speed indicator Dropped
15-18 Lane convergence Dropped
19-22 Max acceleration Present

To facilitate the assembly of b̃i, a vector ⃖⃑sob containing final

position limits from obstacles is first constructed. Although

the argument is dropped to reduce clutter, ⃖⃑sob depends on the

prediction stage i. Let n� denote the maximum number of

reachable obstacles per lane. If an obstacle does not exist,

smin ← −∞ and smax ←∞.

⃖⃑sob =
[
s11
min

s11max⋯ s
��
min

s
��
max⋯ s

n�nl
min

s
n� nl
max

]T
(58)

The component b̃i is now constructed from ⃖⃑sob. The symbol

◦ denotes the Hadamard product. After this computation, 
and subsequently Ξ follow as discussed previously.

b̃i =

(
1nln�×1

⊗

[
−1

1

])
◦⃖⃑sob−1nln�×1

⊗

[
d

d+ lv

]

+1nln�×1
⊗

[
3M

2M

] (59)

Ξa is completed by augmenting with 0 to enforce � > 0 and

�v to limit the quadratically-penalized slack.

Ξa =
[
ΞT 01×m �v

]T
(60)

The slack variable matrix Υ is assembled from blocks � at

each stage. At stages where u2 is free:

�̄i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

04×m

0 −1 0 0 0 0 0

0 0 −1 0 0 0 0

0 0 0 −1 0 0 0

0 0 0 0 −1 0 0

0 −ml 0 0 0 0 0

0 −ml 0 0 0 0 0

010×m

0 0 0 0 0 −1 0

0 0 0 0 0 −1 0

04nl×m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(61)

Refer to Table VI when interpreting the rows of Eqn. (61).

The number of obstacle constraints depends on the maxi-

mum number of obstacles �max (i) = nln� .

�̃i =

⎡⎢⎢⎣

−1 0 0 0 0 0 0

⋮

−1 0 0 0 0 0 0

⎤⎥⎥⎦2nl�max(i)×m
(62)

Given �̃i for obstacle constraints and �̄i for others, �i =[
�̄T
i

�̃T
i

]T
. The full-horizon matrix Υ is then assembled. The

matrix �̂ establishes the linear and quadratic softening shown

in Eqn. (39). [30] provides more detail on �̂.

Υ =
[
�T
0

�T
1

⋯ �T
N

�̂T
]T

(63)

Like Υ, the binary constraint block matrix  is composed

of several matrices that correspond to prediction stages.

̄i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

010×(1+2nl)
−2+ � 0 ⋯ 0

−2+ � 0 ⋯ 0

M 0 ⋯ 0

−M 0 ⋯ 0

08×(1+2nl)

04nl×1
I2nl

⊗ ⃖⃖⃖⃑M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(64)

⃖⃖⃖⃑M =
[
M −M

]T
(65)

When interpreting Eqn. (64), Table VI applies to the first

22 rows. The remaining rows accommodate the lane indicator

variables. The first column enables Eqns. (43) and (44).

The matrix ̃ incorporates front/rear binary variables �.

̃i = Inl�max
⊗ ⃖⃖⃖⃑M (66)

̂i contains the coefficients of ��a and ��b.

̂i = [
0 Inl

⊗M̊
]
, M̊ =

⎡⎢⎢⎣

M M

⋮

M M

⎤⎥⎥⎦2�max×2
(67)

i =
[̄ 0

̂ ̃
]

(68)

The full binary matrix is then assembled. This result is used

in (54) to incorporate the binary variables in the constraints.

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

012×p1 0 ⋯ 0

0 2 0 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ 0 N

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(69)
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