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MICHAEL BURR

This document is a summary of my published work and some submitted/nearly submitted
work. This is not meant to be a full research statement since it does not include a vision
for the future. This is a high-level discussion without many of the theorem statements or
references (as the pertinent information are in the listed papers).

Continuous Amortization.

• M. Burr, S. Gao, and E. Tsigaridas. The Complexity of the Plantinga-Vegter Curve
and Surface Approximation Algorithms. In Proceedings of the 42nd International
Symposium on Symbolic and Algebraic Computation. 61-68, Association for Com-
puting Machinery, 2017.
• M. Burr. Applications of Continuous Amortization to Bisection-based Root Isolation.
Journal of Symbolic Computation. 77, 78-126, 2016.
• M. Burr and F. Krahmer. SqFreeEVAL: an almost optimal real-root isolation algo-

rithm. Journal of Symbolic Computaiton. 47(2), 131-152, 2012.

This project deals with the complexity of subdivision-based algorithms. A subdivision-
based algorithm is one that iteratively and adaptively subdivides an initial domain until
some test succeeds on every subdomain. These types of algorithms are common in symbolic
algebra and frequently used in other sciences, but their complexity is less well understood. In
particular, these algorithms are adaptive, performing more subdivisions near difficult features
while quickly terminating near easier features. Therefore, a tight complexity analysis must
respond to this adaptivity. The work in these papers develops the theory of continuous
amortization, which is a unifying technique for studying the complexity of subdivision-based
algorithm.

These papers introduce and develop the technique of continuous amortization. Consider
the case where we start an interval I and iteratively bisect subintervals J of I whenever they
fail a test. We define a local size bound as a function F : I → R+ with the property that for
each x ∈ I, F (x) is smaller than the width of the smallest subinterval J containing x which
must be subdivided, i.e.,

F (x) ≤ min
J3x

J not terminal

width(J).

In the case of a bisection algorithm, we prove that the number of regions produced by the
bisection algorithm is bounded above by the maximum of 1 and the integral∫

I

2dx

F (x)
.

In this way, we turn a complicated problem into an integral, which may be easier to evaluate.
In the third paper in the list, we introduce this technique and apply it to an evaluation-

based algorithm for isolating the real roots of a polynomial. This results in a straight-forward
integral to evaluate to compute the number of intervals formed by the subdivision and the
result is a nearly optimal state-of-the-art bound on the complexity. In the second paper, I
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extend the technique of continuous amortization to a general setting, allowing for different
types of subdivisions, general measure spaces, and generalizing the integral to compute
other quantities, such as the bit complexity. In this paper, I provide complexity bounds
for 6 algorithms, either matching or improving upon the known bounds. This shows that
the method of continuous amortization is applicable in general. In the first paper on the
list, we use continuous amortization to provide a complexity bound for a curve/surface
approximation algorithm in two/three dimensions by Plantinga and Vegter. This is the first
complexity bound for this algorithm and we show, by example, that our bound is tight and
the complexity of the algorithm is exponential.

This series of papers develops the technique of continuous amortization. We show that the
technique is a unifying technique as it can recover the work in several other papers. Also,
since the integral often involves geometric properties, the complexity analyses explicitly
isolate and describe the challenging cases for each algorithm.

Currently, I am working to generalize the ISSAC paper into a journal version. I am also
studying other applications of continuous amortization, such as its application to continued
fractions.
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Solving Polynomial Systems.

• M. Burr, J. Xu, and C. Yap. An Approach for Certifying Homotopy Continuation
Paths: Univariate Case. In Proceedings of the 43rd International Symposium on
Symbolic and Algebraic Computation. 399-406, 2018.
• M. Burr, S. Choi, B. Galehouse, and C. Yap. Complete subdivision algorithms

II: isotopic meshing of general algebraic curves. Journal of Symbolic Computation.
47(2), 153-166, 2012.

This project deals with the development of algorithms using interval arithmetic for ap-
proximating the solutions to polynomial systems. Finding accurate approximations to the
solutions to systems of polynomials is a major problem in the fields of symbolic algebra and
numerical algebraic geometry. In this work, our main tools involve interval arithmetic and
interval methods for functions. Interval arithmetic extends the standard arithmetic opera-
tions to intervals, for example, the sum of two intervals [a, b]+ [c, d] = [a+ c, b+d] is another
interval consisting of all possible sums of points in the two input intervals. Interval methods
for functions extend these ideas to functions so that if f is a function (usually a polynomial
in our case) and J is an interval, interval methods use interval arithmetic to define �f(J)
which is an easily computed over-approximation to f(J), i.e., f(J) ⊆ �f(J). Such methods
allow for one-sided tests and work well with subdivision-based methods. The work in these
papers develops algorithms for producing certified approximations to solutions of polynomial
systems.

The algorithms in the papers listed above also use separation bounds or homotopy contin-
uation. Separation bounds provide a priori lower bounds on the distances between features
of a variety. For instance, one can derive separation bounds on the distance between isolated
solutions of a system of polynomial equations. These bounds are usually given in terms of
the size of the input, e.g., the degree of the polynomials and the number of bits in the coeffi-
cients. Homotopy continuation is a technique for finding the roots of a system of polynomial
equations by starting with a simple system whose roots can be found easily and deforming
the system into the desired system. As the systems are deformed, path tracking techniques
are used to follow the roots from the initial system to the target system. With the develop-
ment of Bertini, homotopy continuation is rapidly becoming a useful tool for applications.
Homotopy continuation systems, like Bertini, are often not certified. In other words, even
though there are some safeguards in place, there is a chance that the tracked paths jumped
between paths. Most certified homotopy continuation algorithms, on the other hand, use
Newton steps instead of gradient-based steps (which Bertini uses), thereby requiring a large
number of homotopy steps.

In the second paper in the list, we use interval arithmetic and separation bounds to develop
a completely numerical algorithm for approximating (possibly) singular curves in the plane.
This is the first algorithm to use only evaluation to be able to accurately approximate
the solutions to real singular curves. Previously, approximating singular curves requires the
theory of resultants, but this work illustrates how to compute such an approximation without
this technique (iterative resultants in 3 and higher dimensions frequently become bottlenecks
for computation due to coefficient swell). The approximation that we provide is proved to
be ambient isotopic to the underlying curve and within specified Hausdorff distance. In the
first paper in the list, we use interval arithmetic to certify homotopy continuation paths
for a univariate polynomial. In other words, we use the over-approximation from interval
arithmetic to construct a tube that contains the tracked path and no other paths. Since
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the entire computation is certified, the final result is also certified. This method is the first
certified algorithm to use gradient-based steps, so our algorithm combines certification with
the more efficient steps of methods like Bertini.

This work illustrates how to effectively include interval arithmetic-based methods in com-
putations in symbolic algebra and numerical algebraic geometry. This allows for easy and
efficient certification tests in many cases.

Currently, I am working to prepare the homotopy continuation paper for publication. I
am also working to extend these techniques to systems in higher dimensions. I am also
consulting with a graduate student at Georgia Tech concerning the use of interval arithmetic
in his project.
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Asymptotic Purity.

• M. Burr. Asymptotic purity for very general hypersurfaces of Pn × Pn of bidegree
(k, k). Central European Journal of Mathematics. 10(2), 530-542, 2012.
• M. Burr. Asymptotic cohomological vanishing theorems and applications of real

algebraic geometry to computer science. Ph.D. Thesis, New York University, 2010

This project deals with positivity and vanishing theorems in algebraic geometry. Let X be
a smooth projective variety of dimension n over C. The asymptotic Riemann-Roch formula
states that for a divisor D,

χ(X,OX(mD)) = Dn · m
n

n!
+ o(mn)

is a polynomial in m where Dn is the self-intersection number of D. Since the Euler char-
acteristic can also be written as an alternating sum of the dimensions of groups in the sheaf
cohomology, we also have

χ(X,OX(mD)) =
n∑
i=0

(−1)ihi(X,OX(mD)).

A natural question is then, which cohomology groups contribute to the growth of the Euler
characteristic, i.e., for which i is

ĥi(X,D) := lim sup
m→∞

hi(X,OX(mD))

mn/n!

nonzero. D is called asymptotically pure if there is at most one ĥi which is nonzero; in this

case, ĥi = (−1)iDn. We say that X is asymptotically pure if every divisor D (not just the
effective ones) on X is asymptotically pure. Some examples of asymptotically pure varieties
are curves, abelian varieties, flag varieties, varieties with Picard number 1. Moreover, surfaces
are asymptotically pure if and only if they do not contain any negative curves, i.e., curves
with a negative self-intersection number.

In the second item in the list, my dissertation, I prove that complete simplicial toric
varieties are asymptotically pure if and only if they are projective spaces or their quotients by
finite subgroups of the torus action. In the first paper, I prove that very general hypersurfaces
of Pn × Pn of bidegree (k, k) are asymptotically pure. The proof technique for the second
result requires looking at the flat family of hypersurfaces of bidegree (k, k) and computing
the cohomology for a special (nonreduced) subscheme in this family. It turns out that the
long exact sequence in cohomology has an SL(n+1,C)-equivariant map, and representation
theory can be used to understand the kernel and cokernel of this map, thereby computing
the dimensions of the cohomology groups of interest.

It is expected that asymptotic purity is related to a (strong) notion of positivity since
asymptotically pure varieties must have equality between big and ample cones.

I am a co-PI on a submitted SC EPSCoR/IDeA Stimulus grant. If funded, our team
would work on this project as well as related questions.
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Data Depth.

• M. Burr and R. Fabrizio. Error Probabilities for Halfspace Depth. Statistics &
Probability Letters. 124, 33-40, 2017.
• M. Burr, E. Rafalin, and D. Souvaine. Dynamic maintenance of half-space depth for

points and contours. arXiv. Technical report. arXiv:1109.1517 [cs.CG], 2011.
• T. Abbott, M. Burr, M. Chan, E. Demaine, M. Demaine, J. Hugg, D. Kane, S.

Langerman, J. Nelson, E. Rafalin, K. Seyboth, V. Yeung. Dynamic ham-sandwich
cuts in the plane. Computational Geometry: Theory and Applications. 42(5), 419-
428, 2009.
• M. Burr, E. Rafalin, and D. Souvaine. simplicial depth: an improved definition,

analysis, and efficiency for the finite sample case. In R. Liu, R. Serfling, D. Souvaine,
editors, Data Depth: Robust Multivariate Analysis, Computational Geometry, and
Applications, volume 72 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 195-209. American Mathematical Society, 2006.

The first paper in this list is joint work with an undergraduate student, Robert Fabrizio.
This project deals with a connection between geometry and statistics. Data depth func-

tions measure the centrality of a query point q with respect to a sample Fn or a distribution.
These functions are nonparametric, do not depend on any assumptions about the underlying
distribution, and are based purely on the geometry of the sample or distribution. Three of
the most commonly studied data depth functions are convex hull peeling depth, half-space
depth, and simplicial depth: Let Fn be a sample of size n in Rd and q a query point. Let
H be the set of all half-spaces in Rd and S be the set of all simples in Rd whose vertices
come from Fn. Then, the convex-hull peeling depth of q is the minimum number of times
one needs to iteratively remove the convex hull of Fn so that q is outside the remaining
points. The half-space depth of q can be computed in several ways: it is the fraction of data
points that need to be removed from q so that q is outside the convex hull of the remaining
points, and, alternatively, the half-space depth of q is the minimum fraction of data points
in a half-space containing q, i.e.,

HD(q;Fn) =
1

n

(
min
q∈H
H∈H

#(H ∩ Fn)
)
.

The simplicial depth of q is the fraction of simplices formed by the data which contain the
query point, i.e.,

SD(q;Fn) =

(
n

d

)−1
#(q ∈ S)S∈S .

These functions have been proved to enjoy many pleasant properties; moreover, they are of
interest to both the statistics community because they are nonparametric and the discrete
geometry community because they are based on geometry. This series of papers studies all
three of these depths. The work in these papers develops the theory for and algorithms for
computing data depth functions, which make the functions more interesting to practitioners.

In the first paper in the list, an undergraduate student and I improved the convergence
for the half-space depth of a point to the half-space depth for the underlying distribution.
In this paper, the approach is of note because we took a high dimensional problem and
turned it into many lower dimensional problems via projection. This type of reduction has
the potential to be useful in other projects. The second paper presents an algorithm for
maintaining the half-space depth of points in the plane when the data set is dynamic, i.e.,
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points are added to and removed from the data set. We came up with a very efficient
algorithm both in theory and in practice. An interesting side result of this work was that
we proved a structural result about the level sets for half-space depth, i.e., that they don’t
change much during a single insertion or deletion. The third paper deals with maintaining a
ham sandwich cut dynamically , i.e., where points are added to or deleted from a collection
of points. My contribution to this project focuses on the portion concerning ham sandwich
cuts for data sets with bounded convex hull peeling depth. In the last paper, we provide a
new definition of simplicial depth that avoids certain computational instabilities and proves
bounds between the simplicial depth and the half-space depth of a query point with respect
to the same data set. We also provided a first example of a data set where simplicial depth
does not have maximality at the center, showing that simplicial depth does not have all of
the desirable properties that half-space depth enjoys.

These papers have improved the theoretical underpinnings and algorithmic efficiency for
data depth functions. Data depth functions are of interest to statisticians, and these papers
show how to compute with them more effectively, thereby making the data depth functions
more useful in practice.

I am continuing to work with Robert Frabrizio now that he is a Masters student at Clemson
as well as an applied statistician on using data depth functions in practice.
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Computability.

• M. Burr and C. Wolf. Computability at zero temperature. arXiv. arXiv:1809.00147
[math.DS], 2018.
• M. Burr, M. Schmoll, and C. Wolf. On the Computability of Rotation Sets and their

Entropies. Ergodic Theory and Dynamical Systems. 2018

This project deals with the connections between dynamical systems and computation. If
one were to näıvely attempt to study dynamical systems on a computer, it is very likely that
one will observe atypical behavior. For example, the “2x mod 1” dynamical system given
by the map f : [0, 1)→ [0, 1) where

f(x) = 2x (mod 1)

doubles x and then retains the fractional part. Since the built-in floating point numbers
on a computer only represent dyadic numbers, i.e., Z

[
1
2

]
, and dyadic numbers map to zero

after under iterates of the map f , by performing näıve experiments, one might guess that
0 is an attracting point of the system. This is not true, in fact 0 is a repelling point and
the behavior of dyadic numbers is somewhat unusual. Therefore, näıve implementations are
likely to give meaningless results; this paper, on the other hand, illustrates how to perform
calculations whose output has an accuracy guarantee and is important for those interested
in experimental work.

This paper studies the computability properties of the generalized rotation set and the
localized entropy of the points in the rotation set. The rotation set is a generalization of
Poincaré’s rotation number for circle homeomorphisms. We provide general conditions on a
dynamical system which guarantee that the rotation set of the system is computable, i.e.,
can be approximated on a computer to arbitrary precision. In addition, we provide general
conditions for the computation of the localized entropy function in the interior of the rotation
set. We show that these general conditions are satisfied by shifts maps (hence their rotation
sets and localized entropy are computable), and we also provide an example that indicates
that the localized entropy may not be computable on the boundary of the rotation set.

Previous papers only studied specific computations, such as the computability of the
Julia set for specific maps. This is the first paper which provides a general framework
and conditions for computability based on the properties of the dynamical system without
focusing on a particular system.

Currently, I am continuing to work on side projects that were discovered during the pro-
duction of this paper. In particular, I am correcting an error in the previously published
literature and studying the computability properties of the entropy function on the boundary
of the rotation set.
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Edge Ideals.

• M. Burr and D. Lipman. Quadratic-Monomial Generated Domains from Mixed
Signed, Directed Graphs. International Journal of Algebra and Computation. 2018

This paper is joint work with my Ph.D. student, Drew Lipman, who successfully defended
in May 2017 and is now working at an R&D company in Austin.

This project deals with a connection between graphs and toric coordinate rings. Starting
with a graph G with vertices V = {v1, . . . , vn} and edges E, it is possible to construct a
map ρ : E → Rn where edge vivj ∈ E maps to ei + ej in Rn. Moreover, Z+ρ(E) is an affine
subsemigroup of Zn and the corresponding semigroup ring k[G] is called the edge ring. On
the other hand, given a quadratic-monomial generated subring R of k[x1, . . . , xn] there is a
corresponding graph G, where G has edge vivj if and only if xixj ∈ R. In this case, the
edge ring of G is R. In previous work, it had been shown, for example, that the normality
and Serre’s R1 condition for k[G] can be detected in terms of combinatorial properties of
the graph. For example, k[G] is normal if and only if G satisfies the odd cycle condition:
any two odd cycles in the same component of G either share a vertex or have a single edge
connecting them. This work provides stronger connections between ring theoretic properties
and combinatorics, and combinatorial structures often provide pleasant methods to find
interesting examples in the ring theory.

These paper extend the definition and constructions to all quadratic-monomial gener-
ated subrings of the Laurent polynomial ring k[x±11 , . . . , x±1n ]. Combinatorially, we represent
x−1i x−1j as a negative-signed edge −vivj and x−1i xj as a directed edge (vi, vj). In these papers,
we extend the conditions for normality and Serre’s R1 to this case. This case is significantly
more complicated than the previous work because the negative powers allow for cancella-
tion. We developed more subtle definitions and new proofs to deal with this generalization.
Somewhat surprisingly, we we able to show that a mixed signed, directed graph has an as-
sociated signed graph (a graph with no directed edges) which has the same normality and
R1 properties as the original graph, this allows one to reduce the directed case to the signed
case. Moreover, we provide simple examples of graphs whose edge rings are normal as well
as a simple example of an edge ring which is not Cohen-Macaulay.

These papers provide a complete classification of quadratic-monomial generated subrings
of the Laurent polynomial ring. Moreover, they provide simple examples and straight-
forward ways to check whether the edge ring has various interesting commutative algebraic
properties.
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Other Projects.

• M. Burr, S. Gao, and F. Knoll. Optimal Bounds of Johnson-Lindenstrauss Transfor-
mations. Journal of Machine Learning Research. 2018.

This project deals with the dimension reduction problem, in particular whether it is possi-
ble to map a collection of vectors in Rd to Rk while nearly preserving their pairwise distances.
For a fixed set of vectors {x1, . . . , xn} in Rd and an error 0 < ε < 1

2
, if k is sufficiently large,

then there exists a linear map A : Rd → Rk such that for all pairs i and j, the `2 norms
between the images Axi and Axj is close to the `2 norm between xi and xj. In other words,

(1− ε)‖xi − xj‖2 ≤ ‖Axi − Axj‖2 ≤ (1 + ε)‖xi − xj‖2.
Such a transformation is called a Johnson-Lindenstrauss transformation. The existence of
such a transformation is equivalent to the question of whether, for fixed x ∈ Rd, there is a
probability distribution D on matrices such that

ProbA∼D[(1− ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖x‖2] > 1− δ.
It is known that if k > C1ε

−2 log 1
δ
, then such a distribution exists, and if k < C2ε

−2 log 1
δ
,

then no such distribution exists (for constants C1 and C2). In this paper, we show that as
ε, δ → 0, the constants C1 and C2 both approach 4. Therefore, showing that, in the limit,
the threshold of a Johnson-Lindenstrauss transformation is 4ε−2 log 1

δ
.

• M. Burr, A. Cheng, R. Coleman, and D. Souvaine. An intuitive approach to measur-
ing protein surface curvature. PROTEINS: Struture, Function, and Bioinformatics.
61, 1068-1074, 2005.

This project deals with the problem of curvature approximation or least-squares sphere-
fitting with applications to protein modeling. This problem is known to be challenging in
the case of proteins because many of the known methods include assumptions which are not
appropriate for protein modeling. In this work, we use inversive geometry as a way to turn
the sphere fitting problem into a hyperplane-fitting problem. Our method is computationally
efficient and produced very good results. Moreover, this method is appropriate for protein
fitting as it works even when we are trying to approximate a surface patch.
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