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The subgrid-scale (SGS) potential temperature flux and stress in the atmospheric
surface layer are studied using field measurement data. We analyse the mean values
of the SGS temperature flux, the SGS temperature flux production rate, the SGS
temperature variance production rate, the SGS stress and the SGS stress production
rate conditional on both the resolvable-scale velocity and temperature, which must
be reproduced by SGS models for large-eddy simulation to reproduce the one-point
resolvable-scale velocity–temperature joint probability density function (JPDF). The
results show that the conditional statistics generally depend on the resolvable-scale
velocity and temperature fluctuations, indicating that these conditional variables have
strong influences on the resolvable-scale statistics. The dependencies of the conditional
SGS stress and the SGS stress production rate, which are partly due to the effects
of flow history and buoyancy, suggest that model predictions of the SGS stress also
affect the resolvable-scale temperature statistics. The results for the conditional flux
and the conditional flux production rate vectors have similar trends. These conditional
vectors are also well aligned. The positive temperature fluctuations associated with
updrafts are found to have a qualitatively different influence on the conditional
statistics than the negative temperature fluctuations associated with downdrafts. The
conditional temperature flux and the temperature flux production rate predicted
using several SGS models are compared with measurements in statistical a priori
tests. The predictions using the nonlinear model are found to be closely related to the
predictions using the Smagorinsky model. Several potential effects of the SGS model
deficiencies on the resolvable-scale statistics, such as the overprediction of the vertical
mean temperature gradient and the underprediction of the vertical temperature flux,
are identified. The results suggest that efforts to improve the LES prediction of a
resolvable-scale statistic must consider all the relevant SGS components identified
using the JPDF equation and the surface layer dynamics. This study also provides
impetus for further investigations of the JPDF equation, especially analytical
studies on the relationship between the JPDF and the SGS terms that govern its
evolution.
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1. Introduction
Large-eddy simulation (LES) is an important approach for simulating turbulent

flows. When the filter scale is in the inertial range, the energy-containing scales are well
resolved and most of the turbulent stress and fluxes are contained in the resolvable
scales (Lilly 1967; Domaradzki, Liu & Brachet 1993; Borue & Orszag 1998). LES
results with such filter scales are generally insensitive to the subgrid-scale (SGS) model
employed (Nieuwstadt & de Valk 1987; Mason 1994).

In LES of high-Reynolds-number turbulent boundary layers, however, the filter
scale in the near-wall region is inevitably in the energy-containing scale range (Kaimal
et al. 1972; Mason 1994; Peltier et al. 1996; Tong et al. 1998; Tong, Wyngaard &
Brasseur 1999). As a result, significant amounts of the turbulent stress and fluxes are
carried by the SGS model, resulting in strong dependence of the near-wall results on
the SGS model (e.g. Mason & Thomson 1992; Tong et al. 1999). Consequently, any
deficiencies of SGS models are likely to result in inaccuracies in the LES statistics in
the near-wall region. For example, the standard Smagorinsky model overpredicts the
mean temperature gradient and the mean temperature variance, but underpredicts
the mean vertical temperature flux in the LES of the unstable atmospheric boundary
layer (ABL) (Mason & Thomson 1992; Sullivan, McWilliams & Moeng 1994). An
important question in improving SGS models, therefore, is how the SGS turbulence
and SGS models affect the resolvable-scale statistics under these conditions.

Previous studies of SGS physics typically have focused on the energy transfer rate
from the resolvable to the subgrid scales (e.g. Domaradzki et al. 1993; Borue &
Orszag 1998). A limitation of such studies is that they do not provide information
on how the SGS turbulence affects the resolvable-scale statistics. Previous SGS
model tests generally compared the instantaneous modelled SGS stress and fluxes
with measurements or direct numerical simulation (DNS), i.e. a priori tests, or
compared the LES statistics with those obtained using measurements or DNS, i.e.
a posteriori tests (e.g. Clark, Ferziger & Reynolds 1979; McMillan & Ferziger 1979;
Bardina, Ferziger & Reynolds 1980; Nieuwstadt & de Valk 1987; Piomelli, Moin &
Ferziger 1988; Lund & Novikov 1992; Mason & Thomson 1992; Domaradzki et al.
1993; Piomelli 1993; Härtel et al. 1994; Liu, Meneveau & Katz 1994; Mason 1994;
Meneveau 1994; Peltier et al. 1996; Juneja & Brasseur 1999; Sarghini, Piomelli &
Balaras 1999; Tao, Katz & Meneveau 2000; Porté-Agel et al. 2001; Sullivan et al.
2003). A major limitation of such tests is their lack of ability to relate SGS model
to the resolvable-scale statistics. For a priori tests, it is difficult to predict the effects
of SGS model performance on LES results, while for a posteriori tests, it is difficult
to relate the deficiencies of LES results to specific model behaviours (Chen &
Tong 2006).

To overcome these limitations, we developed a systematic approach (Chen et al.
2003, 2005; Chen & Tong 2006; Chen et al. 2009) to understand the effects of SGS
turbulence on the resolvable-scale statistics and those of SGS models on LES statistics.
The approach is based on the transport equations of the resolvable-scale velocity joint
probability density function (JPDF) and the velocity–temperature JPDF. It analyses
the SGS terms that govern the evolution of the JPDFs, which are conditional statistics
containing SGS stress and fluxes (see (1.5) and (1.6)). The conditional statistics
obtained from measurements are analysed to study the effects of SGS turbulence
on the resolvable-scale statistics. In our new a priori tests, the conditional statistics
obtained using SGS models are compared with those obtained from measurements
(Chen & Tong 2006). In the new a posteriori tests, the conditional statistics obtained
from LES are compared with those obtained from measurements (Chen et al. 2009).
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This approach has several advantages over the traditional SGS model test methods.
First, it deals with the resolvable-scale statistics, of which accurate predictions
are the primary objective of LES. By contrast, traditional methods often compare
instantaneous SGS variables. Consequently, the results are very difficult to interpret.
Second, unlike the filtered Navier–Stokes equations and the scalar transport equation,
the JPDF transport equation does not produce chaotic solutions. In addition, previous
analytical results of similar equations (Jaberi, Miller & Givi 1996; Sabelnikov 1998)
can be used to understand the behaviour of SGS turbulence and SGS models (Chen &
Tong 2006; Chen et al. 2009). Third, the JPDF equations can be used to study the
SGS turbulence and to perform both statistical a priori and a posteriori tests of
SGS models, allowing direct comparisons of the two types of test results, whereas
the traditional a priori and a posteriori tests deal with instantaneous SGS variables
and LES statistics, respectively; therefore, their results cannot be compared directly.
Chen & Tong (2006) and Chen et al. (2009) emphasized that the new a priori tests
provide a strong connection between the modelled SGS terms and the resolvable-
scale velocity JPDF; therefore, they are qualitatively different from the traditional
a priori tests based on correlations of the measured and modelled SGS variables.

Chen & Tong (2006) used this approach to study the SGS turbulence in the surface
layer of the ABL and performed a priori tests of several SGS models. They identified
several deficiencies of the SGS models that affect the LES statistics. They argued
that the overpredictions of the mean shear and streamwise velocity variance near
the surface by the Smagorinsky model are partly due to the underprediction of the
anisotropy of the SGS stress and its variations in the near-wall region. They also
pointed out that the underprediction of the vertical velocity skewness is likely due to
the inability of the Smagorinsky model to predict the asymmetry in the production
rate of the vertical normal component of the SGS stress. These analyses based on the
JPDF equation provide important knowledge for improving SGS models. Using LES
fields and measurement data, Chen et al. (2009) performed a posteriori tests based on
the JPDF equation. The same model strengths and deficiencies were observed. The
consistency between the a priori and a posteriori tests suggests that there is a close
relationship between these tests. Unlike the traditional tests, the new a priori tests are
capable of predicting the a posteriori model performance.

The present work studies the influence of the SGS temperature flux and the
SGS stress on the resolvable-scale velocity–temperature JPDF in the horizontally
homogeneous ABL by analysing the JPDF transport equation, which can be derived
following the method given by Pope (1985). Differentiating the JPDF,
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where δ is the Dirac delta function, and v and ψ are the sample-space variables for the
resolvable-scale velocity ur and the resolvable-scale fluctuating potential temperature
θr (the superscript r denotes a resolvable-scale variable), respectively, and the angle
brackets denote an ensemble mean. Substituting the time derivatives, ∂ur

i /∂t and
∂θr/∂t , in (1.2) with the right-hand side of the equation for the resolvable-scale
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where Fi = (uiθ)r − ur
i θ

r and Γ are the SGS temperature flux and the molecular
diffusivity, respectively, we have
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The two terms on the left-hand side are the time rate of change and advection in
physical space. The first three terms on the right-hand side are transport in velocity
space of the JPDF by the SGS stress divergence, the resolvable-scale pressure gradient
and the buoyancy force, respectively. The last term is transport in temperature space
by the SGS temperature–flux divergence. The viscous force and temperature diffusion
terms are small and are omitted at high Reynolds numbers and high Péclet numbers.

Because SGS turbulence is often studied by analysing the SGS stress and flux rather
than their divergences, an alternative form of the equation was given by Chen et al.
(2005):
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where Pij = −{τik(∂ur
j /∂xk) + τjk(∂ur

i /∂xk)}, PFi
= − {τik(∂θr/∂xk) + Fk(∂ur

i /∂xk)} and
Pθ = −Fi(∂θr/∂xi) are the SGS stress production rate, the SGS temperature flux
production rate and the SGS temperature variance production rate, respectively.
The terms on the right-hand side now are transport and mixed transport in
velocity, physical and temperature spaces due to the SGS stress, the SGS stress
production rate, the SGS temperature flux, the SGS temperature flux production
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rate, the SGS temperature variance production rate, the resolvable-scale pressure,
the pressure–strain correlation, the pressure–temperature-gradient correlation and the
buoyancy force, respectively. The necessary conditions for LES to correctly predict the
resolvable-scale velocity–temperature JPDF, therefore, are that the conditional SGS
stress, the conditional SGS temperature flux, the conditional SGS stress production
rate, and the conditional SGS temperature flux production rate, and the conditional
SGS temperature variance production rate are reproduced by the SGS models (Chen
et al. 2005). We emphasize that in addition to the SGS stress and flux, the SGS
production terms, 〈Pij |ur = v, θ r = ψ〉, 〈Pθ |ur = v, θ r = ψ〉 and 〈PFi

|ur = v, θ r = ψ〉,
directly affect the resolvable-scale velocity–temperature JPDF, while in traditional
studies the importance of these production terms was not identified. The functional
form of these conditional SGS statistics and their dependencies on the surface-layer
dynamics are therefore of great importance for understanding the influence of the
SGS turbulence and SGS models on the resolvable-scale statistics.

These conditions were used to study the dependencies of the resolvable-scale
velocity–scalar JPDF on the SGS turbulence in a turbulent jet (Chen et al. 2005).
The results show that the conditional SGS scalar flux and the conditional SGS scalar
flux production rate have strong dependencies on the resolvable-scale velocity and
scalar, indicating strong flow history effects. Chen & Tong (2006) investigated the
SGS velocity field in the surface layer of the ABL and showed that the behaviours of
the conditional SGS stress and the conditional SGS stress production rate are closely
related to the surface layer dynamics, i.e. updrafts generated by buoyancy force,
downdrafts associated with the large-scale convective eddies, the mean shear and
the length-scale inhomogeneity in the vertical direction. In addition, they found that
for updrafts, the conditional SGS stress and the conditional SGS stress production
rate have similar trends, and their eigenvectors are generally well aligned, with the
normalized tensorial contraction being close to unity, thereby indicating the potential
of modelling the conditional SGS stress using its production rate.

In this work we investigate the effects of the SGS motions on the resolvable-scale
velocity–temperature JPDF in unstable atmospheric surface layer and perform new a
priori SGS model tests using measurement data. The field programme and the array
filter technique for measuring resolvable- and subgrid-scale variables are given in
§ 2. Section 3 examines the measured conditional SGS statistics and the SGS model
predictions. In addition to the conditional SGS temperature flux and the conditional
SGS temperature flux production rate, we also examine the conditional SGS stress
and the conditional SGS stress production rate because they also evolve the JPDF.
The conclusions are given in § 4.

2. Measurement data
The field measurements, named the horizontal array turbulence study, or HATS

field programme, were conducted at a field site near Kettleman City, California, in
the summer of 2000 as a collaboration primarily among the National Center for
Atmospheric Research, Johns Hopkins University, and Penn State University (C. T.
was part of the Penn State group). Horst et al. (2004) describe the field site and
the data collection procedures in detail. The field measurements used the design
based on the transverse array technique proposed, studied and first used by the
Penn State group (Edsall et al. 1995; Tong et al. 1997, 1998, 1999) for surface layer
measurements in the ABL, which has been used subsequently by several groups in the
ABL over land (Tong et al. 1997, 1999; Porté-Agel et al. 2001; Kleissl, Meneveau &
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Figure 1. Schematic diagram of the array set-up. The secondary array (denoted by the
subscript s) is used to obtain derivatives in the vertical direction. Note that for array 3, zs is
smaller than zp and ds < dp .

Parlange 2003; Horst et al. 2004) and ocean (Kelly, Wyngaard & Sullivan 2009) as
well as in engineering flows (Cerutti, Meneveau & Knio 2000; Tong 2001; Wang &
Tong 2002; Chen et al. 2003; Rajagopalan & Tong 2003; Wang, Tong & Pope
2004). The technique uses horizontal sensor arrays (figure 1) aligned approximately
perpendicular to the prevailing wind direction to perform two-dimensional filtering
to obtain resolvable- and subgrid-scale variables. Two arrays are vertically spaced to
obtain vertical derivatives.

The filter operation in the streamwise direction is performed by invoking Taylor’s
hypothesis. Filtering in the transverse direction is realized by averaging the output
of the signals from the sensor array (Tong et al. 1998; Chen & Tong 2006). For
example, the transversely filtered resolvable-scale velocity (denoted by the superscript
t) is obtained as

ut
i(x, t) =

N∑
j=−N

Cjui(x1, x2 + j × d, x3, t), (2.1)

where 2N+1, Cj and d are the number of sensors on an array, the weighting coefficient
for the j th sensor, and the spacing between adjacent sensors, respectively. We use
2N + 1 = 5 and 3 for filtering at the heights of the primary and secondary arrays,
respectively, to maintain the same filter size. In the present study we use the arrays
to approximate top-hat filters, which are the most compact filter type in physical
space. Because derivatives are computed using second-order finite differencing (with a
spacing of 4dp in the horizontal directions), which is effectively a top-hat filter, top-hat
filters provide consistency among the resolvable-scale velocity and its derivatives. We
average the outputs of five and three sonics to obtain the resolvable-scale variables
for the primary and second arrays, respectively. The subgrid scales are obtained by
subtracting the resolvable-scale part from the total variables. For more details refer
to Chen & Tong (2006).



288 Q. Chen, S. Liu and C. Tong

Array ∆/zp zp dp zs ds

1 3.88 3.45 3.35 6.90 6.70
2 2.00 4.33 2.167 8.66 4.33
3 1.00 8.66 2.167 4.33 1.08
4 0.48 4.15 0.50 5.15 0.625

Table 1. Configurations of the four arrays (lengths in metres).

〈u〉 −z/L u∗ ε H χθ Duration
Data (m s−1) (m s−1) (m2 s−3) (K m s−1) (K2 s−1) (min)

a 1.42 0.34 0.15 0.003 0.02 0.001 35
b 3.56 0.22 0.33 0.031 0.17 0.026 30
c 3.65 0.21 0.36 0.039 0.20 0.035 83
d 3.25 0.24 0.36 0.041 0.24 0.048 33

Table 2. Surface layer parameters for array 1 (∆/z = 3.88) under unstable conditions. The
primary array height zp is used for z. See § 3 for more details.

The array technique, including the accuracy of the array filter and the use of
Taylor’s hypothesis, has been systematically studied by Tong et al. (1998). They
showed that a two-dimensional filter is a good approximation of a three-dimensional
filter. Their analyses of the accuracy of a spectral cutoff array filter showed that
the r.m.s. values of the filtered variables differ from that of a true spectral filter
by less than 10 %. The accuracy of the top-hat filter array filter is expected to be
higher (Chen & Tong 2006). The error associated with one-side finite differencing
in the vertical direction was examined by Kleissl et al. (2003). They evaluated the
divergence-free condition for the filter velocity field and concluded that reasonable
accuracy can be achieved in computing derivatives of filtered velocity. Horst et al.
(2004) further studied various issues of using the array technique including the
aliasing errors associated with evaluating derivatives using finite differencing and
furthermore demonstrated sufficient accuracy of the technique. Due to variations of
the run-averaged wind direction, we rotate the coordinate system and interpolate
the velocity and temperature in the Cartesian coordinate system defined by mean
wind and cross-wind directions (Horst et al. 2004). The interpolation is performed in
spectral space to avoid attenuating the high-frequency (wavenumber) fluctuations.

Four different array configurations, shown in table 1, are employed in the HATS
programme. The filter aspect ratio (∆/z) ranges from 0.48 to 3.88, allowing the
effects of grid anisotropy to be examined, where ∆ is the filter size (= 4dp). We refer
to z as the height of the primary array zp hereafter. Array 3 is at a much higher
z; therefore, the effects of the stability parameter −z/L can be examined, where
L = −(u3

∗Θ)/(kag〈u′
3θ

′〉), u2
∗ = −〈u′

1u
′
3〉 (the prime denotes fluctuations), and ka = 0.41

(Pope 2000) are the Monin–Obukhov length, the square of the friction velocity and
the von Kármán constant, respectively. The surface layer parameters for the data sets
collected using the four arrays are given in tables 2 and 3. The results in Chen &
Tong (2006) and in § 3.3 show that the SGS stress for array 1, which has the largest
∆/z, is the most anisotropic and most difficult for SGS models to predict; therefore,
our discussions of results focus on array 1.

In this study we limit our scope to the unstable surface layer, i.e. cases with z/L < 0.
All array 1 data used were collected during daytime under clear conditions with a
Monin–Obukhov length of approximately −15 m. Ensemble averages are evaluated
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∆/z 〈u〉 u∗ ε H χθ Total duration
Array (≈) (m s−1) −z/L (m s−1) (m2 s−3) (K m s−1) (K2 s−1) (min)

2 2.00 3.09 0.36 0.30 0.020 0.15 0.017 257
3 1.00 4.22 0.60 0.34 0.018 0.19 0.009 591
4 0.48 2.73 0.35 0.30 0.021 0.15 0.017 60

Table 3. Surface layer parameters for the other arrays under unstable conditions. The
primary array height zp is used for z.

Array 〈u′
1θ

′〉/H 〈u′
2θ

′〉/H 〈F1〉/H 〈F2〉/H 〈F3〉/H

1 −1.70 −0.23 −0.96 −0.00 0.70
2 −1.20 0.04 −0.62 0.02 0.56
3 −0.85 0.35 −0.26 0.01 0.33
4 −1.16 −0.21 −0.10 0.01 0.18

Table 4. Measured Reynolds-averaged temperature flux and the mean SGS temperature flux
for the four arrays.

using time averages. Data sections that are quasi-stationary are generally 30–90 min in
length. To achieve reasonable statistical convergence in our analysis, we combine the
results of selected data sections collected under similar stability conditions using the
each array configuration as done in Chen & Tong (2006). We normalize the results for
each data set using its parameters, then weight-average them according to the number
of conditional samples in each bin. The length of the combined data corresponds to
approximately 10 000 advection time scales for the vertical-velocity energy-containing-
scale eddies. Chen & Tong (2006) and Chen et al. (2009) have demonstrated that the
data set is sufficient to achieve reasonable statistical convergence (typically less than
5 % of the maximum of the conditional statistics). This level of statistical uncertainties
of the results is much smaller than the differences between the measurements and the
SGS model predictions. In this paper we use the first-order kernel density estimation
method (Wand & Jones 1995) to obtain the conditional statistics, achieving improved
convergence and lower bias. We limit the results to the central part of the sample
space that contains 99.9 % of the probability of the velocity–scalar JPDF.

3. Results
As in Chen & Tong (2006), we focus our discussions on results using data from

array 1. The stability parameter, −z/L, has an average value of 0.24 for these data.
Top-hat filters in both the streamwise and cross-stream directions are used to obtain
the resolvable-scale and subgrid-scale variables with a filter size of ∆ =3.88z, which
is in the energy-containing range. The results for the other array configurations,
i.e. different ∆/z, and −z/L (table 3), are also obtained. They are generally similar
to those for array 1 and are not discussed in detail. Table 4 gives the normalized
Reynolds-averaged temperature flux and the ratios of the mean SGS temperature
flux components to the vertical mean temperature flux. The SGS flux for array 1
has the largest fraction of the mean vertical temperature flux; therefore, it is the
most challenging to SGS models. The measured and modelled SGS temperature flux
components are given in table 5 and discussed in § 3.3.

All the results presented are normalized using the surface layer parameters.
The conditional SGS stress, 〈τij |ur , θ r〉, and the conditional SGS stress production
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〈F1〉/H 〈F2〉/H 〈F3〉/H

F
smg
i −0.003 −0.003 0.51

F nl
i −1.31 0.03 0.13

F mix
i −1.31 0.03 0.54

Table 5. Modelled mean SGS temperature flux for array 1.

rate, 〈Pij |ur , θ r〉, are normalized by u2
∗ and the estimated energy dissipation rate,

ε = θε(u
3
∗/kaz), respectively, where θε = 1 − z/L for z/L � 0, as suggested by Kaimal

et al. (1972). The conditional SGS temperature flux, 〈Fi |ur , θ r〉, and the conditional
SGS temperature flux production rate, 〈PFi

|ur , θ r〉, are normalized by the mean
vertical heat flux, H = 〈θ ′u′

3〉, and −T∗u
2
∗/z, respectively, where the prime denotes

fluctuations and T∗ = −H/u∗ is the scale for temperature fluctuations. The conditional
SGS variance spectral transfer rate, 〈Pθ |ur , θ r〉, is normalized by the estimated
temperature variance transfer rate, χθ = θh(T

2
∗ u∗/kaz), where θh =0.74× (1−9z/L)−1/2

for z/L � 0, as suggested by Businger et al. (1971).

3.1. Conditional SGS temperature flux and conditional SGS temperature flux
production rate

The results for the conditional SGS temperature flux components 〈F1|ur , θ r〉,
〈F2|ur , θ r〉 and 〈F3|ur , θ r〉 are shown in figure 2. For convenience, we omit the
sample-space variables v and ψ from the conditional means here and hereafter. In
addition, only the fluctuating parts of ur and θr normalized by their respective r.m.s.
values are plotted.

The results show that 〈F1|ur , θ r〉 and 〈F3|ur , θ r〉 depend strongly on ur
1 and ur

3 for
positive and small θr fluctuations, and the dependencies are weaker for negative θr

fluctuations. The lateral SGS flux, 〈F2|ur , θ r〉, also depends on |ur
2| and ur

3 for positive
and small θr fluctuations, and the dependence is weaker for negative θr fluctuations.
Generally, 〈F1|ur , θ r〉 has larger values compared to the other components, probably
because large temperature fluctuations are highly correlated with the streak structure
in the surface layer, resulting in a large flux. The trends of the conditional SGS
temperature flux production rate (figure 3) generally are similar to those of the
conditional SGS flux for positive and small θr fluctuations, suggesting that the former
has a strong influence on the evolution of the latter. The dependencies on the
resolvable-scale velocity for negative θr fluctuations are weak.

To better understand the relationship between the conditional SGS temperature
flux and its production rate, we expand 〈PF1

|ur , θ r〉 as

〈PF1
|ur , θ r〉 = −

〈
F1

∂ur
1
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+ F2

∂ur
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〉
.

(3.1)

The first three terms on the right-hand side are the production rate due to the
interaction between the SGS temperature flux and the resolvable-scale velocity
gradient and the last three terms are the production rate due to the interaction
between the SGS stress and the resolvable-scale temperature gradient. Our results
show that the leading components in 〈PF1

|ur , θ r〉 are 〈−F3(∂ur
1/∂x3)|ur , θ r〉 and

〈−τ13(∂θr/∂x3)|ur , θ r〉, which have similar trends and magnitudes, therefore are the
focus of our discussion. The rest of the terms are relatively small because the
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Figure 2. Conditional SGS temperature flux. The dependencies on the resolvable-scale
velocity are strong for positive θr and are weak for negative θr .

horizontal derivatives of ur
1 and θr are relatively small compared with their vertical

derivatives in the surface layer. Similarly, 〈PF3
|ur , θ r〉 can be expanded as:

〈PF3
|ur , θ r〉 = −

〈
F1

∂ur
3

∂x1

+ F2

∂ur
3

∂x2

+ F3

∂ur
3

∂x3

+ τ31

∂θr

∂x1

+ τ32

∂θr

∂x2

+ τ33

∂θr

∂x3

|ur , θ r

〉
.

(3.2)

The dominant component in 〈PF3
|ur , θ r〉 is 〈−τ33(∂θr/∂x3)|ur , θ r〉, because the

derivatives of ur
3 and θr in the horizontal directions are relatively small. Our attention,

therefore, is focused on 〈−τ33(∂θr/∂x3)|ur , θ r〉.
We now discuss the trends for 〈PF1

|ur , θ r〉 and 〈PF3
|ur , θ r〉. For positive θr

fluctuations, the eddies associated with updrafts generally come from the region
near the ground, and have smaller length scales, thereby containing large magnitudes
of the vertical SGS flux and the SGS stress. They are also likely to have experienced
strong shear and vertical temperature gradient. Thus, F3, τ33 and ∂ur

1/∂x3 have large
positive values while τ13 and ∂θr/∂x3 have large negative values, resulting in negative
〈−F3(∂ur

1/∂x3)|ur , θ r〉 and 〈−τ13(∂θr/∂x3)|ur , θ r〉, and positive 〈−τ33(∂θr/∂x3)|ur , θ r〉.
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Figure 3. Conditional SGS temperature flux production rate.

Because the vertical shear, the vertical flux and the vertical temperature gradient are
larger for positive values of ur

1 and ur
3, the magnitudes of 〈PF1

|ur , θ r〉 and 〈PF3
|ur , θ r〉

increase with ur
1 and ur

3. For small θr fluctuations, the eddies are generally well mixed;
therefore, they tend to be more symmetric in the vertical direction, as reflected by the
symmetry of the conditional means of ∂ur

1/∂x3 and ∂θr/∂x3 (not shown) respective
to ur

3. Consequently, the magnitudes of 〈PF1
|ur , θ r〉 and 〈PF3

|ur , θ r〉 increase with ur
1

and ur
3. For negative θr fluctuations, the eddies associated with downdrafts generally

come from the mixed-layer region and carry relatively small amounts of SGS flux
(figure 2c); therefore, the magnitudes of 〈PF1

|ur , θ r〉 and 〈PF3
|ur , θ r〉 are small and

have weak dependencies on the resolvable-scale velocity.
Comparing the results for the different θr values, the location of the highest value

of the conditional SGS temperature flux production rate appears to shift towards
positive ur

3 when θr increases, probably because 〈∂ur
1/∂x3|ur , θ r〉 and 〈∂θr/∂x3|ur , θ r〉

are enhanced by both updrafts with high temperature (positive θr fluctuations) and
downdrafts with low temperature (negative θr fluctuations).
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Figure 4. Conditional SGS temperature variance production rate.

Chen & Tong (2006) observed that the conditional SGS stress and the conditional
SGS stress production rate have similar trends for positive ur

3, which they argued
to be the result of the approximate balance between the SGS stress production rate
and the pressure destruction rate and the fact that the pressure destruction rate can
be modelled as τij/t∆, where t∆ is an integral time scale. The similar trends between
the conditional SGS temperature flux and the conditional SGS temperature flux
production rate for positive θr fluctuations probably also reflect a balance between
the production rate and the pressure destruction rate as well as the validity of
using the ratio of the SGS temperature flux to a time scale to model the pressure
destruction. The differences between the trends of the conditional SGS temperature
flux and the conditional SGS temperature flux production rate for small and negative
θr fluctuations are probably an indication that the production rate is small and no
longer balances the pressure destruction rate.

The dominant components in 〈PF1
|ur , θ r〉 contain a ‘slow’ term

〈−F3(∂ur
1/∂x3)|ur , θ r〉 (it does not respond instantly to changes in the temperature

gradient), in which F3 influences 〈PF1
|ur , θ r〉 through the interaction with ∂ur

1/∂x3

(the F1 component, however, does not directly affect 〈PF3
|ur , θ r〉, which is

dominated by 〈τ33(∂θr/∂x3)|ur , θ r〉). Consequently, in LES poor predictions of
the vertical SGS temperature flux component by an SGS model may result in
inaccuracies in the horizontal resolvable-scale temperature flux. In addition, because
〈−τ13(∂θr/∂x3)|ur , θ r〉 affects 〈PF1

|ur , θ r〉 due to the dominant vertical derivative of
resolvable-scale temperature, underpredictions of the conditional SGS shear stress
components might also result in inaccuracies in the resolvable-scale horizontal
temperature flux in an LES.

3.2. SGS temperature variance production rate

The SGS temperature variance production rate 〈Pθ |ur , θ r〉 (figure 4) generally
increases with ur

1 and ur
3. This dependence is strong for positive θr fluctuations

and weak for negative θr fluctuations. The dominant component of 〈Pθ |ur , θ r〉 is
〈F3(∂θr/∂x3)|ur , θ r〉. Because both F3 and ∂θr/∂x3 increase with ur

1 and ur
3 for positive
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Figure 5. (a) Geometric alignment angle between the measured conditional SGS temperature
flux and the conditional SGS stress production rate. The alignment angle is small for positive
ur

3 and θr and is larger for negative ur
3 and θr . (b) The buoyancy production is included. The

alignment angle is similar to that in (a).

θr , so does 〈Pθ |ur , θ r〉. The asymmetry with respect to θr is likely the main cause
of the positive skewness for θr and θ in the surface layer, which our data show to
be approximately 0.34 and 0.58, respectively. The positive temperature skewness is
related to rising plumes, and is a driving force for the positive skewness for both ur

3

and u3 (0.22 and 0.4 respectively) observed in the present work and in previous studies
(Lenschow & Stephens 1980; Wyngaard 1988). Because higher temperatures cause
rising plumes, the skewness value for the temperature is larger than that for the vertical
velocity. Chen & Tong (2006) and Chen et al. (2009) argued that an underprediction
of the asymmetry of 〈P33|ur

3〉 causes underprediction of the ur
3 skewness (e.g. Moeng

1984; Chen et al. 2009). The SGS model predictions of 〈Pθ |ur , θ r〉 will be examined
in § 3.7.

3.3. Alignment between SGS temperature flux and its production rate

Chen & Tong (2006) observed that the anisotropic parts of 〈τij |ur〉 and 〈Pij |ur〉 have
similar trends, and their eigenvectors are well aligned with their normalized tensorial
contraction close to unity for positive ur

3, again indicating the balance between the
production rate and the pressure destruction rate and the validity of using the SGS
stress and a time scale to model the pressure destruction rate. The results in § 3.1
also show that 〈Fi |ur , θ r〉 and 〈PFi

|ur , θ r〉 have similar trends. To investigate the
relationship between 〈Fi |ur , θ r〉 and 〈PFi

|ur , θ r〉, we compute the alignment angle
between 〈Fi |ur , θ r〉 and 〈PFi

|ur , θ r〉, which is given by

α = cos−1

(
| 〈Fi |ur , θ r〉 〈PFi

|ur , θ r〉 |
| 〈Fi |ur , θ r〉 || 〈PFi

|ur , θ r〉 |

)
. (3.3)

Figure 5 shows that 〈Fi |ur , θ r〉 and 〈PFi
|ur , θ r〉 are generally well aligned with the

alignment angle, α, generally less than 10◦ for positive and small θr fluctuations. For
negative θr fluctuations, the alignment angle is small for positive ur

3 and is larger (but
still less than 30◦) for negative ur

3. This trend is similar to the alignment property
for the conditional SGS stress and its production rate (Chen & Tong 2006) and is
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Figure 6. Conditional SGS normal stress. The dependencies are strong for positive θr and
weak for negative θr .

probably because 〈PFi
|ur , θ r〉 is small and might no longer be a dominant term in the

SGS flux transport equation, therefore not in balance with the pressure destruction.
In addition, it might not be appropriate to model the pressure destruction term as
the ratio of the SGS flux to a time scale under this condition.

We also examine the effects of buoyancy force on the alignment property by
including the buoyancy production term (PFB

= (g/Θ)[(θ2)r − (θr )2]) in the SGS
temperature flux production rate. The alignment angle (figure 5b) only increases
slightly, indicating that buoyancy does not significantly alter the alignment property.
These results are consistent with the similarity between the conditional SGS
temperature flux and the conditional SGS temperature flux production rate, suggesting
a balance between the production rate and the pressure destruction rate and the
validity of using the SGS temperature flux and a time scale for modelling the pressure
destruction for positive θr fluctuations.

In the present work the alignment between the conditional SGS temperature flux
and the conditional SGS flux production rate is studied in the context of the velocity–
temperature JPDF equation. Previous studies (e.g. Higgins, Meneveau & Parlange
2007) have examined the alignment properties of the instantaneous SGS heat flux
and the instantaneous resolvable-scale gradient. While the alignment properties of
these instantaneous vectors are not related to the JPDF equation, the alignment
between the instantaneous SGS flux and the SGS flux production rate will be helpful
to understand the results in the present study. This issue will be addressed in a
separate paper.

3.4. Conditional SGS stress and conditional SGS stress production rate

The normalized conditional SGS stress components, 〈τ11|ur , θ r〉 and 〈τ33|ur , θ r〉, are
given in figure 6. The results show that similar to the SGS temperature flux, 〈τ11|ur , θ r〉
and 〈τ33|ur , θ r〉 generally increase with ur

1 and ur
3. The dependence on the velocity is

strong for positive θr fluctuations and is weak for negative θr fluctuations.
The conditional SGS stress production rate 〈P11|ur , θ r〉 (figure 7a) has a similar

trend to 〈τ11|ur , θ r〉 (figure 6a), suggesting that there is a local conditional balance
between the SGS stress production rate and the pressure destruction rate. The trend
of 〈P33|ur , θ r〉 (figure 7b), however, is different from 〈τ33|ur , θ r〉 (figure 6b), because
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of the SGS stress production rate.

the buoyancy production rate dominates the evolution of 〈τ33|ur , θ r〉, consistent with
our previous results (Chen & Tong 2006).

The production rate component 〈P33|ur , θ r〉 has negative values for positive θr

fluctuations, indicating that τ33 loses energy to τ11 and τ22, and there is conditional
backscatter. For negative θr fluctuations, 〈P33|ur , θ r〉 is positive, indicating that
τ33 gains energy. Our previous study (Chen & Tong 2006) has shown that an
underprediction of the dependence of 〈P33|ur , θ r〉 on ur

3 will cause the same for
the vertical-velocity skewness.

The conditional shear stress production rate, 〈P13|ur , θ r〉, (figure 8b) has a similar
trend to 〈τ13|ur , θ r〉 (figure 8a), again indicating conditional equilibrium. Our previous
study (Chen & Tong 2006) has shown that underpredictions of the trend and
magnitude of τ13 cause an overprediction of the mean streamwise velocity gradient
near the surface, and that the correct prediction of 〈τ13|ur〉 is very important for
predicting the horizontal velocity variance profile.
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We note that the dependence of 〈τij |ur , θ r〉 on θr reflects partly the flow history
effect and partly the buoyancy effect. A velocity field is not affected by a passive scalar.
This property, however, does not preclude any dependence of velocity statistics on
the scalar. The dependencies of the conditional SGS stress and the conditional SGS
stress production rate on the resolvable-scale scalar can result from the different flow
histories that the SGS eddies with the same resolvable-scale velocity but different
resolvable-scale scalar values have experienced, as shown by the results obtained in a
turbulent jet with passive temperature fluctuations (Chen et al. 2005). In the convective
ABL studied, the potential temperature is not passive. Hence, buoyancy plays a role.
The observed dependencies on the potential temperature, therefore, are partly due to
the flow history and partly due to the buoyancy effects. To investigate the influence
of the buoyancy on the dependencies, a passive scalar needs to be introduced into
the surface layer with a similar lower boundary condition (constant flux). The HATS
programme did not include such a passive scalar. It would be interesting to study this
issue using simulations (i.e. high-resolution LES).

3.5. Anisotropy of the conditional SGS stress

An important property of the SGS stress is its level of anisotropy. The level of
anisotropy of the conditional SGS stress can be characterized using the Lumley
triangle (Lumley 1978). The dependence of the anisotropy on the resolvable-scale
velocity (Lumley triangle for 〈τij |ur〉) was studied in Chen & Tong (2006), which
shows that the anisotropy is weak for negative ur

3 and strong for positive ur
3. For

positive and negative ur
1 values, 〈τij |ur〉 is close to axisymmetric with one large and

one small eigenvalue, respectively, likely reflecting the shear and buoyancy effects.
Here we study the dependence of the anisotropy on the resolvable-scale temperature.
The normalized anisotropy tensor for 〈τij |ur , θ r〉, (〈τij |ur , θ r〉/〈τkk |ur , θ r〉) − δij/3, can
be determined by two variables ξ and η defined in terms of its invariants (Pope 2000):

6η2 = −2II =

〈
τ d
ij |ur , θ r

〉 〈
τ d
ij |ur , θ r

〉
〈τkk|ur , θ r〉2

(3.4)

and

6ξ 3 = 3III =

〈
τ d
ij |ur , θ r

〉 〈
τ d
jk|ur , θ r

〉 〈
τ d
ki |ur , θ r

〉
〈τkk|ur , θ r〉3

, (3.5)

where τ d
ij = τij − τkkδij/3 is the deviatoric part of the SGS stress, and II and III are

the second and third invariants of the anisotropy tensor, respectively. If 〈τij |ur , θ r〉
is isotropic, both ξ and η are zero. (The first invariant or trace of 〈τ d

ij |ur , θ r〉 is
always zero by definition.) The Lumley triangle representation for the conditional
SGS stress is shown in figure 9. The arrows represent the conditioning velocity
vectors (see Chen & Tong 2006 for more details). The results show that there is a
clear dependence of the anisotropy on the resolvable-scale temperature. For positive
and small θr fluctuations, 〈τij |ur

1, u
r
3, θ

r〉 is quite anisotropic and close to the results
for 〈τij |ur

1, u
r
3〉 (without conditioning on θr ), consistent with the trends of 〈τij |ur , θ r〉

in § 3.4. The points representing the anisotropy are not far from η = −ξ and η = ξ ,
indicating that 〈τij |ur

1, u
r
3, θ

r〉 is close to axisymmetric with either one small eigenvalue
or one large eigenvalue. One difference between the results for small θr fluctuations
and for positive θr fluctuations is that there are more points close to η = ξ than
η = −ξ for the former, indicating that the SGS eddies are more likely to contain SGS
stress that is close to axisymmetric with one large eigenvalue. This trend is probably
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Figure 9. The Lumley triangle representation of the conditional SGS stress. The arrows
represent the conditioning vectors (ur

1, u
r
3). (a) Positive θr . The conditional SGS stress,

〈τij |ur
1, u

r
3, θ

r〉, is quite anisotropic and close to the results for 〈τij |ur
1, u

r
3〉 (without conditioning

on θr ). (b) Small θr . The results are similar to (a). (c) Negative θr . The conditional SGS stress
is less anisotropic.

because in the former case the compression and shear effects are weakened as these
eddies are likely to have gone through a strong mixing process.

For negative θr fluctuations, there are more points representing the anisotropy close
to the origin than for positive and small θr fluctuations, indicating a somewhat less
anisotropic SGS stress. In addition, some points with ur

3 < 0 are close to axisymmetric
with one small eigenvalue (η = −ξ ) due to the compression effects associated with
the returning flow of the large convective eddies. On the other hand, some points
with ur

3 > 0 are close to the axisymmetric with one large eigenvalue (η = ξ ) due to the
weakened shear effect.

The results discussed above are for ∆/z = 3.88 and −z/L =0.24 (array 1). The
level of the anisotropy of 〈τij |ur

1, u
r
3, θ

r〉 for different array configurations is shown
in figure 10. For positive θr fluctuations, the results for 〈τij |ur

1, u
r
3, θ

r〉 are similar to
those for 〈τij |ur

1, u
r
3〉 (i.e. without conditional on θr ) discussed in Chen & Tong (2006).

The results of 〈τij |ur
1, u

r
3, θ

r > 1.33〉 for different array configurations are qualitatively
similar to those for array 1. A comparison between the levels of anisotropy for arrays
2 and 4 (fixing −z/L and reducing ∆/z from 2.00 for array 2 to 0.48 for array 4) shows
that there are fewer points for the axisymmetric SGS stress with one small eigenvalue
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Figure 10. The Lumley triangle representation of the conditional SGS stress for the other
array configurations: (a, b) array 2 (∆/z = 2.00, −z/L = 0.36); (c, d ) array 3 (∆/z = 1.00,
−z/L = 0.60); (e, f ) array 4 (∆/z = 0.48, −z/L = 0.35).

(η = −ξ ) for array 4 than for array 2. This trend is likely because the measured
compression effects associated with the returning flow of large convective eddies are
weaker for array 4 than for array 2. A comparison between the levels of anisotropy
for array 2 (∆/z = 2.00, −z/L =0.36) and array 3 (∆/z =1.00, −z/L = 0.60) shows
that 〈τij |ur

1, u
r
3〉 for array 3 is less anisotropic than that for array 2, and has very few

points near the line of axisymmetric SGS stress with one small eigenvalue (η = −ξ ).
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These trends are because of the enhanced buoyancy effect due to the larger −z/L

value and the weaker shear and compression effects due to the smaller ∆/z. The level
of the anisotropy of 〈τij |ur

1, u
r
3, θ

r〉 for small θr fluctuations (not shown) is similar
to the results for positive θr fluctuations. For negative θr fluctuations, the levels of
anisotropy for different arrays are generally lower, due to the weaker buoyancy effect.
Among the four arrays, array 1 has the largest ∆/z and the smallest −z/L, and
consequently has the highest level of anisotropy and the strongest compression effects
associated with the returning flow of large convective eddies. We therefore expect that
the SGS stress and its production rate for array 1 are the most challenging to predict
by SGS models. The results are important for LES with anisotropic grids (refined
in the vertical direction), which are often used near the surface to match the flow
interior with the surface (e.g. Mason 1994).

3.6. Alignment between the conditional SGS stress and its production rate

The geometric alignment between 〈τ d
ij |ur , θ r〉 and 〈P a

ij |ur , θ r〉 can be characterized by

the angles between their eigenvectors. The alignment between 〈τ d
ij |ur〉 and 〈P a

ij |ur〉
(P a

ij = Pij − Pkkδij/3) was first studied by Chen & Tong (2006), who found that 〈τ d
ij |ur

3〉
and 〈P a

ij |ur
3〉 are well aligned for positive ur

3 with the alignment angles less than 10◦, but
are less well aligned for negative ur

3. Here, we further examine the dependence of the
alignment on the temperature fluctuations. The definition of the alignment angles are
the same way as those in Chen & Tong (2006). The eigenvalues of the conditional SGS
stress tensor, 〈τ d

ij |ur , θ r〉, are denoted by ατ , βτ and γτ , ordered such that ατ � βτ � γτ ,
and the corresponding unit eigenvectors as ατ , βτ and γ τ . Similarly, the eigenvalues
of the conditional SGS stress production tensor, 〈P a

ij |ur , θ r〉, are denoted by αP , βP

and γP , ordered such that αP � βP � γP , and the corresponding unit eigenvectors as
αP , βP and γ P . Three alignment angles, ψ, φ and ξ , are defined as ψ = cos−1(|γ P · γ τ |)
(the angle between γ P and γ τ ), φ = cos−1(|βP · βτ |) and ξ = cos−1(|αP · ατ |).

The alignment angles shown in figure 11 are generally smaller for positive θr

fluctuations and larger for negative θr fluctuations. In addition, 〈τ d
ij |ur , θ r〉 and

〈P a
ij |ur , θ r〉 are generally well aligned for positive ur

3 and are less so for negative
ur

3. The alignment angles weakly depend on ur
1, similar to the results of Chen & Tong

(2006).
The results for the Lumley triangle (figure 9) show that SGS stress is more

anisotropic for ur
3 > 0; therefore, there is likely a strong tendency to return to isotropy.

Consequently, the pressure destruction rate is better predicted by τij/t∆, hence the
better alignment. In addition, the updrafts with higher temperature (θr > 0) generally
experience stronger shear near ground, thereby having a large SGS stress production
rate. The production and pressure destruction are the dominant terms in the SGS
stress transport equation, approximately balancing each other; therefore, the SGS
stress and its production rate are well aligned. For ur

3 < 0, the Lumley triangle shows
that the SGS stress is less anisotropic; therefore, the tendency to return to isotropy
may be weak, resulting in poor alignment. Another possible explanation for the poor
alignment is that the production rate is small and is no longer a dominant term to
balance the pressure destruction rate. It is, however, not clear which term in the SGS
stress transport equation causes the imbalance, although Chen & Tong (2006) showed
that the vertical advection term is not the cause.

3.7. SGS model predictions

The results discussed in the previous parts of this section provide a basis for studying
the effects of SGS models on LES statistics. Here we examine the model predictions
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Figure 11. Geometric alignment between the conditional SGS stress and its production rate.
The alignment angles are small for positive θr and increase for negative θr and ur

3.

of 〈Fi |ur , θ r〉, 〈PFi
|ur , θ r〉 and 〈Pθ |ur , θ r〉 using the Smagorinsky model (Smagorinsky

1963; Lilly 1967), the nonlinear model (Leonard 1974; Clark et al. 1979) and the mixed
model (Clark et al. 1979; Liu et al. 1994) by comparing them with the experimental
results. We focus on the predictions of the SGS flux and only discuss some of the
results for the SGS stress. The mean values of the modelled mean SGS temperature
flux components are given in table 5.

In order to compute the modelled SGS temperature flux production rate PFi
, the

modelled SGS stress is needed. In this work, the modelled SGS stress is computed
using the same procedure as given in Chen & Tong (2006). That study showed that the
conditional SGS normal components are underpredicted severely by the Smagorinsky
model and are overpredicted slightly by the nonlinear model. The trends of the shear
components are generally predicted well by the Smagorinsky model and are poorly
predicted by the nonlinear model. The magnitudes of the shear components are
generally underpredicted by a factor of two using the Smagorinsky model. The mixed
model can predict normal components well but not the shear component. These
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results are important for understanding the trends and magnitudes of the conditional
SGS temperature flux production rate discussed in the following.

3.7.1. The Smagorinsky model

The Smagorinsky model is given by Smagorinsky (1963) and Lilly (1967):

F
smg
i = −Pr−1

T (CS∆)2(2SmnSmn)
1/2 ∂θr

∂xi

(3.6)

where Cs = 0.154, PrT and Sij are the Smagorinsky coefficient for a box filter, the SGS
turbulent Prandtl number and the resolvable-scale velocity strain rate, respectively. In
this work, we determine Cs = 0.109 and Pr−1

T C2
s = 0.0237 (PrT = 0.50) by matching

the modelled and measured mean SGS energy and temperature variance production
rates, respectively. The values are similar to the values obtained by Kleissl et al.
(2003) and Porté-Agel (2004). The PrT value is smaller than the value of 0.7 used by
Mason & Brown (1994), probably because the simulation does not attempt to match
the mean SGS scalar variance production rate.

Tables 4 and 5 show that the mean horizontal SGS temperature flux is
underpredicted severely and the mean vertical SGS temperature flux is underpredicted
by approximately 30 %. The predicted conditional means using the Smagorinsky
model are shown in figures 12 and 13. Figures 12(a) and 2(a) show that the horizontal
SGS temperature flux, 〈F1|ur , θ r〉, is underpredicted, because the model uses only
the horizontal temperature gradient ∂θr/∂x1, which is very small. In addition, the
sign of 〈F1|ur , θ r〉 for some resolvable-scale velocity and temperature is predicted
incorrectly. As discussed in § 3.1, the conditional production of F1 is dominated by
〈F3(∂ur

1/∂x3)|ur , θ r〉 and 〈τ13(∂θr/∂x3)|ur , θ r〉. Because these gradients do not appear
in the model, the model cannot account for the dominant production mechanisms,
and consequently cannot predict the flux correctly. The results demonstrate the
importance of including the effects of the dominant vertical gradient in the modelling
of 〈F1|ur , θ r〉.

Figures 12(b) and 2(c) show that the magnitude of the vertical SGS temperature
flux, 〈F3|ur , θ r〉, is predicted better than that of 〈F1|ur , θ r〉, because 〈F smg

3 |ur , θ r〉
uses ∂θr/∂x3, which is in the dominant term in PF3

. The trend of 〈F3|ur , θ r〉 is
generally predicted well for positive θr fluctuations. The trend for small and negative
θr fluctuations is not predicted as well.

The trend of the conditional SGS shear stress component 〈τ13|ur , θ r〉 for positive
θr fluctuations (figure 12c) is similar to that of 〈τ13|ur〉 and is predicted quite well
(figure 8a). However, for small and negative θr fluctuations it is predicted less well.
The magnitude is underpredicted by more than a factor of two. The predictions
of the other conditional SGS stress components as well as the conditional SGS
stress production rate (not shown) for positive θr fluctuations are similar to those
without conditioning on θr and generally are more accurate than those for negative
θr fluctuations. The incorrect predictions of the dependencies on θr will result in
an incorrect conditional velocity in LES, consequently an incorrect resolvable-scale
temperature PDF.

The trend of 〈PF1
|ur , θ r〉 is generally well predicted (figures 13a and 3a).

Because 〈P smg

F1 |ur , θ r〉 (= −〈τ smg

1k (∂θr/∂xk) + F
smg
k (∂ur

1/∂xk)|ur , θ r〉) is dominated by
−〈F smg

3 (∂ur
1/∂x3) + τ

smg

13 (∂θr/∂x3)|ur , θ r〉, the well-predicted trend of 〈PF1
|ur , θ r〉 is

largely due to the well-predicted trends of τ13 and F3. Its magnitude, however, is
underpredicted approximately by a factor of two due to the underpredictions of the
magnitudes of τ13 (Chen & Tong 2006) and F3. The trend and magnitude of 〈PF3

|ur , θ r〉
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Figure 12. Predicted conditional SGS temperature flux and SGS shear stress using the
Smagorinsky model. The trends of 〈F3|ur , θ r〉 and 〈τ13|ur , θ r〉 are well predicted.

are poorly predicted (figures 13b and 3c). As discussed in § 3.1, 〈P smg

F3 |ur , θ r〉
(= −〈τ smg

3k (∂θr/∂xk) + F
smg
k (∂ur

3/∂xk)|ur , θ r〉) is dominated by 〈−τ
smg

33 (∂θr/∂x3)|ur , θ r〉.
The poor prediction of 〈PF3

|ur , θ r〉, therefore, is due to the poor prediction of τ33 by
the Smagorinsky model (Chen & Tong 2006). The trend and magnitude of 〈Pθ |ur , θ r〉
generally are predicted well (figures 13c and 4), which is likely to lead to well-predicted
skewness of θr . The dominant term of 〈P smg

θ |ur , θ r〉 is 〈F smg

3 (∂θr/∂x3)|ur , θ r〉; therefore,
the well-predicted trend (the magnitude is matched) is due to the well-predicted trend
of F3. This result is in contrast with the poor prediction of 〈P33|u3

r〉. It further
suggests that the driving buoyancy force for the positive vertical velocity skewness
likely is well predicted; therefore, the underprediction of the skewness is due to the
underprediction of 〈P33|u3

r〉.
The results for the SGS production rates show that when the conditional means of

the dominant SGS stress and/or flux components that appear in an SGS production
rate are well predicted by an SGS model, the conditional mean of the SGS production



304 Q. Chen, S. Liu and C. Tong

−2

−1

0

1

2

−2−1
01

−1
0

1
2

−2

−1

0

1

2

−1
0

1
2

−2
−1

0
1

−2

−1

0

1

2

−2
−1

0
1

−1
0

1
2

θ r

ur
3 ur

1

〈PF1

smg|ur, θr〉 〈PF3

smg|ur, θr〉

〈P
θ
smg|ur, θr〉

(a)

ur
3 ur

1

(b)

θ r

ur
3

ur
1

(c)

–4.50 –3.60 –2.70 –1.80 –0.90 –0.53 –0.26 0.01 0.27 0.54

0.01 0.44 0.86 1.29 1.72

Figure 13. Predicted conditional SGS temperature flux production rate and SGS temperature
variance production rate using the Smagorinsky model. The trend of 〈PF1

|ur , θ r〉 is well
predicted.

rate is also well predicted. These results suggest that correct predictions of the
conditional means are more important than the correlations between the conditional
fluctuations of the SGS stress (flux) and the resolvable-scale gradients.

3.7.2. The nonlinear model

The nonlinear model (Leonard 1974; Clark et al. 1979) is essentially the first-order
approximation of the similarity model (Bardina et al. 1980) and is given by

F nl
i =

1

12
∆2 ∂θr

∂xk

∂ur
i

∂xk

. (3.7)

Although in the data analysis the velocity and temperature in (3.7) are filtered
explicitly in the two horizontal directions, they are effectively three-dimensionally
filtered in the terms containing the vertical derivatives, because these derivatives are
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Figure 14. Predicted conditional SGS temperature flux and SGS normal stress using the
nonlinear model. The trend of 〈F1|ur , θ r〉 is well predicted.

obtained using a two-point finite-difference scheme, which is a top-hat filter for the
derivatives. The resulting filtered derivatives are equivalent to the derivatives of the
filtered variables in (3.7). Inclusion of the terms containing the vertical derivatives,
therefore, is consistent with the expansion procedure to obtain the nonlinear model
and the definition of the model. It is also consistent with LES using spectral
derivatives. The predictions of the nonlinear model are shown in figures 14 and 15.
In general, the nonlinear model predicts the overall trend and the magnitude better
than the Smagorinsky model. The trend for small θr fluctuations is underpredicted
but the magnitude is slightly overpredicted.

The mean horizontal SGS temperature flux is overpredicted by approximately 35 %
and the mean vertical SGS temperature flux is underpredicted by approximately
80 % (tables 4 and 5). The predicted magnitude of 〈F1|ur , θ r〉 (figure 14a) using
the nonlinear model is better than that of the Smagorinsky model, which can
be understood as the following. Our results (not shown) indicate that the model
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component F nl
1 = (∂θr/∂xk)(∂ur

1/∂xk) is dominated by (∂θr/∂x3)(∂ur
1/∂x3), which can

be rewritten in Smagorinsky-like terms as

F nl
1 ∼ ∂θr

∂x3

∂ur
1

∂x3

∝ F
smg

3

∂ur
1

∂x3

+ τ
smg

13

∂θr

∂x3

. (3.8)

The results in the previous section show that the trends of τ13 and F3 are predicted
well by the Smagorinsky model; therefore, the term F

smg

3 (∂ur
1/∂x3) + τ

smg

13 (∂θr/∂x3)
in (3.7) is effectively the Smagorinsky model prediction of 〈PF1

|ur , θ r〉. Figures 2(a),
3(a) and 5(a) show that the conditional SGS flux and the conditional flux production
rate have similar trends, which is likely a result of the balance between the SGS flux
production rate and the pressure destruction rate and the fact that the latter can be
predicted quite well by the SGS flux and an SGS time scale. Hence, 〈F1|ur , θ r〉 is
better predicted by the nonlinear model.

The trend of 〈F3|ur , θ r〉 is underpredicted (figures 14b and 2c). Furthermore,
〈F nl

3 |ur , θ r〉 has some spurious negative values. The dominant component of F nl
3 is

(∂θr/∂x3)(∂ur
3/∂x3), which can be rewritten as

F nl
3 ∼ ∂θr

∂x3

∂ur
3

∂x3

∝ τ
smg

33

∂θr

∂x3

. (3.9)

Because τ33 is poorly predicted by the Smagorinsky model, (∂θr/∂x3)(∂ur
3/∂x3) is not

a good model for the dominant term of PF3
; therefore, 〈F3|ur , θ r〉 is poorly predicted

by the nonlinear model.
The above analyses relate the performance of the nonlinear model to the

Smagorinsky model predictions and the surface layer SGS dynamics. Here we also
provide similar analyses of the nonlinear SGS stress model. The normal component
of the nonlinear model τnl

11 (not shown) for positive θr fluctuations is predicted quite
well, which can be rewritten as

τnl
11 ∼ ∂ur

1

∂x1

∂ur
1

∂x1

+
∂ur

1

∂x2

∂ur
1

∂x2

+
∂ur

1

∂x3

∂ur
1

∂x3

∝ τ
smg

11

∂ur
1

∂x1

+ τ
smg

12

∂ur
1

∂x2

+ τ
smg

13

∂ur
1

∂x3

.

Because the trend of τ13 is predicted well by the Smagorinsky model, τ
smg

13 (∂ur
1/∂x3)

is a good model for the dominant term in P11; therefore, τ11 is predicted well by the
nonlinear model. Similarly, the dominant term in τnl

33 (figure 14c), (∂ur
3/∂x3)(∂ur

3/∂x3),
can be written as τ

smg

33 (∂ur
3/∂x3). Because τ33 is predicted poorly by the Smagorinsky

model, so is τ33 by the nonlinear model. The predictions of the other conditional SGS
stress components as well as the conditional SGS stress production rate (not shown)
for positive θr fluctuations are similar to those without conditioning on θr and are
generally more accurate than those for negative θr fluctuations.

These model predictions are important for understanding the model prediction of
the conditional SGS flux production rate. The magnitude and trend of 〈PF1

|ur , θ r〉
for positive θr fluctuations are not predicted well (figures 15a and 3a), due to
the poor predictions of F3 and τ13, which are in the dominant terms in 〈PF1

|ur , θ r〉
(−〈F3(∂ur

1/∂x3)+τ13(∂θr/∂x3)|ur , θ r〉). The magnitude of 〈PF3
|ur , θ r〉 is underpredicted

(figures 15b and 3c), while the trend for positive θr fluctuations is predicted better
than that for small and negative θr fluctuations, due to the well-predicted trend of
τ33, which is in the dominant term of 〈PF3

|ur , θ r〉 (〈−τ33(∂θr/∂x3)|ur , θ r〉). Both the
trend and magnitude of 〈Pθ |ur , θ r〉 (figures 15c and 4) are not predicted as well as
the Smagorinsky model, due to the poor prediction of F3, which is in the dominant
term of 〈Pθ |ur , θ r〉 (〈F3(∂θr/∂x3)|ur , θ r〉).
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Figure 15. Predicted conditional SGS temperature flux production rate and the temperature
variance production rate using the nonlinear model.

We note that previous studies (e.g. Vreman, Geurts & Kuerten 1996) have shown
that the nonlinear model can result in unstable LES. In this case no a posteriori tests
of the model under normal flow conditions as well as comparisons with a priori tests
are possible. Nevertheless, the a priori model performance in predicting the other
components of the SGS stress production rate and the SGS flux production rate
still provides valuable information for understanding models that are based on the
nonlinear model (but with much improved predictions of the SGS energy production
rate), such as the mixed model, which we examine next.

3.7.3. The mixed model

The results discussed above show that the Smagorinsky model can predict quite
well 〈F3|ur , θ r〉 but not 〈F1|ur , θ r〉, and the nonlinear model can predict quite well
〈F1|ur , θ r〉 but not 〈F3|ur , θ r〉. A mixed model combining these two models, as done



308 Q. Chen, S. Liu and C. Tong

−2

−1

0

1

0

1

2

−1
0

1
2

−2−1
0

1

−2

−1

2

−1
0

1
2

−2−1
0

1

θ r

ur
3 ur

1

〈F1
mix|ur, θr〉

(a)

ur
3 ur

1

〈F3
mix|ur, θr〉

(b)

–3.00  –2.40 –1.80  –1.20 –0.60 0.06  0.26  0.46 0.66  0.87

Figure 16. Predicted conditional SGS temperature flux using the mixed model.

for SGS stress (Clark et al. 1979; Liu et al. 1994),

F mix
i =

1

12
∆2 ∂θr

∂xk

∂ur
i

∂xk

− Pr−1
T (CS∆)2(2SmnSmn)

1/2 ∂θr

∂xi

, (3.10)

therefore, can potentially provide improved predictions.
Table 5 shows that the mean horizontal SGS temperature flux is overpredicted by

approximately 35 % and the mean vertical SGS temperature flux is underpredicted
by approximately 25 %. The conditional SGS statistics predicted by the mixed model
are shown in figures 16 and 17. The predicted magnitude and trend of 〈F1|ur , θ r〉
(figure 16a) are close to the predictions of the nonlinear model (figure 14a), due to
the underpredicted magnitude of 〈F1|ur , θ r〉 by the Smagorinsky part of the model.
The predicted trend of 〈F3|ur , θ r〉 (figure 16b) is between the predictions of the
Smagorinsky model (figure 12b) and the nonlinear model (figure 14b), because the
magnitude of 〈F nl

3 |ur , θ r〉 is comparable to that of 〈F smg

3 |ur , θ r〉.
The trend of 〈P mix

F1 |ur , θ r〉 (figure 17a) is close to the prediction of the nonlinear
model (figure 15a) but the variations of the magnitude are improved, because the
mixed model predictions of F3 and τ13 are better than the nonlinear model, (although
not as good as the Smagorinsky model). The magnitude of 〈P mix

F3 |ur , θ r〉 (figure 17b) is
close to the prediction of the nonlinear model (figure 15b), because the magnitude of
〈P smg

F3 |ur , θ r〉 is smaller than that of 〈P nl
F3|ur , θ r〉. The trend of 〈P mix

θ |ur , θ r〉 (figure 17c)
is between those of 〈P nl

θ |ur , θ r〉 (figure 15c) and 〈P smg
θ |ur , θ r〉 (figure 13c), i.e. not as

good as that of the Smagorinsky model but better than that of the nonlinear model.
The mixed model predictions of the conditional SGS stress and the conditional SGS
stress production rate are also a compromise between the Smagorinsky model and
the nonlinear model.

3.8. Potential effects of SGS models on the resolvable-scale statistics

The conditional SGS fluxes and their production rates discussed above govern the
evolution of the resolvable-scale velocity–temperature JPDF through (1.6). Deviations
of SGS model predictions from their true values will lead to inaccuracies in the
predicted JPDF. Chen & Tong (2006) discussed the potential effects of the modelled
SGS stress and the SGS stress production rate on the resolvable-scale velocity JPDF.
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Figure 17. Predicted conditional SGS temperature flux production rate and the SGS
temperature variance production rate using the mixed model.

Here, we focus on the potential effects of SGS model predictions on the velocity–
temperature JPDF.

The results of this paper show that the conditional horizontal temperature flux
production rate is dominated by 〈−F3(∂ur

1/∂x3)|ur , θ r〉 and 〈−τ13(∂θr/∂x3)|ur , θ r〉,
while the conditional vertical temperature flux production rate is dominated by
〈−τ33(∂θr/∂x3)|ur , θ r〉. Correct predictions of F3, τ13 and τ33, therefore, are critical for
reproducing the resolvable-scale velocity–temperature JPDF. Note that τ13 and τ33

affect the resolvable-scale temperature and velocity–temperature joint statistics not
only through their influence on the resolvable-scale velocity, but also more directly
through the SGS flux production rate.

The Smagorinsky model underpredicts the conditional horizontal SGS temperature
flux, but predicts well the trend of the conditional vertical SGS temperature flux.
Although the underprediction of the conditional horizontal SGS temperature flux in
a horizontally homogeneous ABL has no consequences, in other types of flows, such
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as a surface layer above sloped terrain, it will directly affect the temperature PDF and
the velocity–temperature JPDF. The model also underpredicts 〈τ33|ur , θ r〉 (Chen &
Tong 2006). Because τ33 appears in the dominant term of the conditional vertical
temperature flux production rate, τ33(∂θr/∂x3), the underprediction of 〈τ33|ur , θ r〉
causes an underprediction of the conditional vertical temperature flux production
rate, which in turn will result in an underprediction of the resolvable-scale vertical
temperature flux (velocity–temperature correlation). Consequently, the total vertical
flux is underpredicted. With a constant heat flux boundary condition, the mean
temperature gradient will be overpredicted, because the LES fields have to self-
adjust to carry the correct magnitude of heat flux at the surface. The improved mean
temperature profile using the split model (Sullivan et al. 1994) and the stochastic model
(Mason & Thomson 1992) may be partly because these models provide improved
predictions of τ13 and τ33, which are important for predicting the temperature flux
production rate.

The dynamic Smagorinsky model and its variants (e.g. Porté-Agel 2004) can provide
different predictions of the mean temperature gradient than the Smagorinsky model.
Nonetheless, in these models the assumption of proportionality between the SGS
temperature flux and the resolvable-scale temperature gradient still remains. As a
result, the temperature variance transfer rate from the resolvable to the subgrid scales
is likely to be predicted incorrectly. In addition, the role played by τ33 cannot be
accounted for by changing the model coefficient in the dynamic Smagorinsky model.
Consequently, while there may exist a value of the model coefficient that will produce
the correct mean temperature gradient, the models are unlikely to predict correctly
other resolvable-scale statistics.

The nonlinear model can predict quite well the conditional horizontal SGS
temperature flux but not the vertical SGS flux. Again, due to the constant heat
flux boundary condition, the underprediction of the vertical SGS temperature flux
will cause an overprediction of the mean temperature gradient. The underpredictions
of the conditional F3 and τ13 also cause an underprediction of the conditional PF1

,
which will result in an underprediction of the horizontal resolvable-scale temperature
flux.

These potential SGS model effects indicate that for LES to reproduce a resolvable-
scale statistic, all the relevant conditional SGS stress, flux and SGS production rates
must be correctly predicted. An example of violation of this condition is the poor
prediction of 〈τ33|ur , θ r〉 by the Smagorinsky model, which can lead to an incorrect
prediction of the conditional PF3

, and hence the resolvable-scale vertical temperature
flux, even when F3 is quite well predicted. Previous efforts to improve SGS models
generally have focused on the model predictions of the SGS stress and flux. The
results in the present study show that in addition to the SGS stress and flux, the
predictions of the SGS production rates must also be improved.

We note that although a velocity field is not affected by a passive scalar advected by
the velocity, velocity statistics conditional on the scalar, such as the conditional SGS
stress and the conditional SGS stress production rate, are generally dependent on the
scalar. The dependencies are partly a result of the different flow histories that the
SGS eddies with the same resolvable-scale velocity but different resolvable-scale scalar
values have experienced (Chen et al. 2005). Incorrect predictions of the dependencies
will result in an incorrect conditional velocity, 〈u|θ〉, and consequently in an incorrect
resolvable-scale temperature PDF.

The statistical SGS model test approach in the present study is based on the
necessary conditions given by the resolvable-scale velocity–scalar joint JPDF equation.
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Thus, we expect some differences between the a priori and a posteriori SGS model
performance. The results in Chen et al. (2009), however, show remarkable consistency
between the two types of tests. Their model tests also show that the differences between
the a priori and a posteriori model predictions of the conditional SGS stress and the
conditional SGS stress production rate are generally smaller than the differences
between the modelled (a priori or a posteriori) and the true values of these statistics.
This suggests that the deviations of the model predictions from the measurements
are primarily a result of the characteristics (deficiencies) of the model, whereas the
(relatively smaller) differences of the two types of test results are due to the different
model inputs (measured turbulence fields and LES fields). In view of the JPDF
equation, the similarity between the a priori and a posteriori test results suggests that
both are consistent with the JPDF obtained in LES. Under such conditions, the a
priori model performance is consistent with the a posteriori performance.

When an SGS model (e.g. the nonlinear model) results in unstable LES, a
comparison between a priori and a posteriori tests is not possible. The question
of consistency between the two types of tests becomes whether the a priori tests can
predict the divergence of the moments of the JPDF (equivalent to unstable LES) using
the JPDF equation. The severe underprediction of the SGS energy production rate
by the nonlinear model (by a factor of two) is consistent with the divergence of the
kinetic energy in LES. A physical example of such an energy transfer rate imbalance
is a homogeneous shear flow, in which the turbulent kinetic energy dissipation rate is
approximately 60 % of the production, causing the energy to increase exponentially
in time. This observation suggests that it may be possible to predict divergence of
the moments of the JPDF using a priori results. Further investigations of the JPDF
equation are needed to answer this question.

4. Conclusions
In this study, we used the field measurement data in a convective atmospheric

boundary layer to analyse the SGS statistics that evolve the resolvable-scale velocity–
temperature JPDF. These statistics must be predicted correctly by SGS models for LES
to reproduce the JPDF. The results show that the statistics, including the conditional
SGS temperature flux, its production rate and the SGS temperature variance
production rate conditional on the resolvable-scale velocity and temperature, depend
strongly on the resolvable-scale velocity and temperature, and the dependencies are
closely related to the surface layer dynamics. SGS model predictions of these SGS
statistics, therefore, have strong effects on LES statistics.

The analyses show that for the stability conditions studied, the dependencies
are generally strong for positive resolvable-scale temperature fluctuations and are
weak for negative fluctuations. For positive θr fluctuations, eddies associated with
updrafts, which generally come from the near-ground region and experience strong
shear and vertical temperature gradient, contain large amounts of vertical SGS
flux and SGS stress, resulting in large SGS flux production rates. For small θr

fluctuations, eddies are generally well mixed; therefore, the results tend to be more
symmetric with respect to the vertical velocity, ur

3. For negative θr fluctuations, eddies
associated with downdrafts, which generally come from the mixed layer region,
carry relatively small fluxes, resulting in a weak dependence of the conditional
SGS temperature flux production rate on the resolvable-scale velocity. The model
predictions for positive θr fluctuations, therefore, may have a stronger impact on LES
statistics.
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The conditional SGS temperature flux and the conditional SGS temperature flux
production rate have similar trends and are generally aligned well for positive θr

fluctuations with the alignment angle being generally less than 10◦, consistent with
the balance between the production rate and the pressure destruction rate and the use
of the ratio of the SGS temperature flux to a time scale as a model for the pressure
destruction rate. The similarities and the dynamic connections between the conditional
temperature flux and its production rate suggest the potential of using the conditional
temperature flux production rate to model the temperature flux in convective ABLs.
For example, assuming that the boundary layer is in local equilibrium, the balance
between the SGS flux production rate and the pressure destruction combined with a
model using the ratio of the SGS flux to the time scale can provide a model for the
SGS flux.

The Lumley triangle representation of the conditional SGS stress shows that the
anisotropy of 〈τij |ur

1, u
r
3, θ

r〉 for positive θr fluctuations is strong and is close to the
that of 〈τij |ur

1, u
r
3〉 (without conditioning on θr ). The conditional SGS stress is not

far from being axisymmetric with either one small or one large eigenvalue. For
small θr fluctuations, the results are somewhat similar to the results for positive θr

fluctuations. For negative θr fluctuations, the conditional SGS stress is less anisotropic.
The conditional SGS stress and its production are generally aligned well for positive
θr fluctuations but are much less so for negative θr , consistent with the results on the
Lumley triangle and the possible quasi-equilibrium between the SGS stress production
and pressure destruction.

We argue that the dependencies of the SGS stress and its production rate on
the resolvable-scale temperature fluctuations are partly due to flow history effects.
Incorrect SGS model predictions of these dependencies will result in an incorrect
temperature PDF. In addition, modelling of the dependencies to account for flow-
history effects might also be beneficial to the prediction of velocity fields.

Our statistical a priori tests using these conditional statistics show that the
Smagorinsky model underpredicts the conditional horizontal temperature flux but
predicts quite well the conditional vertical SGS temperature flux, because it uses
the dominant vertical temperature gradients. The model also predicts quite well
the trend of the conditional horizontal temperature flux production rate, because
the conditional means of τ13 and F3 are quite well predicted. It, however, poorly
predicts the conditional vertical SGS temperature flux production rate due to its poor
prediction of τ33. The trend of the conditional temperature variance production rate
is well predicted because the trend of F3 is predicted well, which may lead to a better
prediction of the resolvable-scale temperature skewness.

The nonlinear model predicts quite well the conditional horizontal SGS temperature
flux, while both the conditional horizontal and vertical SGS temperature flux
production rates are underpredicted. The prediction of the SGS flux using the
nonlinear model is found to be closely related to the predictions of the Smagorinsky
model and the quasi-equilibrium between the production and pressure destruction
rates, providing a physical explanation of the performance of the nonlinear model. A
similar analysis of the nonlinear SGS stress model is also performed.

These analyses of the SGS models show that the current SGS models have
varying levels of performance in predicting different SGS components. Often the
poor prediction of one SGS flux component affects the prediction of the production
rate of another SGS flux component, thereby resulting in errors in the LES
statistics that depend on the production rate. Efforts to improve SGS models,
therefore, need to ensure that all the relevant SGS fluxes related to the LES
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statistics of interest or of importance to the intended applications are predicted
correctly.

The statistical a priori tests in Chen & Tong (2006) and in the present work
demonstrate the importance of modelling the conditional SGS stress, flux and SGS
production rate for LES to reproduce resolvable-scale statistics correctly. As noted
in the introduction, these a priori tests are qualitatively different from the traditional
ones, and have shown a high degree of consistency with our a posteriori tests (Chen
et al. 2009). These and the present studies show that our tests based on the conditional
SGS stress, flux and SGS production rate are a highly effective approach for identifying
SGS model deficiencies and for evaluating model performance in simulations, at least
when the model produces stable LES. These studies also provide impetus to further
investigation of the JPDF equation. In particular, analytical results on the dependence
of the JPDF on the conditional SGS terms (similar to those obtained by Sinai &
Yahkot 1989; Pope & Ching 1993; Jaberi et al. 1996; Sabelnikov 1998) will be useful
for understanding the model effects on the LES statistics and for improving SGS
models.
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