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The subgrid-scale (SGS) physics in the convective atmospheric surface layer is
studied using the SGS stress and SGS scalar flux. We derive the budget equations
for the conditional mean SGS stress and SGS temperature flux and show that, for
transport-equation-based SGS models, the budget terms must be correctly predicted
by the SGS model in order for large-eddy simulation (LES) to reproduce the
resolvable-scale velocity and temperature probability density functions. Field data
from the Advection Horizontal Array Turbulence Study, which notably includes
measurements of the fluctuating pressure and the advection of the velocity and
temperature fields, are then used to analyse the budget equations. The results reveal
the complex behaviour of the dynamics of the convective atmospheric surface layer.
The budgets of the conditional mean SGS shear stress and SGS temperature flux
are an approximate balance between the conditional mean production and pressure
destruction, with the latter causing return to isotropy. The budgets of the normal SGS
stress components are more complex. For strongly convective surface layers, energy
is redistributed from the (smaller) vertical to the (larger) horizontal stress components
during downdrafts, resulting in generation of anisotropy by the conditional mean
SGS pressure–strain-rate correlation; wall pressure reflections can also enhance
the anisotropy. The conditional mean SGS pressure transport, meanwhile, is a
significant source of energy during updrafts as a result of the near-wall pressure
minima. The vertical advection also plays a significant role in the transfer of SGS
energy. For weakly convective surface layers, pressure transport is small while the
SGS pressure–strain-rate correlation reverts to its usual role of causing return to
isotropy. The results of the present study, particularly for the conditional mean
SGS pressure–strain-rate correlation, provide new insights into the SGS physics first
educed in a recent analysis of the mean SGS budgets by Nguyen et al. (J. Fluid
Mech., vol. 729, 2013, pp. 388–422) and have important implications for near-wall
models utilizing SGS transport equations in the convective atmospheric surface layer.
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1. Introduction
Large-eddy simulation (LES) is an important approach for simulating turbulent

flows. In LES, the large (or resolvable) scales of the flow field are explicitly computed
while the effects of the smaller (subgrid) scales are modelled. The premise of LES
is that if the energy-containing scales are well-resolved, then their statistics will
be insensitive to the subgrid-scale (SGS) model, given that it extracts energy from
the resolvable scales at the correct rate (Lilly 1967; Nieuwstadt & de Valk 1987;
Domaradzki, Liu & Brachet 1993; Mason 1994; Borue & Orszag 1998; Wyngaard
2004). This level of resolution requires the smallest resolvable scales to be in
the inertial range. In LES of high-Reynolds-number turbulent boundary layers,
however, the smallest resolvable scales in the near-wall region are inevitably in the
energy-containing range (Kaimal et al. 1972; Mason 1994; Peltier et al. 1996; Tong
et al. 1998; Tong, Wyngaard & Brasseur 1999), leading to inherent under-resolution
of the LES field. As a result, significant portions of the turbulent stress and scalar
flux are carried by the subgrid scales, resulting in strong dependence of the near-wall
LES results on the SGS model (e.g. Mason & Thomson 1992; Tong et al. 1999).
Consequently, deficiencies in the SGS model are likely to have an adverse impact
on near-wall LES statistics. For convective atmospheric boundary layers (ABLs),
errors in the surface layer can also propagate into the mixed layer and alter the flow
structure there (e.g. Khanna & Brasseur 1998; Ludwig, Chow & Street 2009), likely
due to the upward turbulent transport.

To better understand the effects of the SGS turbulence on resolvable-scale statistics
and those of the SGS model on LES statistics, Chen et al. (2003) and Chen &
Tong (2006) developed a statistical approach based on the evolution equation of the
one-time, one-point joint probability density function (JPDF) of the resolvable-scale
velocity, which contains all one-point resolvable-scale velocity statistics. They showed
that the necessary conditions for LES to correctly predict the resolvable-scale velocity
JPDF are that the conditional means of the SGS stress and SGS stress production rate
must be reproduced by the SGS model. Similarly, the effects of the SGS temperature
flux on the resolvable-scale potential temperature can be studied statistically using
the transport equation of the one-time, one-point probability density function (PDF)
of the resolvable-scale temperature, which shows that the necessary conditions for
LES to correctly predict the resolvable-scale temperature PDF are that the conditional
means of the SGS temperature flux and SGS temperature variance production rate
must be reproduced by the SGS model.

Previous studies have successfully applied the JPDF equation to study the
SGS dynamics, to identify SGS model deficiencies, and to evaluate SGS model
performance in numerical simulations. A priori tests of the Smagorinsky model, the
nonlinear model, the mixed model and the Kosović nonlinear model have found that,
although these models can predict well certain components of the conditional mean
SGS stress and SGS production rate, none are able to correctly predict both terms
(Chen & Tong 2006). The Smagorinsky model and the Kosović nonlinear model
under-predict the anisotropy and the variations of the level of anisotropy, which are
considered to be important for predicting the mean shear and the streamwise velocity
variance, whereas the nonlinear model and the mixed model over-predict both. These
results are consistent with a posteriori tests performed using the JPDF equation (Chen
et al. 2009).

To develop improved SGS parameterizations, additional physics, including history
and non-local effects, must be incorporated into the SGS model. Transport-equation-
based SGS models are well-suited for this purpose and have the potential to
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predict LES statistics with more accuracy (Deardorff 1972, 1973; Wyngaard
2004; Hatlee & Wyngaard 2007; Nguyen et al. 2013). Recent a posteriori tests
of the transport-equation-based SGS model have found that the modelled SGS
conservation equations could predict the conditional mean deviatoric SGS stress
and its production rate better than could an eddy-diffusivity closure (Ramachandran
2010). Both, however, under-predict considerably the level of near-wall anisotropy.
The enhanced performance of the transport-equation-based model was attributed to
the inclusion of additional production and advection mechanisms that are absent in
eddy-diffusivity closures, while its inability to predict correctly the SGS anisotropy
was argued to be due to the absence of a model for the rapid pressure term in the
modelled pressure–strain-rate correlation (Ramachandran & Wyngaard 2011). Recent
analyses of the full SGS transport equations by Nguyen et al. (2013) using field
measurement data, however, elucidated the role of the pressure–strain-rate correlation
in the convective atmospheric surface layer and showed that it is the main cause of
anisotropy, contrary to its commonly modelled role of causing return to isotropy. In
the present study, we further investigate the SGS physics that govern the evolution of
the resolvable-scale JPDF using the transport equations of the conditional mean SGS
stress and SGS temperature flux.

In order for LES to predict correctly the resolvable-scale velocity JPDF and the
resolvable-scale temperature PDF, the SGS model needs to predict the conditional
mean SGS stress and the conditional mean SGS temperature flux. The former
transports the velocity JPDF in both velocity and physical spaces, while the latter
transports the temperature PDF in both scalar and physical spaces. To obtain the
conditions for correctly predicting the conditional mean SGS stress and SGS flux,
we utilize their transport equations, which are derived in appendix A following
the method given by Pope (2010) for the self-conditioned LES field. The transport
equation for the conditional mean SGS stress, 〈τij|ur = v〉, is

∂
〈
τij

∣∣ur
〉

∂t
= −vk

∂
〈
τij

∣∣ur
〉

∂xk
−
〈(

∂ur
l

∂t
+ ur

k
∂ur

l

∂xk

)∣∣∣∣ur

〉
∂
〈
τij

∣∣ur
〉

∂vl

+
〈
∂

∂xk
T (t)

ijk

∣∣∣∣ur

〉
+ 〈

P ij

∣∣ur
〉+ 〈

PBij

∣∣ur
〉+ 〈

Πij

∣∣ur
〉− 〈

εij

∣∣ur
〉

− 1
fu

∂

∂vl

[
cov

(
τij,

∂ur
l

∂t
+ ur

k
∂ur

l

∂xk

∣∣∣∣ur

)
fu

]
, (1.1)

where u is the velocity and τij= (uiuj)
r−ur

i u
r
j is the conventional definition of the SGS

stress (strictly, it is the SGS kinematic momentum flux or the negative of the apparent
kinematic SGS stress), with superscript r denoting a resolvable-scale variable. We
refer to 〈τij|ur = v〉 as the conditional mean SGS stress, defined to be the mean SGS
stress obtained for given values of the resolvable-scale velocity. For convenience,
the notation 〈·|ur = v〉 has been abbreviated to omit the velocity sample-space
variable v in (1.1) and hereinafter. The first two terms on the right-hand side of (1.1)
represent advection of the conditional mean SGS stress in physical and velocity spaces,
respectively, with the latter due to the conditional mean resolvable-scale acceleration.
The remaining terms are, in order, the conditional means of the turbulent transport
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the rate of mechanical production
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and the rate of viscous dissipation and transport,
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where Θ , θ , p, g and ν are the mean and fluctuating potential temperatures, kinematic
pressure, gravitational acceleration and kinematic viscosity, respectively, and δij is
the Kronecker delta. For high-Reynolds-number flows, viscous transport is small
and viscous dissipation is almost entirely in the subgrid scales since the smallest
resolvable scales are much larger than the Kolmogorov scale in the surface layer.
The last term in (1.1) is the covariance of the conditional mean fluctuations of
the SGS stress and the conditional mean resolvable-scale acceleration. The SGS
velocity–pressure-gradient correlation can be decomposed into a pressure–strain-rate
correlation and a pressure transport term,
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is the SGS pressure–strain-rate correlation tensor, and
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The trace of Rij is zero, consequently the pressure–strain-rate correlation acts to
redistribute energy among the three normal SGS stress components.

Equation (1.1) provides the necessary conditions for LES to correctly predict
the conditional mean SGS stress: the conditional mean SGS mechanical and buoyant
production, the conditional mean SGS turbulent and pressure transport, the conditional
mean SGS pressure–strain-rate correlation, and the conditional mean SGS dissipation
must be reproduced by the SGS model. Since it is necessary to correctly predict the
conditional mean SGS production in order to correctly model the conditional mean
SGS stress, the necessary conditions for correctly predicting the resolvable-scale
velocity JPDF are also implicitly satisfied. Similar to Reynolds stress modelling, the
main challenge in transport-equation-based LES is expected to come from modelling
of the pressure–strain-rate correlation.
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The transport equation for the conditional mean SGS temperature flux, 〈Fi|θ r =ψ〉,
also derived in appendix A, is

∂〈Fi|θ r〉
∂t

= −
{〈

ur
k

∣∣θ r
〉 ∂〈Fi|θ r〉

∂xk
+ cov

(
ur

k,
∂Fi

∂xk

∣∣∣∣θ r

)}
−

〈(
∂θ r

∂t
+ 〈

ur
k

∣∣θ r
〉 ∂θ r

∂xk

)∣∣∣∣θ r

〉
∂ 〈Fi|θ r〉
∂ψ

+
〈
∂

∂xk
T (t)

Fik

∣∣∣∣θ r

〉
+ 〈PFi|θ r〉 + 〈PBFi|θ r〉 + 〈ΠFi|θ r〉

− 1
fθ

∂

∂ψ

[
cov

(
Fi,

∂θ r

∂t
+ 〈

ur
k

∣∣θ r
〉 ∂θ r

∂xk

∣∣∣∣θ r

)
fθ

]
, (1.10)

where Fi = (θui)
r − θ rur

i is the SGS temperature flux in the i-direction. We refer
to 〈Fi|θ r =ψ〉 as the conditional mean SGS temperature flux, defined to be the
mean SGS temperature flux obtained for given values of the resolvable-scale
temperature. Similarly, the notation 〈·|θ r = ψ〉 has been abbreviated to omit the
potential temperature sample-space variable ψ in (1.10) and hereinafter. The first
two terms on the right-hand side of (1.10) represent advection of the conditional
mean SGS temperature flux in physical and scalar spaces, respectively, with the latter
due to the total time rate of change of the conditioning variable (the resolvable-scale
temperature). The remaining terms are, in order, the conditional means of the turbulent
transport of Fi
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the rate of gradient (stratification) production and tilting production
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The last term in (1.10) is the covariance of the conditional mean fluctuations of
the SGS flux and the substantial derivative of the resolvable-scale temperature. Note
that the SGS temperature–pressure-gradient correlation can be decomposed into a
correlation between the fluctuating pressure and temperature gradient, and a transport
term representing heat flux divergences due to the fluctuating pressure,
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Equation (1.10) provides the necessary conditions for LES to correctly predict the
conditional mean SGS temperature flux: the conditional mean SGS gradient, tilting
and buoyant production, the conditional mean SGS turbulent and pressure transport,
and the conditional mean SGS pressure–temperature-gradient correlation must be
reproduced by the SGS model. Although the production terms for both the SGS
stress and SGS flux are not directly modelled, they must be correctly predicted by
the SGS model. Based on these conditions, investigations of the physics of the SGS
stress and scalar flux should therefore focus on the conditional mean budget terms.
In the present study, we analyse these budget terms and their dependence on the
stability condition and filter width using field measurement data.

The rest of the paper is organized as follows. Section 2 outlines the field campaign
and the use of sensor arrays to obtain resolvable- and subgrid-scale variables.
Section 3 examines the dependence of the measured SGS terms on the surface
layer stability and the filter width: the results for the conditional mean SGS stress
and the conditional mean SGS temperature flux are presented in § 3.1, term-by-term
analyses of their budgets are presented in §§ 3.2 and 3.3, and the combined effects
of the budgets terms on the conditional mean SGS stress are summarized in § 3.4.
Discussion and conclusions are given in § 4. Derivations of the transport equations
are presented in appendix A.

2. AHATS field campaign

The field measurements for this study, named the Advection Horizontal Array
Turbulence Study (AHATS), were conducted in the San Joaquin Valley, California,
during the summer of 2008 as a collaboration between Clemson University, Penn
State University, and the National Center for Atmospheric Research (NCAR). Horst
et al. (2004) and Nguyen et al. (2013) describe the field site in detail. The field
measurement design is based on the transverse array technique, proposed, studied and
first implemented successfully by Tong et al. (1997, 1998, 1999) for surface-layer
measurements in the ABL. In the context of LES, the technique uses horizontal sensor
arrays to perform two-dimensional filtering to obtain resolvable- and subgrid-scale
variables. It has subsequently been implemented by others in the ABL over land and
ocean (Porté-Agel et al. 2001; Kleissl, Meneveau & Parlange 2003; Horst et al. 2004;
Sullivan et al. 2006), within vegetation (Patton et al. 2011), over a glacier (Bou-Zeid
et al. 2010), and in engineering flows (Cerutti, Meneveau & Knio 2000; Tong 2001;
Wang & Tong 2002; Chen et al. 2003; Rajagopalan & Tong 2003; Wang, Tong &
Pope 2004). Similar to these field studies, AHATS uses two vertically spaced arrays
of sensors, shown in figure 1(b), to obtain filtered variables and their derivatives. The
arrays are centred in the lateral direction and aligned perpendicular to the prevailing
wind direction.

In AHATS, a third line of sonic anemometers was added upwind to measure spatial
differences in the streamwise direction (figure 1a). Additionally, two lines of turbulent
pressure probes were added to measure, for the first time, the resolvable- and subgrid-
scale pressure. The pressure probes are modified commercial versions of the quad-disk
design by Nishiyama & Bedard (1991), which are insensitive to velocity fluctuations
and are capable of measuring pressure covariances with reasonable accuracy
(Wyngaard, Siegel & Wilczak 1994). The pressure probes are mounted level with the
sonic anemometers and are offset slightly in the along- and cross-wind directions
(figure 1c) relative to the sonic anemometers to avoid flow-induced distortion
of the velocity measurements (Wyngaard 1981; Miller, Tong & Wyngaard 1999).
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FIGURE 1. (a) Top view of arrays. The upwind and downwind arrays are centred
laterally, with dx denoting their streamwise separation distance. Due to variations in
the run-averaged wind direction, we rotate the coordinate system and interpolate the
velocity, temperature and pressure in the virtual Cartesian coordinate system defined by
the mean alongwind and crosswind directions. (b) Front view of downwind array. Sonic
anemometers in the primary and secondary arrays are located at heights zp and zs,
respectively; the horizontal spacing is dy. Pressure ports are embedded at the centre of
the sonic arrays. (c) Top view of an individual mast. The reference side of the pressure
transducers are connected to a common reference reservoir through thin tubing . An
additional transducer measures the reference pressure using a second reference reservoir.

Each probe is connected to a differential pressure transducer (Paroscientific Model
202BG), the reference side of which is connected to a common reference reservoir.
Following Wilczak & Bedard (2004), the reference reservoir is filled with loosely
packed steel wool and buried to prevent generation of dynamic pressure from
convection and to maintain a uniform temperature (and hence pressure) through
conduction. However, due to persistent low-frequency pressure fluctuations within the
reference system induced by radiative heating and advective cooling of the reference
tubing, an additional transducer was added to measure the reference pressure using a
second reference reservoir. The absolute pressure is obtained by adding the reference
pressure back to the measured (probe) pressure. This pressure signal still contains
some residual low-frequency fluctuations (<0.05 Hz). However, because the lengths
of the reference tubes are on the order of 10 m, the pipe-organ resonance frequencies
are much higher; therefore, the tubes do not support acoustic waves of such low
frequencies. Helmholtz resonance, if it exists, would be very weak and at much
higher frequencies since the reference system is sealed. Thus, the low-frequency
fluctuations have the same phase and affect the signals of all the pressure transducers
in the same way. The fluctuations were found to affect the pressure terms in the
Reynolds stress budget as well as those in the SGS stress budget for very large filter
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widths (those much larger than the horizontal integral length scale of the vertical
velocity). Thus, we only obtain the SGS pressure terms for filter widths smaller than
those of the energy-containing eddies.

In the present study, we use the arrays to approximate top-hat filters. In the
streamwise direction, adoption of Taylor’s hypothesis (Lumley 1965) allows using
the time-filtered signal as a surrogate for streamwise spatial filtering. Filtering in
the transverse direction is performed by weight-averaging the output of the sensor
array (Tong et al. 1998). Streamwise and spanwise derivatives are approximated
using fourth-order central finite-difference schemes, while vertical derivatives are
approximated using a first-order one-sided finite difference scheme. The validity of
the array filtering technique, including the accuracy of two-dimensional filtering and
use of Taylor’s hypothesis, has been thoroughly studied. Using a spectral cutoff
array filter, Tong et al. (1998) showed that the r.m.s. values of the filtered variables
differed from that of a true spectral cutoff filter by less than 10 %. The accuracy
of the top-hat array filter is expected to be higher (Chen & Tong 2006). They also
showed two-dimensional filtering to be a good approximation of three-dimensional
filtering with a 10 %–14 % higher variance. Field measurements by Higgins, Parlange
& Meneveau (2007) confirmed this result and showed that the difference can be
interpreted as a 16 % reduction in the filter size. Tong et al. (1998) showed that
among the mechanisms that could affect the accuracy of Taylor’s hypothesis, including
the effects of different convecting velocities for different wavenumber components,
temporal changes in the reference moving with the mean velocity, and the fluctuating
convecting velocity, only the last was significant. Kleissl et al. (2003) studied the
errors associated with approximating gradients by finite differences; they evaluated
the divergence-free condition for the filtered velocity field using fourth- and first-order
finite difference schemes for the horizontal and vertical derivatives, respectively, and
concluded that the errors were acceptable for studying the SGS dynamics. Horst
et al. (2004) further examined various issues of using the array technique, including
the aliasing errors associated with evaluating derivatives using finite differences, and
furthermore demonstrated reasonable accuracy of the technique.

Five different array configurations, shown in table 1, are employed in AHATS in
order to vary the filter (grid) aspect ratio, z/∆f , and the stability parameter, z/L, where
z, ∆f and L=−(u3

∗Θ)/(κg〈u′3θ ′〉) are the height above the ground, the filter width, and
the Monin–Obukhov length, respectively, with primes denoting fluctuations and angle
brackets denoting an ensemble average. We refer to z as the height of the primary
array zp here and hereinafter. Note, κ = 0.41, u∗ = (−〈u′1u′3〉)1/2 (with u′1 in the mean
wind direction) and 〈u′3θ ′〉 = Q0 are the von Kármán constant, the friction velocity
and the vertical temperature flux, respectively. We define the surface-layer temperature
scale by T∗ =−Q0/u∗. In the present work, we study the unstable surface layer (i.e.
for which z/L < 0) using data from the medium and wide array configurations. The
resolved fields are obtained using several different filter widths, resulting in a filter
aspect ratio ranging from 0.10 to 1.87 and therefore allowing for the effects of grid
anisotropy to be studied. We use 26 data segments, each generally 30–90 min in
length, collected during the daytime and spanning a wide range of −z/L. Each data
segment has a steady mean velocity and approximately stationary fluctuating velocities.
The lengths for most datasets correspond to approximately 2000 advection time scales
of the vertical-velocity energy-containing eddies (evaluated as the ratio of the length
of each dataset to its advection time scale, ta = z/U, where U is the mean velocity
in the alongwind direction); and, although the precise level of statistical uncertainty is
difficult to determine for the statistics obtained, it is sufficiently low for determining
the dependence of the statistics on the important parameters discussed in § 3.
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Array Start End dy dx zp zs zu
spacing PDT PDT (m) (m) (m) (m) (m)

Wide 1 1200 25 June 1200 01 July 4.00 16.00 3.24 4.24 3.74
Wide 2 1300 01 July 0600 18 July 4.00 16.00 3.24 4.24 3.24
Medium 1 1600 20 July 0600 29 July 1.29 5.12 3.64 4.64 3.64
Medium 2 1230 29 July 0600 08 Aug 1.29 5.12 4.83 5.83 4.83
Narrow 1800 09 Aug 0900 16 Aug 0.43 3.12 6.98 7.98 6.98

TABLE 1. AHATS array configurations, with zu denoting the height of the upwind array.
The streamwise array separation distance, dx, was chosen to minimize flow distortion at
the downwind array.

3. Results
In the following, we study the evolution of the conditional mean SGS stress

and the conditional mean SGS temperature flux by analysing term-by-term their
transport equations. A summary of the combined effects of the budget terms on the
conditional mean SGS stress is given in § 3.4. The dependence of the budget terms
on the surface-layer stability and filter width are examined using two non-dimensional
parameters, z/L and Λw/∆f , where Λw is the wavelength corresponding to the peak of
the vertical-velocity spectrum (i.e. the horizontal integral length scale of the vertical
velocity). The dimensionless height, z/L, is a measure of the stability of the surface
layer. The wavelength–filter-width ratio, Λw/∆f , is a measure of the resolution of
the filter relative to the turbulence field (i.e. a large value of Λw/∆f corresponds
to a filter width much smaller than the energy-containing scales, and therefore a
well-resolved LES field). Following Sullivan et al. (2003), we assume Λw = 2πUtf
using Taylor’s hypothesis, and determine the Eulerian integral time scale tf by fitting
an exponential of the form ρ(t)= exp(−t/tf ) to the autocorrelation function of the
vertical velocity (Lenschow, Mann & Kristensen 1993; Kaimal & Finnigan 1994). For
sufficiently convective surface layers (−z/L> 0.2), the ratio z/Λw is constant.

In the present study, the SGS statistics are non-dimensionalized using surface-layer
scaling: the conditional mean SGS pressure and conditional mean SGS stress are
normalized by u2

∗, while the budget terms in the transport equation of the conditional
mean SGS stress are normalized by κz/u3

∗. The conditional mean temperature flux is
normalized by T∗u∗, while the budget terms in its transport equation are normalized
by κz/(T∗u2

∗).
The measured SGS stress and its budget terms are conditioned on the fluctuating

parts of the streamwise and vertical components of the resolvable-scale velocity
(ur

1 and ur
3, respectively), both of which are normalized by their respective resolved-

scale r.m.s. values. The spanwise velocity component, ur
2, plays a lesser role in the

dynamics of the SGS stress (Chen & Tong 2006; Chen et al. 2009), and therefore is
not included as a conditioning variable for most terms. The measured SGS temperature
flux and its budget terms are conditioned on the fluctuating part of the resolvable-scale
potential temperature, θ r, normalized by its resolved-scale r.m.s. value. Conditional
mean statistics are obtained using the first-order kernel density estimation method
(Wand & Jones 1995), resulting in faster convergence and lower bias. We limit
the results to the central part of the sample space containing at least 99.5 % of
the probability of the velocity and temperature PDFs. To achieve further statistical
convergence, we weight-average and combine the results for data sets collected under
similar stability conditions with comparable values of Λw/∆f .
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FIGURE 2. Conditional mean of the measured SGS stress components for the strongly
convective (0.8 < −z/L 6 1.5, with mean −z/L = 1.14) surface layer. (a) 〈τ11|ur

1, ur
3〉;

(b) 〈τ22|ur
2, ur

3〉; (c) 〈τ33|ur
1, ur

3〉; (d) 〈τ13|ur
1, ur

3〉.

3.1. Conditional mean SGS stress and SGS temperature flux
Following previous studies of SGS physics in the weakly convective atmospheric
surface layer (Chen & Tong 2006; Chen, Liu & Tong 2010), we first present the
results for the conditional mean SGS stress and SGS temperature flux and examine
their filter-scale dependence in the strongly convective surface layer. The results for
the conditional mean SGS stress (figure 2) show that 〈τij|ur〉 generally increases with
ur

1 (ur
2) and ur

3 due to the stronger vertical shear and buoyancy acceleration. To better
understand the effects of the filter width, we characterize the level of anisotropy of
〈τij|ur〉 in figure 3 using the Lumley triangle (Lumley 1978). Here, the two invariants,
ξ and η, of the normalized anisotropy tensor

〈bij|ur〉 = 〈τij|ur〉
〈τkk|ur〉 −

1
3
δij (3.1)

defined by Pope (2000),

6ξ 3 ≡ 3IIIb = 〈bii|ur〉3 = 〈bij|ur〉〈bjk|ur〉〈bki|ur〉, (3.2)
6η2 ≡−2IIb = 〈bii|ur〉2 = 〈bij|ur〉〈bji|ur〉, (3.3)
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FIGURE 3. The Lumley triangle representation of the invariants, ξ and η, characterizing
the anisotropy of the conditional mean SGS stress for the (a,b) weakly convective
(0<−z/L 6 0.8) and (c,d) strongly convective (0.8<−z/L 6 1.5) surface layers. Arrows
represent the conditioning velocity vector (ur

1, ur
3). (a,c) Λw/∆f 6 5; (b,d) Λw/∆f > 10.

are used characterize the shape of the stress ellipsoid and the state of SGS anisotropy.
In the left half of the Lumley triangle, the shape of the stress ellipsoid is a prolate
spheroid (one small eigenvalue). In the right half, the stress ellipsoid is an oblate
spheroid (one large eigenvalue). If 〈τij|ur〉 is isotropic, both ξ and η are zero. The
results in figure 3 show that the conditional mean SGS stress is generally close to
axisymmetric and is less anisotropic (smaller values of ξ and η) for the strongly
convective surface layer than for the weakly convective one due to the weaker vertical
shear. For large filter widths, figure 3(a,c) shows that 〈τij|ur〉 is quite anisotropic when
ur

3 is positive. For negative ur
1, the state of anisotropy is close to η=−ξ (one small

eigenvalue) since the SGS stress is more horizontally isotropic due to the weaker
vertical shear. For positive ur

1, it transitions toward η= ξ (one large eigenvalue) due to
stronger shear. When ur

3 is negative, the SGS stress is generally much less anisotropic.
As the filter width decreases (figure 3b,d), the state of anisotropy tends to move

toward η = ξ , indicating that 〈τij|ur〉 is close to axisymmetric with one large
eigenvalue. This change is consistent with the fact that the peaks of the u and v

spectra occur at lower wavenumbers than that of the w spectrum (Kaimal et al.
1972), and therefore a smaller filter width will cause 〈τ11|ur〉 and 〈τ22|ur〉 to fall
off much faster than 〈τ33|ur〉. In addition, the shear production plays a greater role,
resulting in larger magnitudes of 〈τ11|ur〉 compared to 〈τ22|ur〉 (figure 2). For very
small filter widths, however, the SGS stress appears to approach isotropy. The results
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FIGURE 4. Conditional mean of the measured SGS horizontal temperature flux for
the (a) weakly convective (0 < −z/L 6 1, with mean −z/L = 0.45) and (b) strongly
convective (1 < −z/L 6 2.5, with mean −z/L = 1.70) surface layers and varying
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FIGURE 5. Conditional mean of the measured SGS vertical temperature flux for the
(a) weakly convective (0<−z/L6 1, with mean −z/L= 0.45) and (b) strongly convective
(1 < −z/L 6 2.5, with mean −z/L = 1.70) surface layers. The data are grouped as in
figure 4.

also show that the peak of the conditional mean SGS stress decreases by at most 40 %
when the filter width is decreased by a factor of 5 (figure 2), while the magnitude
of the (unconditional) mean SGS stress 〈τij〉 decreases by nearly 60 % for the same
filter width reduction (Nguyen et al. 2013). Therefore, although it is less anisotropic,
the dependence of 〈τij|ur〉/〈τij〉 (the magnitude of the conditional mean SGS stress
relative to its unconditional mean) on ur does not become weaker as the filter width
decreases, contrary to the notion of local isotropy, which suggests that the dependence
of SGS stress on the resolvable-scale velocity should weaken.

The horizontal and vertical components of the conditional mean SGS potential
temperature flux, 〈F1|θ r〉 and 〈F3|θ r〉, are shown in figures 4 and 5, respectively,
for the weakly and strongly convective surface layers. We note that the non-



Subgrid-scale physics in the convective atmospheric surface layer 307

dimensionalized conditional mean fluxes have opposite signs relative to the actual
fluxes since T∗< 0 for unstable surface layers. The results show that 〈F1|θ r〉 (〈F3|θ r〉)
is positive (negative) and increases in magnitude with θ r. For negative θ r, the
magnitude of 〈Fi|θ r〉 is smaller and its dependence on θ r is weaker. It also decreases
with increasing Λw/∆f since the SGS temperature flux is more isotropic for smaller
filter widths. The horizontal flux is weaker for the strongly convective surface layer
since, in a horizontally homogeneous surface layer, horizontal scalar flux is produced
primarily by tilting of vertical scalar flux by vertical wind shear (Hatlee & Wyngaard
2007; Chen et al. 2010), which disappears under free convection. In contrast, the
vertical flux appears to be much less dependent on the surface-layer instability.
Similar to the conditional mean SGS stress, the conditional mean SGS temperature
flux has a non-diminishing dependence on the resolvable-scale temperature for all
filter widths, although its level of anisotropy decreases. Figures 4 and 5 show that the
peaks of the conditional mean SGS horizontal and vertical fluxes decrease by at most
50 % when the filter width is decreased by a factor of 5, although the magnitudes
of the mean fluxes decrease by nearly 70 % for the same filter width reduction
(Nguyen et al. 2013). Therefore, although it is less anisotropic, the dependence of
the normalized conditional mean SGS temperature flux 〈Fi|θ r〉/〈Fi〉 does not become
weaker as the filter width decreases, suggesting that it has a strong influence on the
resolvable-scale temperature PDF even for inertial-range filter widths.

3.2. Conditional mean SGS stress budget
3.2.1. Conditional mean SGS production

The results for the conditional mean SGS production rate show that the trends of
〈P11|ur〉 and 〈P22|ur〉 are similar to those of 〈τ11|ur〉 and 〈τ22|ur〉 (generally increasing
with ur

3) and therefore are not repeated here. The trends of 〈PB33|ur〉 are similar
to those of 〈τ33|ur〉, while 〈P33|ur〉 generally decreases with ur

3. Instead, to better
understand the conditional energy transfer among the normal components of the
SGS stress by 〈Pαα|ur〉, we examine the deviatoric and isotropic contributions of the
production tensor, P ij = Pd

ij − (2/3)τkkSij, where Pd
ij =−[τ d

ik(∂ur
j/∂xk)+ τ d

jk(∂ur
i/∂xk)]

and Sij is the resolvable-scale strain rate. Here, 〈Pd
ij|ur〉 represents conditional

production due to the interaction between the deviatoric part of the SGS stress and
the resolvable-scale velocity gradient (anisotropic production), while 〈−(2/3)τkkSij|ur〉
represents conditional production due to the straining of the isotropic part of the
SGS stress by the resolvable-scale strain rate (isotropic production). The normal
components of the former (Pd

αα) transfer energy from the resolvable to the subgrid
scales (i.e. spectral transfer), while those of the latter (−(2/3)τkkSαα) redistribute
energy among the normal components of the SGS stress since −(2/3)τkkSii = 0.
The conditional mean production rates of the streamwise and vertical SGS stress
components are shown in figure 6(a–d); the spanwise production component has
trends qualitatively similar to that of the streamwise component and therefore is
not included. Figure 6(b,d) shows that, for negative ur

3 fluctuations (downdrafts),
〈−(2/3)τkkS11|ur〉 (and 〈−(2/3)τkkS22|ur〉) are negative and 〈−(2/3)τkkS33|ur〉 is
positive, indicating inter-component exchange (〈τ11|ur〉 and 〈τ22|ur〉 losing energy to
〈τ33|ur〉); the conditional spectral transfer (figure 6a,c) is also weaker and negative
for very intense downdrafts. However, because their magnitudes are relatively small,
the effects of 〈−(2/3)τkkSαα|ur〉 and 〈Pd

αα|ur〉 on the SGS anisotropy are weak. For
positive ur

3 fluctuations (updrafts), 〈−(2/3)τkkS11|ur〉 is positive and 〈−(2/3)τkkS33|ur〉
is negative, indicating conditional energy transfer from the vertical to the horizontal
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FIGURE 6. Conditional mean deviatoric and isotropic production of (a,b) 〈τ11|ur〉
and (c,d) 〈τ33|ur〉; and the conditional mean (e) forward and (f ) backscatter
contributions of SGS TKE for the strongly convective (0.8 < −z/L 6 1.5, with
mean −z/L = 1.14) surface layer. (a) 〈Pd

11|ur
1, ur

3〉; (b) 〈−(2/3)τkkS11|ur
1, ur

3〉;
(c) 〈Pd

33|ur
1, ur

3〉; (d) 〈−(2/3)τkkS33|ur
1, ur

3〉; (e) 〈Pf |ur
1, ur

3〉; (f ) 〈Pb|ur
1, ur

3〉.
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FIGURE 7. Conditional mean of the measured SGS pressure, 〈p− pr|ur
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3〉, for the (a)
weakly convective (0<−z/L6 0.75, with mean −z/L= 0.35) and (b) strongly convective
(0.75<−z/L 6 1.75, with mean −z/L= 1.31) surface layers.

velocity components; the conditional spectral transfer is also positive and much larger
for 〈τ11|ur〉, resulting in surface-layer anisotropy.

The forward contribution to the conditional mean transfer, 〈Pf |ur〉, and the
backscatter contribution, 〈Pb|ur〉, of SGS turbulent kinetic energy (TKE) are shown in
figures 6(e) and 6(f ), respectively; here, Pf = (P + |P|)/2, Pb= (P − |P|)/2, and
P =Pf +Pb (Piomelli, Yu & Adrian 1996), where P = Pkk/2 is the production
rate of TKE. The results show strong conditional forward transfer (Pf > |Pb|)
for positive ur

3 (and ur
1) since the spectral transfer associated with the normal and

shear strain rates is positive for updrafts, while for downdrafts there is conditional
backscatter (Pf < |Pb|). The backscatter contribution to the conditional mean transfer
increases with Λw/∆f (decreasing filter width), consistent with the observations of
Sullivan et al. (2003) for the mean production. Similar to the conditional mean
SGS stress, the conditional mean SGS production rate also has a non-diminishing
dependence on the resolvable-scale velocity for all filter widths. Its magnitude is also
non-diminishing, which is expected for the normal components of the production
tensor since their sum is the spectral transfer rate, but suggests that 〈P ij|ur〉 has a
strong influence on the resolvable-scale velocity JPDF even for inertial-range filter
widths.

3.2.2. Conditional mean SGS pressure
To aid our analysis of the conditional mean SGS pressure–strain-rate correlation,

we present the results for the conditional mean SGS pressure, 〈p− pr|ur〉, in figure 7
for the weakly and strongly convective surface layers. Due to the limited amount of
pressure data available, the mean (weight-averaged) values of the stability parameter
here differ from those of the conditional mean SGS production since the number
of datasets is reduced. The results show that 〈p − pr|ur〉 is strongly dependent on
both the streamwise and vertical components of the resolvable-scale velocity. It is
generally positive (negative) for negative (positive) ur

3 fluctuations, the former due
to the deceleration of the mixed-layer eddies as they approach the ground. It also
increases with ur

1 and its dependence on ur
1 is enhanced by negative ur

3 and weakened
by positive ur

3. In neutral boundary layers, such dependence has been attributed to the
coherent structures generally found in turbulent boundary layer flows (Robinson 1991):
strong positive pressure fluctuations associated with negative ur

3 and positive ur
1 are due
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to large-scale sweeps of high-velocity fluid downward toward the wall, while strong
negative pressure fluctuations associated with positive ur

3 and negative ur
1 are likely

due to ejections of low-momentum fluid upward away from the wall.
In convective surface layers, the large convective eddies have dominant contributions

to the horizontal velocity fluctuations, resulting in similar but stronger trends for
negative ur

3 fluctuations. For positive ur
3 fluctuations, strong temperature fluctuations

in thermal plumes generate low-pressure regions and hence negative values of
〈p− pr|ur〉 near the surface, which are enhanced by negative ur

1 fluctuations (smaller
ur

1). The magnitude of 〈p − pr|ur〉 increases with −z/L since the characteristic
length scales of the convective eddies increase with unstable stratification, resulting
in a larger fluctuating pressure field and stronger pressure reflections from the
image velocity field. Recall here that the convective atmospheric surface layer is
characterized by small regions of intense buoyancy-driven updrafts surrounded by
broader regions of downdrafts caused by the large convective eddies of the size of
the boundary layer depth (Kaimal et al. 1976; Lenschow & Stephens 1980; Wilczak
& Tillman 1980; Khanna & Brasseur 1997). The trends of 〈p− pr|ur〉 for the strongly
convective surface layer are generally similar to those of the weakly convective
ABL. For the former, the results show much stronger positive pressure fluctuations
compared to negative pressure events, suggesting much stronger large-scale vertical
eddy compression during downdrafts compared to relatively weaker eddy stretching
during updrafts, therefore resulting in broader regions of coherent positive pressure
fluctuations at the wall. As the filter width decreases, the dependence of the SGS
pressure on ur

3 generally weakens since the smaller SGS eddies (those with length
scales smaller than the measurement height) are less likely to be affected by the wall
(Elliott 1972).

3.2.3. Conditional mean SGS pressure–strain-rate correlation
The streamwise and vertical components of the conditional mean SGS pressure–

strain-rate tensor, 〈R11|ur〉 and 〈R33|ur〉, are shown in figures 8 and 9. Nguyen et al.
(2013) previously showed that, for weakly convective surface layers, the streamwise
component of the mean SGS pressure–strain-rate tensor, 〈R11〉, is negative for all
filter scales. This is expected since, for these surface layers, energy from the mean
flow is fed to the subgrid scales through 〈P11〉 and redistributed to 〈τ22〉 and 〈τ33〉
through 〈Rij〉. Figure 8(a,b) shows 〈R11|ur〉< 0 and 〈R33|ur〉> 0 for most values of
ur

1 and ur
3, indicating conditional energy redistribution from the streamwise to the

vertical velocity component through pressure-strain interaction. Recall that, for small
values of −z/L, 〈τ11|ur〉 is much larger than 〈τ33|ur〉 and 〈P11|ur〉 is much larger
than 〈P33|ur〉 and 〈PB33|ur〉; therefore, the redistribution is consistent with return to
isotropy. The weaker rate of pressure redistribution for negative ur

3 reflects the wall
blocking effect (hereinafter, we use this term to refer to the restriction of the vertical-
velocity fluctuations): during downdrafts, the wall blocking results in a reduction of
the wall-normal SGS velocity component and the rate of redistribution. The pressure
fluctuations reflecting from the wall (due to the image velocity field or the image
Green’s function), on the other hand, can enhance the rate of redistribution, as was
alluded to by Hanjalić & Jakirlić (2002). The wall blocking effect, however, is likely
to be stronger. Thus, for the weakly convective surface layer, the effect of the wall
is to dampen the rate of conditional energy redistribution from 〈τ11|ur〉 to 〈τ22|ur〉
and 〈τ33|ur〉 through 〈Rij|ur〉, therefore weakening the rate of return to isotropy. The
magnitude of 〈Rij|ur〉 also decreases with increasing Λw/∆f due to the isotropization
of the SGS stress with decreasing filter width.
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3〉, components
of the conditional mean SGS pressure–strain-rate correlation for the strongly convective
(0.75<−z/L 6 1.75, with mean −z/L= 1.31) surface layer.

For moderately and strongly convective surface layers, the results show that energy
is also fed to 〈τ33|ur〉 through buoyant production and pressure transport (discussed
in § 3.2.4). Nguyen et al. (2013) have shown that, for sufficiently convective surface
layers, the mean pressure–strain-rate tensor 〈Rij〉 has a non-monotonic dependence on
the filter width: while return to isotropy dominates for small filter widths, 〈Rij〉 causes
SGS anisotropy for large filter widths. For these surface layers, figure 9 shows that
〈R11|ur〉 and 〈R33|ur〉 are negatively and positively correlated with ur

3, respectively,
and that their magnitudes generally increase with |ur

3|. For positive ur
3 fluctuations

(updrafts), 〈R11|ur〉 is negative and 〈R33|ur〉 positive, indicating conditional energy
redistribution from 〈τ11|ur〉 to 〈τ33|ur〉 through pressure–strain-rate interaction. The
rate of this inter-component exchange increases with (positive) ur

3 owing to stronger
vertical stretching of the integral-scale eddies, resulting in a larger conditional energy
transfer rate from the horizontal to the vertical velocity component.

For negative ur
3 fluctuations, 〈R11|ur〉 is positive and 〈R33|ur〉 is negative (for

negative ur
1), indicating conditional energy redistribution from 〈τ33|ur〉 to 〈τ11|ur〉
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(although there are some positive values of 〈R33|ur〉 for positive ur
1, which are

probably due to the one-sided finite-difference approximation of the vertical
derivative). The results thus show that 〈Rij|ur〉 generates anisotropy due to the
near-wall positive SGS pressure fluctuations found in the stagnation region within
downdrafts. We note that if the updrafts were identical to downdrafts (but with
reversed velocity), the stagnation region would also contain positive SGS pressure
fluctuations and the contributions to 〈Rαα〉 from both updrafts and downdrafts would
cancel each other. The negative values of 〈R33〉 and positive values of 〈R11〉 (and
〈R22〉) are therefore primarily a consequence of the updrafts and downdrafts being
asymmetric. The role played by the wall blocking effect within this mechanism is to
impede the vertical-velocity fluctuations, thus enhancing anisotropy. In the meantime,
the pressure reflected from the surface acts to augment the pressure fluctuations and
therefore is likely to enhance anisotropy (but unlikely to be the main cause of it).
Thus, unlike the weakly convective (shear-dominated) surface layer, where the wall
blocking and pressure reflections have opposite effects, here both act to enhance
anisotropy. The contribution from the downward flow dominates the evolution of
the (unconditional) mean SGS stress and therefore causes generation of anisotropy
through the mean SGS pressure–strain-rate correlation, as was previously alluded to
by Nguyen et al. (2013).

The above-mentioned effects are, moreover, enhanced by convective instability
(since buoyancy is more dominant, and therefore the convective eddies are more
energetic) and weakened as the filter width decreases since the wall contribution
diminishes for very small filter widths, and the effects of return to isotropy, although
also weakening in absolute terms, becomes relatively more important (Nguyen et al.
2013). For very small filter widths (Λw/∆f > 10), there is an eventual reversal of the
direction of energy exchange (〈τ33|ur〉 now receiving from 〈τ11|ur〉, regardless of the
value of ur

3) and the role of 〈Rij|ur〉 for these filter widths is similar to that for the
weakly convective surface layer (i.e. return to isotropy).

The dependence of 〈R22|ur〉 on ur
3 is less apparent due to larger scatter in the

computed statistics and therefore is not shown here. However, our previous analysis
of 〈R22〉 has shown that the spanwise component of the mean pressure–strain-rate
correlation is qualitatively similar to that of the vertical component for the weakly
convective surface layer (〈τ22〉 receiving energy from 〈τ11〉) and to that of the
streamwise component for moderately and strongly convective surface layers (〈τ22〉
receiving energy from 〈τ33〉). Similarly, based on the budgets of 〈τ11|ur〉 and 〈τ33|ur〉,
we can infer that the behavior of 〈R22|ur〉 is probably similar to that of 〈R33|ur〉
for the near-neutral surface layer (conditional energy redistribution from 〈τ11|ur〉 to
〈τ22|ur〉). For strongly convective surface layers, its behaviour is likely to be similar
to that of 〈R11|ur〉.
3.2.4. Conditional mean SGS pressure transport

Previous analyses of the (unconditional) mean SGS stress by Nguyen et al. (2013)
showed that the SGS pressure transport is a major source of energy in the budget
of 〈τ33〉 (and, therefore, a major source of energy in the budget of the mean SGS
TKE), with magnitudes comparable to those inferred in the literature (Wyngaard &
Coté 1971; McBean & Elliott 1975; Bradley, Antonia & Chambers 1981; Wilczak
& Businger 1984). The results for the conditional mean SGS pressure transport,
〈∂T (p)

333/∂x3|ur〉, shown in figure 10, however, indicate that it can be both a source
and a sink of energy in the evolution of 〈τ33|ur〉. It is generally small for weakly
convective surface layers (figure 10a), except for large filter widths, for which it
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FIGURE 10. Conditional mean SGS pressure transport of 〈τ33|ur〉, 〈∂T (p)
333/∂x3|ur

1, ur
3〉, for

the (a) weakly convective (0 < −z/L 6 0.3, with mean −z/L = 0.23) and (b) strongly
convective (1<−z/L 6 2.5, with mean −z/L= 1.83) surface layers.

is a gain and generally increases with ur
3. For strongly convective surface layers

(figure 10b) and large filter widths, 〈∂T (p)
333/∂x3|ur〉 is the dominant source of energy

for 〈τ33|ur〉 for positive ur
3 (since energy is imported downward from higher z by

pressure work) and a small loss for negative ur
3. For small filter widths, the pressure

transport is generally weak for negative ur
3 and a gain for positive ur

3, depending
weakly on ur

1. The results for positive ur
3 fluctuations suggest that the conditional

mean pressure transport may be driven by the negative local pressure minima which
follow large-scale updrafts (figure 7). The physics associated with negative SGS
pressure transport for negative ur

3 fluctuations, however, is unclear and warrants
further study.

3.2.5. Conditional mean SGS turbulent transport
The conditional mean turbulent transport of 〈τ11|ur〉 and 〈τ33|ur〉, shown in

figure 11 for the strongly convective surface layer, is generally negative for positive
ur

3 fluctuations, indicating upward transport of TKE. It is small for negative ur
3

fluctuations. Its magnitude generally decreases with the filter width and increases
with −z/L due to the stronger thermal plumes which are characteristic of the highly
convective surface layer. The results also show that the magnitude and dependence of
〈∂T (t)

11k/∂xk|ur〉 on ur are generally similar to those of 〈∂T (t)
33k/∂xk|ur〉, indicating that

the conditional mean turbulent transport is nearly isotropic and therefore has a weak
influence on the anisotropy of the conditional mean SGS stress. Its magnitude is also
relatively small compared to the other budget terms, therefore making 〈∂T (t)

ααk/∂xk|ur〉
a relatively minor source of SGS energy. We note that the mean (weight-averaged)
values of the stability parameter in figure 11 are slightly higher than those for the
previous figures since calculation of the turbulent transport requires data from the
upwind sonic anemometer array (for the streamwise derivative) and therefore reduces
the number of usable datasets (from 26 to 18) since we require that both the upwind-
and downwind-array measurements meet quality thresholds.

3.2.6. Advection of the conditional mean SGS stress
The vertical advection of 〈τ11|ur〉 and 〈τ33|ur〉 in physical space, shown in figure 12,

is a major source (for negative ur
3) and sink (for positive ur

3) of energy in the
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FIGURE 11. Conditional mean SGS turbulent transport of (a) 〈τ11|ur〉, 〈∂T (t)
11k/∂xk|ur
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3〉,

and (b) 〈τ33|ur〉, 〈∂T (t)
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1, ur
3〉, for the strongly convective (1.5 < −z/L 6 2.5, with

mean −z/L= 2.1) surface layer.
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FIGURE 12. Vertical advection of (a) 〈τ11|ur〉, −v3∂〈τ11|ur
1, ur

3〉/∂x3, and (b) 〈τ33|ur〉,
−v3∂〈τ33|ur

1, ur
3〉/∂x3, for the strongly convective (0.8 < −z/L 6 1.5, with mean −z/L =

1.14) surface layer.

budgets of the conditional mean SGS stress. For negative ur
3 fluctuations, both

−v3∂〈τ11|ur〉/∂x3 and −v3∂〈τ33|ur〉/∂x3 are positive, indicating gains by 〈τ11|ur〉 and
〈τ33|ur〉 due to downward advection of SGS TKE. For positive ur

3 fluctuations, the
advection terms are negative, indicating losses by 〈τ11|ur〉 and 〈τ33|ur〉 due to upward
advection of SGS energy. The energy loss due to upward advection is comparable in
magnitude to the conditional mean shear production (for 〈τ11|ur〉) and the conditional
mean pressure transport (for 〈τ33|ur〉), both of which are the major budget gains
during updrafts. However, because it has similar effects on both 〈τ11|ur〉 and 〈τ33|ur〉,
−v3∂〈ταα|ur〉/∂x3 does not contribute significantly to the SGS anisotropy. Advection
of the conditional mean SGS stress in velocity space due to the resolvable-scale
acceleration (second term in (1.1); not shown) is negligible, while the remaining
budget term representing the covariance of the conditional mean fluctuations of the
SGS stress and the conditional mean resolvable-scale acceleration is prohibitively
difficult to compute and therefore omitted here.

3.2.7. Conditional mean SGS shear stress budget
Similar to 〈τ13〉, the evolution of 〈τ13|ur〉 is dominated by the conditional mean

shear production, buoyant production and velocity–pressure-gradient correlation. The
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FIGURE 13. Sum of the conditional mean shear production and conditional mean buoyant
production rates of 〈τ13|ur〉, 〈P13+PB13|ur

1, ur
3〉, for the (a) weakly convective (0<−z/L6

0.8, with mean −z/L= 0.35) and (b) strongly convective (0.8<−z/L 6 1.5, with mean
−z/L= 1.14) surface layers.

conditional mean turbulent transport is small, while viscous dissipation is negligible
due to local isotropy. The total production rate of 〈τ13|ur〉, 〈P13 + PB13|ur〉, is shown
in figure 13. (Although production of 〈τ13|ur〉 due to shear exceeds production due
to buoyancy, both 〈P13|ur〉 and 〈PB13|ur〉 follow the trends shown in figure 13.) The
results show that 〈P13 + PB13|ur〉 is negative, indicating production of 〈τ13|ur〉 since
the shear stress is negative. Its magnitude generally increases with ur and −z/L. The
results for 〈P13|ur〉 in terms of the contributions from the deviatoric and isotropic
parts of the SGS stress (Pd

13 and −(2/3)τkkS13, respectively; not shown) indicate
that the former is positive, indicating destruction of the conditional mean SGS shear
stress due to the straining and rotation of the anisotropic part of the SGS turbulence,
while the latter is negative with nearly twice the magnitude, indicating production
of 〈τ13|ur〉 due to the straining of the isotropic part of the SGS turbulence. Here,
〈−(2/3)τkkS13|ur〉 decreases in magnitude with increasing Λw/∆f (decreasing filter
width) as the interaction between 〈τkk〉 and the shear strain weaken, while 〈Pd

13|ur〉
also decreases with Λw/∆f since 〈τij|ur〉 is less anisotropic.

The conditional mean SGS velocity–pressure-gradient correlation, 〈Π13|ur〉, which
includes both the effects of the conditional mean pressure destruction and the
conditional mean pressure transport of 〈τ13|ur〉, is shown in figure 14. The results
show that 〈Π13|ur〉 is positive for both weakly and strongly convective surface layers
and all filter widths, indicating destruction of the conditional mean SGS shear stress.
Similar to 〈P13|ur〉 and 〈PB13|ur〉, 〈Π13|ur〉 increases in magnitude with ur

1 and ur
3.

Its dependence on ur weakens with Λw/∆f since the resolvable-scale velocity has
a diminishing effect on the smaller SGS eddies. The results for the conditional
mean pressure–strain-rate correlation and the conditional mean pressure transport
show that the former is dominant, with trends similar to 〈Π13|ur〉. We note that the
trends and magnitude of 〈Π13|ur〉 generally counter those of the conditional mean
shear and buoyant production for both weakly and strongly convective surface layers
and all filter widths, indicating that the conditional mean velocity–pressure-gradient
correlation plays the usual role of causing return to isotropy in the evolution of
〈τ13|ur〉. The weaker rate of pressure destruction for negative ur

3 also indicates that
the wall blocking effect merely dampens the rate of return to isotropy. The conditional
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FIGURE 14. Conditional mean SGS velocity–pressure-gradient correlation in the transport
equation of 〈τ13|ur〉, 〈Π13|ur

1, ur
3〉, for the (a) weakly convective (0 < −z/L 6 0.75, with

mean −z/L = 0.23) and (b) strongly convective (1.75 < −z/L 6 2.5, with mean −z/L =
1.83) surface layers.

mean advection (not shown) is positive (a sink) during updrafts and small during
downdrafts, with magnitudes much smaller than the conditional mean production and
pressure destruction.

3.3. Conditional mean SGS temperature flux budget
The conditional mean production rates of the horizontal and vertical components of the
SGS potential temperature flux are shown in figures 15 and 16, respectively; we note
that the non-dimensionalized flux production terms shown have opposite signs relative
to the actual flux production since T∗ < 0 for unstable surface layers. The results
show that 〈PF1|θ r〉 is positive and 〈PF3 + PBF3|θ r〉 is negative (indicating production
of 〈F1|θ r〉 and 〈F3|θ r〉, respectively), both increasing in magnitude with θ r. Although
the production rate of 〈F3|θ r〉 due to stratification (〈PF3|θ r〉) exceeds production due
to buoyancy (〈PBF3|θ r〉) for the weakly convective surface layer, both generally follow
the trends shown in figure 16. For positive θ r fluctuations, the eddies associated with
updrafts generally come from near the ground and therefore carry larger amounts
of vertical SGS heat flux and SGS stress. They are also likely to have experienced
stronger shear and vertical temperature gradient, both of which were shown to be
the dominant contributions to 〈PFi〉 (Chen et al. 2010). For negative θ r fluctuations,
the eddies associated with downdrafts generally come from the mixed layer and carry
relatively small amounts of SGS heat flux and SGS stress (buoyant production is also
smaller); therefore, 〈PFi|θ r〉 (and 〈PBF3|θ r〉) are smaller.

The magnitudes of 〈PFi|θ r〉 also decrease with increasing Λw/∆f because the SGS
velocity and scalar are more isotropic for smaller filter widths (isotropy implies
vanishing heat flux). For small filter widths, the dependence of 〈PF1|θ r〉 on θ r also
weakens for negative temperature fluctuations (downdrafts) since the SGS flux carried
by the returning downflow is likely to be well-mixed; this is less the case for
positive temperature fluctuations (updrafts). As −z/L increases, the conditional mean
production rate of 〈F1|θ r〉 decreases (for large filter widths) because the turbulence
field is increasingly isotropic in the horizontal plane, resembling that of local free
convection. The dependence of 〈PF1|θ r〉 on z/L is weaker for larger values of Λw/∆f
because, for these filter widths, the SGS flux is already quite isotropic (the effects
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FIGURE 15. Conditional mean production of SGS horizontal temperature flux for the
(a) weakly convective (0 < −z/L 6 1, with mean −z/L = 0.45) and (b) strongly
convective (1 < −z/L 6 2.5, with mean −z/L = 1.70) surface layers and varying
values of the wavelength–filter-width ratio: @, Λw/∆f 6 5; A, 5 < Λw/∆f 6 10;
E, Λw/∆f > 10.
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FIGURE 16. Conditional mean production of SGS vertical temperature flux for the
(a) weakly convective (0<−z/L6 1, with mean −z/L= 0.45) and (b) strongly convective
(1 < −z/L 6 2.5, with mean −z/L = 1.70) surface layers. The data are grouped as in
figure 15.

of buoyancy are also weaker). Similar filter-width dependence is shown for 〈PF3|θ r〉.
As −z/L increases, however, 〈PF3|θ r〉, when non-dimensionalized using surface-layer
scaling, should increase to a constant value since 〈F3|θ r〉 is produced at a nearly
constant rate in the free convection limit (Wyngaard, Coté & Izumi 1971). However,
since 〈PBF3|θ r〉 increases with −z/L, 〈PF3+PBF3|θ r〉 also increases slowly with −z/L.

The horizontal and vertical components of the conditional mean temperature–
pressure-gradient correlation are shown in figures 17 and 18, respectively. Assuming
nominal horizontal homogeneity of the field site, the pressure transport of 〈F1|θ r〉
is small and hence 〈ΠF1|θ r〉 is dominated by the conditional mean SGS pressure–
temperature-gradient correlation 〈RF1|θ r〉, which we show in place of 〈ΠF1|θ r〉.
Figure 17 shows that 〈RF1|θ r〉 is negative for both weakly and strongly convective
surface layers and all filter widths, indicating destruction of 〈F1|θ r〉; its trends and
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FIGURE 17. Conditional mean SGS pressure–temperature-gradient correlation in the
budget of 〈F1|θ r〉 for the (a) weakly convective (0<−z/L 6 1, with mean −z/L= 0.45)
and (b) strongly convective (1<−z/L6 2.5, with mean −z/L= 1.70) surface layers. The
data are grouped as in figure 15.
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FIGURE 18. Conditional mean SGS temperature–pressure-gradient correlation in the
budget of 〈F3|θ r〉 for the (a) weakly convective (0<−z/L 6 1, with mean −z/L= 0.45)
and (b) strongly convective (1<−z/L6 2.5, with mean −z/L= 1.70) surface layers. The
data are grouped as in figure 15.

magnitude generally balance those of 〈PF1|θ r〉 (the advection and turbulent transport,
not shown, are both small). Similar to the flux production rate, its magnitude increases
with increasing θ r and ∆f (decreasing Λw/∆f ) since the scalar field anisotropy
increases with the vertical shear and filter scale. As the filter width decreases, 〈RF1|θ r〉
weakens since the smaller SGS eddies are less anisotropic, therefore the tendency
of 〈RF1|θ r〉 to drive the conditional mean flux towards isotropy weakens. It also
decreases with increasing −z/L since the scalar field is more horizontally isotropic
as local free convection scaling is approached. Figure 18 shows that 〈ΠF3|θ r〉 (which
includes the conditional mean SGS pressure transport and the conditional mean SGS
pressure–temperature-gradient correlation) is positive for both weakly and strongly
convective surface layers and all filter widths, indicating destruction of 〈F3|θ r〉.
Similar to the vertical SGS temperature flux production rate, its magnitude increases
with increasing θ r and decreases with decreasing filter width. It also increases
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FIGURE 19. Schematics summarizing the conditional energy transfer during (a) updrafts
and (b) downdrafts for the strongly convective surface layer and large filter widths. Solid
and dashed arrows represent major and minor energy transfer (in relative magnitudes),
respectively. The sizes of the circles containing τ11 and τ33 indicate their relative
magnitudes. An arrow pointing towards (away from) a circle represents a source (sink).
Because the pressure transport and turbulent transport are relatively weak and contain
larger scatter for ur

3 < 0, we omit their contributions in (b).

asymptotically with −z/L to a constant (local free convection) rate. Although the
trends of 〈ΠF3|θ r〉 generally counter those of 〈PF3+PBF3|θ r〉, its measured magnitude
is considerably smaller than the total production rate, perhaps due to the attenuation
of the fluctuating vertical pressure gradient by the finite difference scheme. Its trends,
however, suggest that 〈ΠF3|θ r〉 plays the usual role of causing return to isotropy in
the budget of 〈F3|θ r〉.

3.4. Combined effects of the budget terms on the conditional mean SGS stress
The above results show that the budgets of the normal components of the conditional
mean SGS stress are much more complex than those of the conditional mean SGS
shear stress and SGS temperature flux, which are simply dominated by the conditional
mean production and the pressure destruction. The budget of 〈τ11|ur〉 is dominated by
the conditional mean production, the pressure–strain-rate correlation and the turbulent
transport, while that of 〈τ33|ur〉 also includes the conditional mean buoyant production
and the pressure transport. To summarize the effects of the budget terms on the SGS
stress structure, we show in figure 19 schematics of the conditional energy transfer
during updrafts and downdrafts. A summary of the energy balance is given below.

When ur
3 (and ur

1) are positive, 〈τ11|ur〉 receives large amounts of energy from the
resolvable scales through the conditional mean shear production. Meanwhile, 〈τ33|ur〉
receives energy from the buoyant production, the pressure–strain-rate correlation
and the pressure transport, with the last term serving as the dominant source of
SGS energy for positive ur

3 fluctuations. The conditional mean advection and, to a
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lesser extent, the conditional mean turbulent transport move much of this energy
to higher z, while the pressure–strain-rate correlation redistributes relatively small
amounts of energy from 〈τ11|ur〉 to 〈τ33|ur〉. The conditional redistribution part of the
production tensor removes relatively small amounts of energy from 〈τ33|ur〉. Because
the conditional mean advection has similar effects on both 〈τ11|ur〉 and 〈τ33|ur〉, it
does not contribute significantly to the SGS anisotropy. However, due to the large
gains by 〈τ11|ur〉 through shear production, the resulting SGS stress structure for
positive ur

3 and ur
1 is anisotropic with one large eigenvalue. As ur

1 decreases, 〈τij|ur〉
remains anisotropic but transitions toward a one small eigenvalue structure since
〈P11|ur〉 (although still larger than 〈P33|ur〉) is relatively weaker (compared to its
magnitude for positive ur

1) and more comparable in magnitude to 〈P22|ur〉.
When ur

3 is negative, the magnitudes of the budget terms are smaller due to
generally weaker spectral transfer (and hence weaker production). Here, 〈τ11|ur〉
receives SGS energy from 〈τ33|ur〉 through the pressure–strain-rate correlation,
contrary to return to isotropy. Meanwhile, both components receive a significant
amount of energy through advection. Again, because the conditional mean advection
has similar effects on both 〈τ11|ur〉 and 〈τ33|ur〉, it does not contribute significantly
to the SGS anisotropy. Additionally, 〈τ11|ur〉 loses a small amount of energy to
〈τ33|ur〉 through the conditional redistribution part of the production tensor, while
spectral transfer is small for both components (for very intense downdrafts, there is
conditional backscatter). The conditional mean buoyant production, turbulent transport
and pressure transport are also weak, and therefore the magnitude of 〈τ33|ur〉 is
smaller. Because both 〈τ11|ur〉 and 〈τ33|ur〉 and their budget terms are smaller, the
conditional mean SGS stress is much less anisotropic for negative ur

3.
The dominant SGS energy balance in the convective atmospheric surface layer

is therefore as follows. Shear production and pressure transport provide energy
(the former to 〈τ11|ur〉 and the latter to 〈τ33|ur〉) during updrafts. Advection,
meanwhile, removes much of this energy to higher z. During downdrafts, energy
is advected downward (from higher z) back to both components. At the same time,
the pressure–strain-rate correlation redistributes the energy from 〈τ33|ur〉 to 〈τ11|ur〉
(which is relatively larger), causing strong SGS anisotropy. Dissipation, although not
measured, is expected to be active and relatively isotropic. Using the current dataset,
Nguyen et al. (2013) have shown that the budgets of the (unconditional) mean SGS
stress and mean SGS temperature flux are approximately satisfied. In balancing the
budgets of the normal components of the mean SGS stress, they approximated the
mean dissipation rate using functional forms given in the literature (e.g. Caughey
& Wyngaard 1979). In the present study, since the (conditional) dissipation rate
was not measured, it is not possible to quantify the balance of the budgets of the
normal components of the conditional mean SGS stress. However, for the conditional
mean SGS shear stress (where dissipation is negligible due to local isotropy) and the
conditional mean SGS temperature flux (where there is no dissipation), the conditional
production is approximately balanced by the conditional pressure destruction (when
their magnitudes are interpolated to comparable z/L), and therefore the budgets for
these components appear to be satisfied. As stated previously, the imbalance of the
vertical scalar flux budget may be due to the attenuation of the fluctuating vertical
pressure gradient by the finite difference scheme.

4. Discussion and conclusions
Turbulence measurement data obtained in the convective atmospheric surface layer

during the AHATS field campaign were used to study the conditional mean SGS
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stress and the conditional mean SGS potential temperature flux. The field program
notably includes measurements of the fluctuating pressure, therefore allowing for the
budgets of the second-order SGS turbulence moments to be obtained. We showed
that the terms which evolve the budgets of the conditional mean SGS stress and
the conditional mean SGS temperature flux must be correctly predicted by the SGS
model in order for LES to reproduce the resolvable-scale velocity JPDF and the
resolvable-scale temperature PDF. We analysed the dependence of the budget terms
on the surface-layer stability and filter width and showed that they are closely
related to the dynamics of the convective atmospheric surface layer; more specifically,
when conditioned on the resolvable-scale velocity, the budget terms show a strong
dependence on the updrafts generated by buoyancy, downdrafts associated with the
returning flow of convective eddies, and wall blocking effects. The results provide
new insights into the SGS physics first educed in the previous study of the mean
budget terms by Nguyen et al. (2013), particularly those involving the SGS pressure.

The present study shows that the budgets of the normal components of the
conditional mean SGS stress are most complex for the strongly convective surface
layer and large filter widths, where the conditional mean shear and buoyant production,
advection in physical space, pressure transport, pressure–strain-rate interaction and
dissipation play an active role. During updrafts, the conditional mean shear production
and the conditional mean pressure transport are the dominant sources of SGS energy
(the former for 〈τ11|ur〉 and the latter for 〈τ33|ur〉), while the conditional mean
advection and dissipation are the dominant sinks for both. During downdrafts, the
conditional mean advection, which feeds back to 〈τ11|ur〉 and 〈τ33|ur〉 much of the
energy taken from them during updrafts, is the dominant source for the latter. Much
of the energy gained by 〈τ33|ur〉 from advection is transferred to 〈τ11|ur〉 by the
conditional mean pressure–strain-rate correlation. Meanwhile, dissipation is a sink for
both components. It is notable that the pressure transport is large only during updrafts,
considering that much of the energy transfer from 〈τ33|ur〉 to 〈τ11|ur〉 through the
pressure–strain-rate correlation occurs during downdrafts. The role played by the
conditional mean advection is also notable given that advection of the (unconditional)
mean SGS stress vanishes in a horizontally homogeneous ABL.

The results for the conditional mean SGS pressure–strain-rate correlation show
that the normal components of 〈Rij|ur〉 have more complex behaviours in strongly
convective surface layers than in weakly convective ones due to the role played by
strong updrafts, downdrafts and wall effects. For weakly convective surface layers
and large filter widths, much of the conditional energy transfer from the resolvable
to the subgrid scales is first fed primarily to the streamwise velocity component and
subsequently redistributed to the remaining (spanwise and vertical) components by the
conditional mean pressure–strain-rate correlation, consistent with return to isotropy.
For these surface layers, the role played by 〈Rij|ur〉 in the budget of the conditional
mean SGS stress is similar to that of 〈Rij〉 in the budget of the (unconditional)
mean SGS stress. For the former, we show that wall blockage of the vertical-velocity
fluctuations during downdrafts dampens the rate of conditional energy redistribution.
As the filter scale decreases, conditional mean production for the spanwise and
vertical components becomes significant and the conditional mean SGS stress is
likely to be more isotropic. Here, the role of 〈Rij|ur〉 diminishes, much like that of
〈Rij〉 in the budget of the mean SGS stress.

The behaviour of the conditional mean SGS pressure–strain-rate correlation for
moderately and strongly convective surface layers is qualitatively different from that
of the weakly convective surface layer. For these surface layers, 〈Rij|ur〉 redistributes
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energy from the (larger) horizontal to the (smaller) vertical velocity component during
updrafts, probably due to stronger vertical stretching of the energy-containing eddies.
During downdrafts, however, it redistributes SGS energy in the opposite direction
(i.e. from the smaller vertical to the larger horizontal velocity components) and is
the main cause of surface-layer SGS anisotropy, contrary to its commonly recognized
role. The results also show that the conditional mean SGS pressure is generally
positive for negative ur

3 and vice versa. Because of the asymmetry between the SGS
pressure within updrafts and downdrafts, however, generation of SGS anisotropy is
due to the positive SGS pressure fluctuations associated with the returning downflow
of the convective eddies. The role played by the wall blocking effect and wall
pressure reflection within this mechanism is to enhance the anisotropy, but the latter
is unlikely to be the main cause of anisotropy. The results substantiate the importance
of wall effects on the evolution of the (unconditional) mean SGS stress, for which
the pressure–strain-rate correlation is the primary cause of anisotropy (Nguyen et al.
2013). These effects, however, weaken with decreasing filter width since the effects
of the wall are reduced. For very small filter widths, the effects of return to isotropy
become relatively more important and the role of 〈Rij|ur〉 is similar to that for the
weakly convective surface layer (i.e. causing return to isotropy).

In contrast, the role of the conditional mean SGS velocity–pressure-gradient
correlation in the budget of the conditional mean SGS shear stress and that of
the conditional mean SGS temperature–pressure-gradient correlation in the budget of
the conditional mean SGS temperature flux are qualitatively similar for both weakly
and strongly convective surface layers; that is, they act to counter the conditional
mean production. The roles played by these terms are analogous to those of their
unconditioned counterparts in the budgets of the mean SGS shear stress and mean
SGS temperature flux.

The results also show that the pressure transport of TKE is relatively small for
weakly convective surface layers, while for strongly convective surface layers it can be
both a source and a sink of SGS energy, depending strongly on the resolvable-scale
vertical velocity. It is positive for positive ur

3 fluctuations and vice versa, the former
suggesting that the import of TKE into the surface layer by the pressure work is likely
to be due to the negative local pressure minima which follow large-scale updrafts.
The behaviour of the pressure transport for downdrafts, however, remains unclear and
warrants further study.

The conditional analyses in the present work have important implications for SGS
models, particularly models of the near-wall SGS pressure–strain-rate correlation.
A common approach to modelling the pressure–strain-rate correlation in Reynolds-
averaged Navier Stokes (RANS) parameterizations is to split the term into three parts
(slow, rapid and wall blocking (e.g. Pope 2000)) using the Green’s function solution
to the Poisson equation (Chou 1945) and to model each part separately. The slow
and rapid parts promote energy redistribution as a means of reducing the anisotropy
of the Reynolds stress and the Reynolds stress production tensors (e.g. Naot, Shavit
& Wolfshtein 1970), respectively, whereas the wall blocking part dampens the rate
of redistribution (e.g. Gibson & Launder 1978). The slow part is almost always
modelled using Rotta’s return-to-isotropy model (Rotta 1951). In the present study, the
approximate balance between the SGS production and the SGS pressure destruction
in the budgets of the conditional mean SGS shear stress and those of the conditional
mean SGS heat flux for both weakly and strongly convective surface layers and all
filter widths indicates that the pressure plays the expected role of causing return to
isotropy, consistent with models for the slow and rapid pressure–strain-rate correlation.
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Similar behaviour for the normal components of 〈Rij|ur〉 for the weakly convective
surface layer suggests that they can be modelled using conventional return-to-isotropy
models, as is done in Ramachandran & Wyngaard (2011). Smaller magnitudes of
〈Rij|ur〉 observed for negative ur

3 reflect the wall blocking effect, and can be properly
modelled using existing wall damping models. These models, however, are unable
to correctly predict the near-wall behaviour of the pressure–strain-rate correlation in
the moderately and strongly convective surface layers, where the sign of 〈Rij|ur〉
is reversed during downdrafts. Because this effect is most significant for large filter
widths, new models for both the Reynolds and SGS pressure–strain-rate correlation
that can properly reflect the near-wall dynamics of the convective boundary layer, as
revealed in the present study, are needed.
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Appendix A. Derivation of the transport equations for 〈τij|ur〉 and 〈Fi|θ r〉
The transport equation governing the evolution of the conditional mean is derived

below using the delta-function technique (e.g. Pope 2000, 2010) for given quantity
Q(x, t) and conditioning variables C(x, t). Denoting the JPDF of C(x, t) by

fc(c; t)= 〈δ(C(x, t)− c)〉, (A 1)

the conditional mean of Q(x, t), 〈Q|C = c〉, is given by

fc(c; t)〈Q(x, t)|C(x, t)= c〉 = 〈Q(x, t)δ(C(x, t)− c)〉, (A 2)

where 〈Q|C = c〉 denotes the mean value of Q given that C takes the value c.
Differentiating both sides of (A 2) with respect to xi yields

fc
∂〈Q|c〉
∂xi

+ ∂fc

∂xi
〈Q|c〉 =

〈
∂ Q
∂xi

δ(C − c)
〉
+
〈

Q
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∂xi
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= fc
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∂ Q
∂xi
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Q
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〉
= fc

〈
∂ Q
∂xi

∣∣∣∣c〉− ∂

∂c
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Qδ(C − c)

∂C
∂xi

〉
, (A 3)

and therefore〈
∂ Q
∂xi

∣∣∣∣c〉= ∂〈Q|c〉∂xi
+ 1

fc

∂fc

∂xi
〈Q|c〉 + 1

fc

∂

∂c

[〈
Q
∂C
∂xi

∣∣∣∣c〉 fc

]
. (A 4)

For Q = 1, (A 4) reduces to

∂fc

∂xi
=− ∂

∂c

[〈
∂C
∂xi

∣∣∣∣c〉 fc

]
. (A 5)
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From (A 4) and (A 5), we obtain〈
∂ Q
∂xi

∣∣∣∣c〉 = ∂〈Q|c〉
∂xi

− 1
fc

∂

∂c

[〈
∂C
∂xi

∣∣∣∣c〉 fc

]
〈Q|c〉 + 1
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+ 1
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, (A 6)

where

cov
(

Q,
∂C
∂xi
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Q
∂C
∂xi

∣∣∣∣c〉− 〈Q|c〉〈∂C
∂xi

∣∣∣∣c〉 (A 7)

is the conditional covariance between Q and ∂C/∂xi.
Similarly, differentiating both sides of (A 2) with respect to t yields

fc
∂〈Q|c〉
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〈
∂ Q
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(A 8)

and, after manipulations similar to (A 4)–(A 6), we obtain
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. (A 9)

A.1. Transport equation for 〈τij|ur〉
Using (A 9) with Q = τij, C = ur (with the sample-space variable c= v), and ∂τij/∂t
given by (e.g. Lilly 1967)

∂τij

∂t
=−ur

k
∂τij

∂xk
+ ∂

∂xk
T (t)

ijk + P ij + PBij +Πij − εij, (A 10)

we obtain
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, (A 11)

where, for convenience, the sample-space variable in the conditional means has been
omitted. Re-writing the conditional mean spatial derivative (first term on the right-hand
side of (A 11)) using (A 6) yields
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Here, ur
k takes the value vk and is taken out of the conditional mean. Re-arrangement

of (A 12) yields the transport equation for 〈τij|ur〉,
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A.2. Transport equation for 〈Fi|θ r〉
Similarly, using (A 9) with Q = Fi, C = θ r (with the sample-space variable c = ψ),
and ∂Fi/∂t given by

∂Fi
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we obtain
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where, again, the sample-space variable in the conditional means has been omitted for
convenience. The first term on the right-hand side of (A 15) can be expressed as
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Re-writing the conditional mean spatial derivative using (A 6) yields
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Re-arranging (A 17) yields the transport equation for 〈Fi|θ r〉,
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