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ABSTRACT

The Monin–Obukhov similarity theory (MOST) is the foundation for understanding the atmospheric

surface layer. It hypothesizes that nondimensional surface-layer statistics are functions of z/L only, where z

and L are the distance from the ground and the Obukhov length, respectively. In particular, it predicts that in

the convective surface layer, local free convection (LFC) occurs at heights2z/L � 1 and z/zi � 1, where zi is

the inversion height. However, as a hypothesis, MOST is based on phenomenology. In this work we derive

MOST and the LFC scaling from the equations for the velocity and potential temperature variances using the

method of matched asymptotic expansions. Our analysis shows that the dominance of the buoyancy and shear

production in the outer (2z/L � 1) and inner (2z/L& 1) layers, respectively, results in a nonuniformly valid

solution and a singular perturbation problem and that2L is the thickness of the inner layer. The inner solutions

are found to be functions of z/L only, providing a proof of MOST for the vertical velocity and potential tem-

perature variances. Matching between the inner and outer solutions results in the LFC scaling. We then obtain

the corrections to theLFC scaling near the edges of theLFC region (2z/L; 1 and z/zi ; 1). The nondimensional

coefficients in the expansions are determined using measurements. The resulting composite expansions provide

unified expressions for the variance profiles in the convective atmospheric surface layer and show very good

agreement with the data. This work provides strong analytical support for MOST.

1. Introduction

The Monin–Obukhov similarity theory (MOST; Monin

and Obukhov 1954; Obukhov 1946) is the foundation for

our understanding of the atmospheric surface layer. It

hypothesizes that the surface-layer (z � zi) dynamics is

governed by the kinematic surface stress (the square of the

friction velocity) u2

*, the surface temperature flux Q, the

buoyancy parameter b, and the height from the surface z,

where zi is the boundary layer (inversion) height. Any

nondimensional statistics therefore is a function of z/L,

where L52u3

*/(kbQ) is the Obukhov length, and k is

the von Kármán constant. The theory predicts that for

2z/L, 1, the shear production of the turbulent kinetic

energy dominates, and for 2z/L. 1, the buoyancy pro-

duction dominates. In particular, it predicts that for the

special case of 2z/L � 1 (but z/zi � 1), the influence of

mean shear becomes negligible, resulting in the so-called

local-free-convection (LFC) scaling (Tennekes 1970;

Wyngaard et al. 1971). In this layer the vertical velocity

and potential temperature variances do not depend on u*,

and have the forms w2 ; (bQz)2/3 and u2 ;Q4/3(bz)22/3,

respectively. However, when the conditions 2z/L � 1

and z/zi � 1 are not satisfied (e.g.,2z/L; 1 or z/zi ; 1),

we expect departure from the LFC scaling (Wyngaard

et al. 1971). Field measurements support the prediction

for the vertical velocity and potential temperature vari-

ances (section 3e).

While MOST has been successfully used in predicting

the surface-layer scaling, it is nevertheless a hypothesis

based largely on the phenomenology of the surface layer

and dimensional arguments. Measurements can provide

support to MOST, but it cannot positively prove it. In the

present study, we derive MOST and the LFC scaling from

first principles using the equations for the velocity and po-

tential temperature variances and the method of matched

asymptotic expansions (Bender andOrszag 1978;VanDyke

1975; Cousteix and Mauss 2007). We also derive from the

expansions the corrections to account for the departure

from the LFC scaling for 2z/L; 1 or z/zi ; 1. The com-

posite expansions include the influence of both 2z/L and

2zi/L and are based on the physics of the surface layer. The

former is an approximation of the Monin–Obukhov
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functions near2z/L; 1, whose functional forms cannot be

obtained analytically from dimensional analysis. Instead

they must be obtained empirically from observations. The

influence of2zi/L is absent inMOST. Thus, the derivation

is a major step toward an analytical proof of MOST. The

analytical prediction of the variance profiles can benefit

numerical weather prediction models under convective

conditions. It will also be important for modeling atmo-

spheric dispersion.

In the following we first examine the variance equa-

tions for the velocity components and potential tem-

perature to identify the mathematical structure of the

problem (a singular perturbation problem). We then

perform the method of matched asymptotic expansions

to obtain MOST and the LFC scaling as well as the

corrections to the latter for 2z/L; 1 or z/zi ; 1. The

analytical results for LFC are then compared with

measurements and are followed by the conclusions.

2. The mathematical structure of the problem

The equations for the velocity components and potential

temperature variances in a horizontally homogeneous atmo-

spheric boundary layer are (e.g., Wyngaard and Coté 1971)
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where «1, «2, «3, and «u are dissipation rates for u2/2,

y2/2, w2/2, and u2/2, respectively; and p is the kinematic

pressure. The upper- and lowercase letters denote themean

and fluctuating variables, respectively. The mean wind is

aligned with the U direction. When the shear production is

absent (free convection), Eqs. (1)–(4) have the mixed-layer

scaling; therefore, the resulting nondimensional solution

depends on the nondimensional independent variable z/zi:
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wherew*5 (bQzi)
1/3 is themixed-layer velocity scale. The

subscriptowill beused todenote theouter variables defined

in the next section. Themixed-layer scaling also holds in the

presence of the mean shear production for z � 2L, since

the effects of the shear production (of u2) are small within

this range of heights. Note that the terms in the u2 and y2

equations acquire the mixed-layer scaling (except the shear

production term) as a result of the pressure–strain-rate

correlation. However, the solutions in Eq. (5) are not valid

for 2z/L& 1, where the shear production, which has the

surface-layer scaling (as a result of theparametersu* andz),

becomes a leading term in Eq. (2); that is, the presence of

the shear production term results in a nonuniformly valid

solution. This shear-production-dominated layer always

exists, as long as it is above the roughness layer, for any

small but nonzero mean shear. Therefore, zero mean shear

is a singular limit for the solution; that is, the structure of the

solution for a case with the mean shear approaching zero

(but not equal to zero) is fundamentally different from that

with the mean shear equaling zero. Consequently, the sys-

tem described by Eqs. (1)–(4) has the structure of a singular

perturbation problem,whose solution can beobtained using

the method of matched asymptotic expansions. The layers

with 2z/L � 1 and 2z/L& 1 are the so-called outer and

inner layers, respectively.

3. Matched asymptotic expansions

In this section we use the method of matched asymp-

totic expansions to solve the singular perturbation prob-

lem to derive MOST and the LFC scaling for the vertical

velocity (the horizontal components do not have this

scaling) and potential temperature variances, as well as to

obtain the second-order corrections to the LFC scaling.

Matched asymptotic expansions are a method to solve a

set of differential equations having a solution that has

different scaling in different parts of the solution domain,

that is, a nonuniformly valid solution. In this study they

are the mixed-layer scaling and surface-layer scaling. The

solution in each part of the domain is expressed as series

expansions with their respective scaling. The expansions

in the different parts are then asymptotically matched to

obtain composite expansions (uniformly valid solution).

a. Outer expansions

We define the dimensionless outer variables in the sin-

gular perturbation problem w2
o, u

2
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2
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2
o, (›Q/›z)o, zo,

po,wuo,wu
2
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The nondimensional forms of Eqs. (1), (2), and (4) in

terms of the outer variables are
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For convenience, the equation for y2o is not given,

as it is not explicitly used in the analysis. In the

outer layer, the buoyancy production term and the

pressure–strain-rate terms are of order one (leading

terms), while the nondimensional shear production

term 2uw(›U/›z)(zi/w
3

*), (u3

*/z)(zi/w
3

*) � 1; there-

fore, it is a second-order term and can be written as
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where � is a small parameterwhose order ofmagnitude has

yet to be determined. However, it will become a leading

term when z is sufficiently small, and therefore results in a

nonuniformly valid solution and a singular perturbation

problem. Unlike this shear production term, the pro-

duction of u2o in Eq. (9) is a leading term and therefore is

not the source of singularity as zo / 0.

The outer expansions of the velocity components and

potential temperature and their variances in terms of the

power of � can be written as
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The equations for the leading-order terms w2
o,1, u

2
o,1, and

u2o,1 are obtained by substituting Eqs. (11) and (12) into

Eqs. (7), (8), and (9) and collecting terms of order one (�0).

b. Inner expansions and a proof of MOST

As discussed above, when z is sufficiently small (in the

inner layer), the term containing the mean shear in Eq.

(8) becomes a leading term and the outer solution is no

longer valid. A new scaling is needed in the inner layer.

We define the dimensionless inner variables w2
in, u

2
in, u

2
in,

(›Q/›z)in, zin, pin, wuin, and wu2in as follows:

w2 5 u2

*w
2
in , u2 5 u2

*u
2
in , u2 5

�
Q

u*

�2
u2in ,

›Q

›z
5

Q

u*L
0

�
›Q

›z

�
in

, z5L0z
in
, p5 u2

*pin
,

wu5Qwu
in
, wu2 5

�
Q

u*

�2

u*wu
2
in
, (13)

where L
0
is the inner length scale (thickness of the inner

layer) and has yet to bedetermined.Here u* is used as the

velocity scale, as shown in the derivation of themultipoint

Monin–Obukhov similarity (MMO; Tong and Nguyen

2015; Tong and Ding 2018, manuscript submitted to

J. Fluid Mech.). The nondimensional forms of Eqs. (1),

(2), and (4) in terms of the inner variables are
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In the inner layer z&L
0
, 2uw(›U/›z) needs to be a

leading-order term; thus, it must scale as
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leading to gQ/T; u3

*/L
0
. The fact that the pressure–

strain-rate correlation terms are of the same order of

magnitude and are leading-order terms in both the u2
in

andw2
in equations is used in deriving Eq. (17). Therefore,

the inner length scale L
0
is the Obukhov length. Equa-

tions (14), (15), and (16) become
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is a small parameter. We note that for the vertical velocity

and temperature variances to follow MOST—that is, to be

Monin–Obukhov (M-O) similar, and to have a solution that

scales with the inner variables—the variance equations

must also be M-O similar. Although the horizontal velocity

variances havemixed-layer scaling and are notM-O similar,

their rate equations are (or have apparent M-O similarity;

Ding et al. 2018, manuscript submitted to J. Fluid Mech.;

Tong and Ding 2018, manuscript submitted to J. Fluid

Mech.). Therefore, the dynamics of the horizontal and

vertical velocity components in the surface layer are M-O

similar.We can therefore write the inner expansions for the

vertical velocity and potential temperature variances as
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The results in Eq. (22) are of fundamental importance:

They show that the nondimensional vertical velocity

and potential temperature variances are functions of

z/L only, thus providing a proof of MOST for these

variables.

c. Asymptotic matching to derive the LFC scaling

Since the outer and inner expansions describe the dy-

namics at the outer and inner scales, respectively, and

are valid for 2z/L � 1 and z/zi � 1, there exists an

overlapping region where both conditions are satisfied and

the expansions represent the same function. Therefore, if

we write the outer expansion as a function of the inner

variable and the inner expansion as a function of the outer

variable, they should be equal.
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keeping only one term. The outer expansion of the inner expansion of w2 is
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Matching Eqs. (23) and (24) results in a5 2/3. Thus,
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This is the LFC scaling for the vertical velocity variance,

and uf is the velocity scale.

The inner expansion of the outer expansion of u2 is
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keeping only one term. The outer expansion of the inner expansion of u2 is
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Matching Eqs. (26) and (27) results in g522/3. Thus,
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This is the LFC scaling for the temperature variance.

d. Second-order corrections to the leading-order
solutions (LFC scaling)

When the conditions for the overlapping region

(2z/L � 1 and z/zi � 1) are not satisfied, departures

from the LFC scaling [Eqs. (25) and (28)] are expected.

Corrections to account for the departures can be made

by including the higher-order terms in the expansions in

Eqs. (12) and (22). To obtain the second-order terms, we

need to first determine the scaling of the shear pro-

duction term 2uw(›U/›z) and the small parameter �.

Since the surface layer is a ‘‘constant flux’’ layer (e.g.,

Haugen et al. 1971), the turbulent flux uw is approxi-

mately independent of height from the surface and

scales as u2

*. We consider the shear stress uw budget

equation (e.g., Wyngaard et al. 1971),
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The shear production term must be a leading term

[O(1)] in Eq. (29). Thus,
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which is the same as that obtained using dimensional
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The shear production term in Eq. (8) can then be

written as
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2
z
i

L

�21/3

uw
o

�
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�
o

5
�
2
z
i

L

�24/3

uw
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�
›U

›z

�
o

. (35)

Therefore, the small parameter � in Eq. (10) is

�5
�
2
z
i

L

�24/3

. (36)

Substituting the outer expansions in Eq. (12) into

Eqs. (7), (8), and (9) and collecting the terms of order �,

we obtain the second-order equations for the outer

variables,

›w
o,1
w

o,2

›t
52

3

2

›w2
o,1wo,2

›z
o

1

�
p
›w

›z

�
o,2

2

�
›pw

›z

�
o,2

1wu
o,2

2 «
3o,12

, (37)

›u
o,1
u
o,2

›t
52uw

o

�
›U

›z

�
o

2
›w

o,1
u
o,1
u
o,2

›z
o

2
1

2

›u2
o,1uo,2

›z
o

1

�
p
›u

›x

�
o,2

2 «
1o,12

, and (38)
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›t
52w

o,1
u
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�
›Q

›z

�
o

2w
o,2
u
o,1

�
›Q
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�
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2
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2

›w
o,2
u2o,1

›z
o

2
›w

o,1
u
o,1
u
o,2

›z
o

2 «
uo,12

. (39)

Since the first term on the right-hand side of Eq. (38) is

now a leading term, we have

uw
o

�
›U

›z

�
o

;

�
p
›u

›x

�
o,2

;

�
p
›w

›z

�
o,2

;
›w2

o,1wo,2

›z
o

;
r
o
w2

o,1 w
2
o,2

1/2

z
o

, (40)

where ro is the correlation between w2
o,1 and w2

o,2

1/2
, and

«3o,12, «1o,12, and «uo,12 are the dissipation rates forwo,1wo,2,

uo,1uo,2, and uo,1uo,2, respectively. Here we assume that the

correlation coefficient betweenwo,1 andwo,2 is also ro. The

fact that the pressure–strain-rate correlation terms are of

the same order of magnitude and are leading terms in Eqs.

(37) and (38) is used in derivingEq. (40). In the last step the

estimate w2
o,1wo,2 ; row

2
o,1 w

2
o,2

1/2
is used. Therefore,

from Eqs. (33) and (25)

z24/3
o ;

r
o
w2

o,1 w
2
o,2

1/2

z
o

, (41)

giving

r
o
w2

o,2

1/2
; z21

o . (42)

Thus, the second-order correction term is wo,1wo,2 ;
row

2
o,1

1/2
w2

o,2

1/2
; z22/3

o . From Eqs. (39) and (42),

w
o,2
u2o,1

z
o

;
w

o,1
u
o,1
u
o,2

z
o

, (43)

and

r
uo
u2o,2

1/2
; z25/3

o , (44)

where ruo is the correlation coefficient between

uo,1 and uo,2. Therefore, the second-order term uo,1uo,2 ;

ruou
2
o,1

1/2
u2o,2

1/2
; z22

o . Thus, w2
o and u2o with the second-

order corrections for 2z/L; 1 are

w2
o 5w2

o,1
(z
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)1 2�w
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(z

o
)w

o,2
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(45)

and
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u
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�
2
z
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�
z

z
i

�22

1O(�2) ,

(46)

respectively. Rewriting the last two equations in di-

mensional form and dropping the O(�2) terms, we have

w2 5w2

*w
2
o 5Ak2/3w2

*

�
z

z
i
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and

u2 5
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Q

w*

�2
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u

�
Q
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�2�
z

z
i
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�2�
2
z

L

�22

, (48)

respectively. Each of these expressions contains two

nondimensional coefficients, which will be determined

using measurements (section 3e). Similarly, substituting

the inner expansions in Eq. (22) into Eqs. (18) and (20)

and collecting the order �0 terms, we have the equations

for the second-order inner variables,

1

2

›w2
in,1

›t
52
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2

›w2
in,1win,2
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in
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�
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1wu
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3in,12

, (49)

1

2

›u2in,1
›t

52w
in,1

u
in,2

�
›Q
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�
in

2w
in,2

u
in,1
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�
in

2
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in,1
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in,1

u
in,2

›z
in

2
1

2

›w
in,2

u2in,1

›z
in

2 «
uin,12

, (50)

where «3in,12 and «uin,12 are the dissipation rates for

win,1win,2 and uin,1uin,2. Now the term on the left-hand

side of Eq. (49) is a leading term, thus

›w2
in,1

›t
;

›w2
in,1win,2

›z
in

;
r
in
w2

in,1 w
2
in,2

1/2

z
in

. (51)
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In the last step the estimate w2
in,1win,2 ; rinw

2
in,1 w

2
in,2

1/2
is

used, where rin is the correlation betweenw2
in,1 andw2

in,2

1/2
,

and we assume that the correlation coefficient between

win,1 and win,2 is also rin. Therefore, from Eq. (25),

z2/3in ;
r
in
w2

in,1 w
2
in,2

1/2

z
in

, (52)

resulting in

r
in
w2

in,2

1/2
; z1in . (53)

Thus, the second-order correction term is win,1win,2 ;
rinw

2
in,1

1/2
w2

in,2

1/2
; z4/3in . From Eqs. (50) and (25),
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u
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u
in,2
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, (54)

and

r
uin
u2in,2

1/2
; z1/3in , (55)

where ruin is the correlation between uin,1 and uin,2. There-

fore, the second-order term uin,1uin,2 ; ruinu
2
in,1

1/2
u2in,2

1/2
;

z0in. Thus, w
2
in and u2in with the second-order corrections are
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and
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(57)

respectively. Rewriting the last two equations in di-

mensional form and dropping the O(�02) terms, we have

w2 5 u2
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and
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, (59)

respectively. The nondimensional coefficients in the

abovementioned equations will be determined below.

Summing the two asymptotic expansions and subtracting

the common parts, we obtain the composite (uniform)

expansions
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and
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�22/3�
2
z
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�0�
, (61)

which are valid in both the inner and outer layers.

e. Comparison with measurements

The nondimensional coefficients A, B, C, Au, Bu, and

Cu are now determined using measurements from the

Kansas (Wyngaard et al. 1971),Minnesota (Kaimal et al.

1976; Izumi and Caughey 1976), Atmospheric Radiation

Measurement (ARM; Mather and Voyles 2013; Berg

et al. 2017), and Ashchurch (Caughey and Palmer 1979)

field programs. By fitting the LFC scaling term of w2 to
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theKansas data (Fig. 1) for2z/L. 1, we findA’ 3:1 (the

solid line in Fig. 1). Fitting Eq. (47) for2z/L down to 0.1

(dashed line in Fig. 1), we obtain B’ 0:2. Fitting the LFC

scaling term of u2 to the Kansas data (Fig. 2) for2z/L. 1

gives Au ’ 1:8 (the solid line in Fig. 2). Fitting Eq. (48) to

the Kansas data for 2z/L down to 0.03 (dashed line in

Fig. 2), we obtain Bu ’ 0:0038. Here the second-order

corrections account for departure from the LFC scaling

caused by the mean shear production for 2z/L; 1. Ap-

plying the Minnesota, Ashchurch, and ARM data (Figs. 3

and 4) to Eqs. (58) and (59), we find C’ 1:35 and

Cu ’ 1:2. Using these values for the coefficients, the

composite expansions show very good agreement with the

field data. With these A and B values the expansion for

w2 also fits reasonably well the Northern Hemisphere

Climate Processes Land Surface Experiment (NOPEX)

data (Johansson et al. 2001; not shown), which have larger

scatters. For the uncertainty levels for the NOPEX data

(16% for u2

* and 10% for zi), it is clear from Figs. 1 and 3

that self-correlation effects do not alter the trends of the

data in any significant way. Furthermore, judging from the

scatter of the data points, the uncertainties in the Kansas

data are lower. As a result, any effects of self-correlation

would be even smaller. Therefore, the observed LFC

scaling and departure from it for2z/L; 1 are due to the

surface-layer physics, not self-correlation effects.

FIG. 2. Comparison of the composite expansion for the temperature variance with the

Kansas (1968) data in terms of the inner (surface layer) variables. Line styles are the same

as in Fig. 1.

FIG. 1. Comparison of the composite expansion for the vertical velocity variance with the

Kansas (1968) data in terms of the inner (surface layer) variables. The LFC limit (solid line)

and LFC and the second-order correction (dashed line) are marked.
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The composite expansion for w2 is valid up to

z/zi ’ 1:2, well beyond the surface layer. Here the

second-order corrections account for the influence of

the inversion height (atmospheric boundary layer

depth), which is reflected in the time derivative terms in

Eq. (18). Unlike in the surface layer where z/zi � 1, the

turbulence is no longer in equilibrium with the external

conditions (influences) when z/zi ; 1. The composite

expansion for u2 is valid up to z/zi ’ 0:6, because at the

inversion layer there is a production source with dif-

ferent scaling, which is beyond our surface-layer analy-

sis. From the point of view of singular perturbation

problems, there is a second inner layer near z5 zi, which

needs to be considered in the matched asymptotic ex-

pansions if we want to predict the behavior there.

Therefore, the current correction cannot capture the

trend of u2 near z/zi 5 1. Forw2, the inversion damps the

fluctuations, which does not necessarily result in a sec-

ond inner layer.

The abovementioned comparisons show that by add-

ing only the second-order corrections, the functional

forms of the composite expansions already show very

good agreement with the data, demonstrating the effi-

cacy of the method of matched asymptotic expansions

for analyzing the surface layer. Previously vertical pro-

files of turbulence statistics have been empirical ex-

pressions obtained by curve fitting field data [e.g.,

Caughey and Palmer (1979) for vertical velocity pro-

files]. Furthermore, the empirical curves for 2z/L* 1

and z/zi & 1 are separate curves. The composite expan-

sions obtained in the present study provide unified

expressions for the vertical velocity and potential tem-

perature variances from 2z/L’ 0:1 to z/zi ; 1. Equally

important, each part of the expansions has a clear

physical interpretation (origin).

4. Conclusions and discussions

In the reported study we used the method of matched

asymptotic expansions to derive analytically Monin–

Obukhov similarity theory for the vertical velocity and

potential temperature variances and the local-free-

convection scaling, which previously have been a hy-

pothesis based on phenomenology. We focused on the

vertical velocity and potential temperature variances.

FIG. 4. Comparison of the composite expansion for the tem-

perature variance with the Minnesota data in terms of the outer

(mixed layer) variables. Line styles are the same as in Fig. 1.

FIG. 3. Comparison of the composite expansion for the vertical

velocity variance with the Minnesota (circles), Ashchurch (tri-

angles), and ARM (asterisks) data in terms of the outer (mixed

layer) variables. Line styles are the same as in Fig. 1.
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The equations for the horizontal velocity, vertical

velocity, and potential temperature variances are

used to derive MOST and the LFC scaling. The

dominance of buoyancy and shear production terms

in the outer and inner layers, which have different

scaling properties, results in a nonuniformly valid

solution and a singular perturbation problem, which

is solved using the method of matched asymptotic

expansions. We obtained 2L as the thickness of the

inner layer. The inner expansions were found to de-

pend on z/L only, providing a proof of MOST for the

vertical and potential temperature variances. The

LFC scaling was obtained by matching the leading-

order inner and outer expansions. Corrections for the

departure from the scaling for 2z/L; 1 and z/zi ; 1,

which cannot be obtained analytically using di-

mensional analysis, are also derived by including the

second-order expansions. The composite expansions

obtained show very good agreement with the Kansas,

Minnesota, Ashchurch, and Atmospheric Radiation

Measurement (ARM) field data, achieved with only

leading- and second-order expansions, demonstrating

that matched asymptotic expansions provide an ef-

fective method for analyzing and understanding the

atmospheric boundary layer.

In deriving the inner equations [Eqs. (18)–(20)], we

have used the surface-layer scaling of the terms in

these equations, which is supported by observational

evidence (e.g., Kaimal et al. 1976; Wyngaard et al.

1971). The surface-layer scaling of these terms can

also be obtained from the surface-layer similarity of

multipoint statistics (Tong and Nguyen 2015), which

has also been derived mathematically using the

method of matched asymptotic expansions (Tong and

Ding 2018). Therefore, the derived scaling in the

present study is a consequence of MMO, and the

derivation is mathematically rigorous. The present

work is also part of a comprehensive analytical deri-

vation of MMO and MOST.

The present study uses the balance equations for

the velocity and temperature variances to derive MOST

and the LFC scaling for these variables, thereby pro-

viding strong analytical support to Monin–Obukhov

similarity theory. The expansions go beyond the pre-

vious observation-based empirical formulas for turbu-

lence statistics to provide physics-based, analytically

derived expressions with clear physical origins and in-

terpretations. These expressions and the understanding

of the associated physics are also potentially important

for a range of applications. The vertical velocity vari-

ance is often used in eddy viscosity and diffusivity

models. For example, in numerical weather prediction

models using column parameterization for the boundary

layer, the analytical expression for the vertical velocity

profile in convective boundary layers is important for

improving the predicted temperature profile under

convective conditions. The derived variance profiles can

also benefit prediction of atmospheric dispersion and

wave propagation.
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