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In this paper, the effect of strain on the thermoelectric figure of merit is investigated in n-type Ge

nanowire-Si host nanocomposite materials. The Seebeck coefficient and electrical conductivity of the

Si–Ge nanocomposites are calculated using an analytical model derived from the Boltzmann transport

equation (BTE) under the relaxation-time approximation. The effect of strain is incorporated into the

BTE through the strain induced energy shift and effective mass variation calculated from the

deformation potential theory and a degenerate k � p method at the zone-boundary X point. The effect

of strain on the phonon thermal conductivity in the nanocomposites is computed with a model

combining the strain dependent lattice dynamics and the ballistic phonon BTE. The electronic thermal

conductivity is computed from the electrical conductivity using the Wiedemann-Franz law. Normal

and shear strains are applied in the transverse plane of the Si–Ge nanocomposites. Thermoelectric

properties, including the electrical conductivity, thermal conductivity, Seebeck coefficient, and

dimensionless figure of merit, are computed for Si–Ge nanocomposites under these strain conditions.
VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3693307]

I. INTRODUCTION

Thermoelectric materials and devices have promising

applications in power generation, cooling systems, and

waste heat recovery.1–5 Driving these applications are sev-

eral attractive properties of these materials, such as their

being pollution-free, silent, reliable, and scalable. However,

presently they are in only limited use due to their relatively

low energy conversion efficiency. They are not able to

match the performance of conventional refrigeration or effi-

ciently generate power. The efficiency of thermoelectric

materials is evaluated by the dimensionless figure of merit,

defined as ZT ¼ S2rT=kt; in which S, r; and T respectively

denote the Seebeck coefficient, electrical conductivity, and

absolute temperature and kt represents the thermal conduc-

tivity, including contributions from phonons and electrons.6

The key goal in thermoelectrics research is to increase ZT,

but this is a challenging process because the adjustment of

one parameter unavoidably involves the variation of

others.7 Recently, it has been reported that ZT values can be

significantly improved in nanocomposites because of their

largely increased material interfaces, which strongly scatter

phonons but only slightly influence the charge carrier trans-

port, leading to significantly reduced phonon thermal con-

ductivity and a maintained or improved power factor S2r:8,9

Compared to a state of the art thermoelectric power genera-

tion material, Si0:8Ge0:2 alloy, which has been used in space

radioisotope thermoelectric power generators that operate

at about 900� with a maximum efficiency of about 7%,7

nanostructured Si–Ge bulk alloy leads to larger figures of

merit as a result of decreased phonon thermal conductiv-

ity.10,11 This method and others are being used in attempts

to increase ZT values and create more universally viable

thermoelectric nanocomposite materials.

Strain can be introduced into nanocomposite materials in

several ways, such as phonon-induced lattice vibrations, lat-

tice mismatch in nanocomposite growth, and applied external

mechanical force. We have performed a strain analysis of the

phonon thermal conductivity of Si0:2Ge0:8 nanocomposites

and have found that tensile strain can significantly decrease

the phonon thermal conductivity, whereas shear strain has lit-

tle influence.12 The effects of strain on electron transport in Si

and Ge semiconductor devices have been extensively studied,

and the results show that strain can cause a considerable

change in electron mobility.13,14 The carrier transport proper-

ties of nanostructured Si–Ge bulk alloys have been measured

and analytically modeled.10,11,15 However, to the best of our

knowledge, the effect of strain on the electron transport prop-

erties of Si–Ge nanocomposites has not been investigated. In

addition, the power factor and the thermal conductivity of Si

and Ge respond differently to strain due to the different trans-

port mechanisms of electrons and phonons. Because ZT is a

combination of these physical quantities, how the ZT of nano-

composites will respond to external strain is in fact unknown.

Investigating the effect of strain on the ZT of nanocomposites

will not only help explain the behavior of nanocomposite ther-

moelectric materials under strain but also benefit the design

and manufacturing of such materials.

In this paper, we seek to investigate the effect of me-

chanical deformation on the electrical transport properties

and the dimensionless figure of merit of Si–Ge nanocompo-

site thermoelectric materials. We focus on studying the

effect of externally applied stresses on the r; S; kt; and ZT of

n-type Si0:8Ge0:2 nanocomposites. The strain dependent See-

beck coefficient and electrical conductivity of the Si–Ge

nanocomposites are calculated using analytical models

derived from the Boltzmann transport equation (BTE) under
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the relaxation-time approximation with strain induced

energy shift and effective mass variation, which are com-

puted from the deformation potential theory and using a two

band degenerate k � p method. The effect of strain on the

phonon thermal conductivity in the nanocomposite material

is simulated based on a previously proposed model,12 solving

the ballistic phonon BTE via the finite volume method in a

unit cell with phonon scattering properties calculated from

strain dependent lattice dynamics. The electronic thermal

conductivity is calculated from the electrical conductivity

using the Wiedemann-Franz law. Then, when the strain

effect models (phonon and electron) are combined, the effect

of strain on the ZT of the nanocomposite materials is

determined.

The rest of the paper is organized as follows: Sec. II

describes the analytical and computational models for the

calculation of the strain effect on the electron and thermal

transport in Si0:8Ge0:2 nanocomposite materials and gives

their strain dependent dimensionless figure of merit. Section

III presents and discusses the obtained results, and Sec. IV

offers conclusions.

II. THEORY

A. Strain effect on electron transport of Si–Ge
nanocomposites

In order to evaluate the effect of strain on electron

transport in Si–Ge nanocomposites, it is first necessary to

study the band structures of Si and Ge under different strain

conditions. Taking Si as an example, in unstrained n-type

Si, electrons fill D valleys before K valleys. Generally, the

K valleys can be ignored in electron transport simulations

in Si at relatively low temperatures. In an unstrained Si

crystal, there are six degenerate D valleys with the same

minimum energy located near the X point at the conduction

band. The distribution of electrons in these valleys can be

considered as the same, given that in semiconductors such

as Si and Ge, the x,y,z directions are equivalent in the first

Brillouin zone.

However, advantageous strain reduces the symmetry of

those valleys, which changes the relative population of elec-

trons, causing subband splitting. In addition, strains along a

low-symmetry axis further break crystal symmetry and result

in the warping of the energy surface of subbands, leading to

effective mass variation. In short, mechanical strains cause

band energy splitting and warping, resulting in the variation

of the conduction band minima and effective mass and lead-

ing to changes in the transport properties.

In unstrained Ge, the lowest conduction bands lie at L
points along K valleys, with four degenerate valleys. How-

ever, for Si1�xGex alloys, generally the band structure and

electronic properties can be modeled as Si-like with the low-

est conduction minima near the X-point in the Brillouin zone

for x < 0:85 and as Ge-like with conduction band minima at

the L-point for x > 0:85.16 In highly strained Ge grown on

Si1�xGex with x < 0:40, the conduction band minimum is

located in the D valleys.17 Here we assume that the lowest

conduction bands of Si0:8Ge0:2 nanocomposites lie at the

0:85X points of D valleys, as in Si.

The total energy of an electron in a semiconductor Et is

the sum of the carrier’s potential energy EC and the kinetic

energy E.

Et ¼ EC þ E; (1)

where EC is the conduction band minima and E is defined by

Eð1þ aEÞ ¼ �h2k2
l

2ml
þ �h2k2

t1

2mt1
þ �h2k2

t2

2mt2
(2)

in the ellipsoidal coordinate system (ECS), which is usually

spanned by three unit vectors k̂l; k̂t1; and k̂t2 along the prin-

cipal axes of a constant-energy ellipsoid. In this dispersion

equation, the nonparabolicity and anisotropicity have been

accounted for to increase the accuracy, �h is the reduced

Planck’s constant, and kl=kt are longitudinal/transverse com-

ponents of the wave vector.

As discussed earlier, strain typically introduces band

shift and effective mass variation. Deformation potential

theory was developed to describe the energy shift introduced

by strain. The energy shift of the nth conduction band valley

due to an applied strain, DEn
C, is given by18

DEn
C ¼ Nd � ðexx þ eyy þ ezzÞ þ Nu � ðk̂ � eij � k̂Þ; (3)

where Nd and Nu are the dilation and uniaxial-shear deforma-

tion potential of the conduction band, respectively, and can

be calculated from theoretical methods or fitted by experi-

mental results. In Eq. (3), i and j represent x, y, z, and k̂ is

the unit vector parallel to the valley n. Note that Eq. (3) holds

for arbitrary stress/strain conditions. However, because the D
valleys are along the [100] direction, the effect of shear

strains is lost in Eq. (3). In order to account for the energy

shift due to shear strain, we follow a degenerate k � p theory

at the zone-boundary X point proposed by Ungersboeck

et al.19 Note that an x-y plane shear strain exy shifts only the

band energy of z-direction valleys, with19

DE6z
C; shear ¼

�j2e2
xyD=4; j exy

�� �� < 1

�ð2j exy

�� ��� 1ÞD=4; j exy

�� �� > 1;

�
(4)

where D is the band separation between the two lowest con-

duction bands of the unstrained lattice at the X point and

j ¼ 4Np=D; with Np being the deformation potential re-

sponsible for the band splitting of the two lowest conduc-

tion bands at the zone boundary due to shear in the x-y

plane.

From full band calculations, it is determined that the

effect of normal stress on effective masses can be ignored,

but the shear strain exy will affect the effective masses of val-

leys in the z-direction (see Figs. 11-13 of Ref. 20).

This is because the energy surface of two-fold valleys in the

z–direction is warped due to exy (see Fig. 14 of Ref. 20 and

Fig. 2 of Ref. 21); this has been experimentally demonstrated

using ultrathin-body field-effect-transistors.20 From the same

degenerate two band k � p theory, we have19
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ml;½001�=m�l ¼
ð1� j2e2

xyÞ
�1
; j exy

�� �� < 1

ð1� 1=j exy

�� ��Þ�1
; j exy

�� �� > 1;

(
(5)

mt;½110�=m�t ¼
ð1þ gjexyÞ�1 ; j exy

�� �� < 1

ð1þ gsgnðexyÞÞ�1 ; j exy

�� �� > 1;

(
(6)

mt;½�110�=m�t ¼
ð1� gjexyÞ�1 ; j exy

�� �� < 1

ð1� gsgnðexyÞÞ�1 ; j exy

�� �� > 1:

(
(7)

Here, “sgn” denotes the signum function; ml and mt are the

electron longitudinal and transverse effective masses with

strain, respectively; m�l and m�t are the electron longitudinal

and transverse effective masses without strain, respectively;

and g � 1� m�t =m0 (Ref. 22), with m0 being the free elec-

tron mass. Note that when there is no shear strain, ml ¼ m�l
and mt ¼ m�t .

In addition, the nonparabolicity coefficient in the two

valleys along the z-direction is also a function of exy; i.e.,21

a6z ¼ a0

1þ 2ðgjexyÞ2

1� ðgjexyÞ2
; (8)

where a0 is the nonparabolicity coefficient when no strain is

applied, chosen as 0.5 eV�1 for intrinsic Si and 1.25 eV�1

for Si0:8Ge0:2 nanocomposites when the doping density is

high.

Once again, in the current model, exy introduces band

shift, effective mass variation, and changes in the nonparabo-

licity coefficient of the valley pairs along the z direction

only. Similarly, eyz and ezx alter band dispersion relations for

valley pairs along the x and y directions, respectively.

The change in the dispersion relation changes the elec-

tron transport properties. The i-direction electrical conduc-

tivity of the nth valley rn
i can be calculated from an

analytical model based on the BTE under the relaxation-time

approximation23

rn
i ¼ �

e2

3

ð1
0

snðEÞ vn
i ðEÞ

� �2 @f nðE; EFÞ
@E

gnðEÞdE; (9)

where e is the electrical carrier charge, s is the momentum

relaxation time, and vn
i is the group velocity of charge car-

riers in the i-direction, defined as24

vn
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eð1þ anEÞ

p
ffiffiffiffiffiffi
mn

i

p
ð1þ 2anEÞ

; (10)

with mn
i being the i-direction effective mass of the nth valley.

In Eq. (9), f is the Fermi-Dirac distribution function, defined

as f ¼ ½eðEþEC�EFÞ=kBT þ 1��1; where EF is the Fermi level.

For a given carrier concentration N, the Fermi level is calcu-

lated from24

N ¼
X

n

ð1
0

gnðEÞf nðE; EFÞdE; (11)

with gnðEÞ being the density of states (DOS) for the nth

valley, given by25

gnðEÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1þ anEÞ

p
ð1þ 2anEÞðmn

d1Þ
3=2=ðp2�h3Þ; (12)

where md1 is the DOS effective mass for valley n
[mn

d1 ¼ ðmlmt1mt2Þ1=3ð1þ 2anEÞ].25 Here, doped Si–Ge nano-

composites are assumed to be n-type with N ¼ 1e19 cm�3.

The total relaxation time is calculated by using Mat-

thiessen’s rule to combine the influences from the ionized

impurity, phonon deformation potential, and grain boundary

(interface) scattering mechanisms. The ionized impurity

scattering rate is calculated from26

s�1
II ¼

Ne4Hð1þ 2aEÞ
16p

ffiffiffiffiffiffiffiffiffiffi
2md1

p
e2 Eð1þ aEÞ½ �2=3

; (13)

with H ¼ lnð1þ cÞ � ½c=ð1þ cÞ�, where c ¼ 4k�2L2
D.

Here, k� is the effective wave vector, defined as

k� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2md1Eð1þ aEÞ

p
=�h,25 and LD is the screening length,

obtained as LD ¼ ½ðpÞ2=3 e1=2 �h�=½ð3NÞ1=6 m
1=2
d1 e�.27

For the electron-phonon deformation potential (DP)

scattering rate, we used a model proposed in Ref. 25.

s�1
DP ¼

p kBT D2
c gðEÞ

�h K
1� aE

1þ 2aE
1� Dv

Dc

� �	 
2
(

� 8

3

aEð1þ aEÞ
1þ 2aEð Þ2

Dv

Dc

)
: (14)

In addition to the electron-phonon DP scattering, inter-valley

optical phonon scattering can be significant. Unfortunately,

inter-valley scattering parameters for single crystal silicon

and germanium cannot be used to explain the experimental

data for Si–Ge alloys and nanocomposites. Because of the

lack of relevant experimental data for optical phonon modes,

it is difficult to estimate the inter-valley scattering parame-

ters for Si–Ge alloys and nanocomposites. In this work, we

follow the approach proposed by Minnich et al.15 In their

approach, based on the observation that the acoustic phonon

scattering and the inter-valley scattering have the same

energy dependence, the effects of both scattering processes

are combined in a single set of effective deformation poten-

tials. In this work, we fit the effective deformation potentials

Dc and Dv in Eq. (14) to the electrical conductivity experi-

mental data for Si–Ge alloys and nanocomposites, with dif-

ferent doping densities to account for both acoustic phonon

and inter-valley scattering. A detailed discussion of this issue

can be found in Ref. 15.

For the grain boundary scattering rate, a model proposed

in Ref. 15 is used, i.e.,

s�1
GB ¼ 8p2U2

0z2
0r4

0gðEÞNgI=�h; (15)
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with the number density of the interface Ng¼ 4 LGe=
ðp r2

0 L2
SiÞ and with I given by Eq. (22) in Ref. 15. Other

parameters can be found in Table I. For Si1�xGex alloy and

nanocomposites, effective properties such as the bulk modulus

K, the low frequency permittivity e, and the deformation poten-

tials Ed and Eu are calculated as functions of x from a first

order (linear) interpolation.16 For Ep, the value of Si is used.

The total electrical conductivity is obtained by summing

the contributions of electrons from all six valleys.31 Because

these valleys are differently oriented, it is convenient to intro-

duce a reference coordinate system defining some general

directions. Here the crystal coordinate system (CCS) is cho-

sen; it consists of the lattice basis vectors k̂1, k̂2; and k̂3, ori-

ented along the three orthogonal [100] crystallographic

directions of the underlying material. The CCS and the ECS

are related in the reciprocal space. The direct relation between

them depends on the material under consideration. For a given

conduction band ellipsoid in a given material, the unit basis

vectors k̂l, k̂t1, and k̂t2 in the ECS can be expressed in the

CCS, forming a rotation matrix <E C, which defines the

direction cosine of the principal axes of this ellipsoid with

respect to the coordinates of the CCS. Different ellipsoid

transformation matrices in the unstrained case are shown in

Ref. 32 for sixfold-degenerate D and eightfold-degenerate K
valleys. For Si, there are six degenerate constant energy D
valley conduction band ellipsoids, as shown in Fig. 1. The ba-

sis vectors are unique for each ellipsoid in the ECS, with k̂l

along the major axis and k̂t1and k̂t2 perpendicular to it. There

is a unique transformation matrix <E C for each ellipsoid,

with the rows coming from the components of k̂l, k̂t1; and

k̂t2. For instance, for ellipsoid 1 in Fig. 1, k̂l ¼ ð1 0 0Þ,
k̂t1 ¼ ð0 1 0Þ; and k̂t2 ¼ ð0 0 1Þ; thus,

<D1

E C ¼
1 0 0

0 1 0

0 0 1

2
4

3
5: (16)

The transformation matrices for other ellipsoids can be

obtained similarly. In all our simulations, the CCS is fixed in

real space, and the ECS depends on the specific material and

is unique to each ellipsoid.

When strains are applied, the wave vectors between

deformed and undeformed crystal configurations is related

by F�T , with F being the deformation gradient tensor.

Accordingly, after deformation, the directional cosines ma-

trix C becomes C ¼ F�T<�1
E C.

The total conductivity is then calculated as

rij ¼
X6

n

X3

p

cn
ipr

n
p½cn

pj�
�1; (17)

in which cn
ip and ½cn

pj�
�1

are components of the nth directional

cosine matrix Cn and its inverse matrix.

The Seebeck coefficient is then calculated by

Sij ¼

P6
n

P3
p

cn
ipSn

pr
n
p½cn

pj�
�1

rij
; (18)

with

Sn
i ¼�

1

eT

Ð1
0

snðEÞ½vn
i ðEÞ�

2½@f nðE;EFÞ=@E�ðE�EFÞgnðEÞdEÐ1
0

snðEÞ½vn
i ðEÞ�

2½@f nðE;EFÞ=@E�gnðEÞdE
:

(19)

TABLE I. Parameters used to calculate electron transport properties for n-type Si and Si1�xGex nanocomposites.

m�l =m�t (Ref. 17) 0:92=0:19 m0

Ed (Ref. 28) ð1:1þ 3:4xÞ eV

Eu (Ref. 28) ð10:5� 0:75xÞ eV

Ep (Ref. 19) 7:0 eV

D (Ref. 19) 0:53 eV

Low frequency permittivity (Ref. 16) e ¼ ð11:7þ 4:5xÞe0
a

Electron/hole deformation potential (heavily doped Si1�xGex) Dc ¼ 12:5 eV; Dv ¼ 5:0 eV (Ref. 29)

Electron/hole deformation potential (intrinsic Si) Dc ¼ 9:0 eVðRef: 30Þ; Dv ¼ 5:0 eVðRef: 29Þ
Bulk modulus (Ref. 16) K ¼ ð97:9� 22:8xÞ GPa

Grain boundary potential parameters (Ref. 15) U0 ¼ 45 meV, z0 ¼ 2.0 nm, r0¼ 1.0 nm

ae0= vacuum permittivity.

FIG. 1. (Color online) Conduction band constant energy ellipsoids along

D for Si.

054318-4 Y. Xu and G. Li J. Appl. Phys. 111, 054318 (2012)

Downloaded 21 May 2012 to 130.127.199.34. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



Note that although phonon drag effects can be large at low

temperatures in silicon (around 1/5 of the Debye tempera-

ture), they are generally reduced by alloying and increasing

temperature.33 For the temperature range we consider in this

work (300 K to 800 K), phonon-drag effects are not included

in the calculations.

B. Strain effect on thermal transport of Si–Ge
nanocomposites

In order to examine the effects of strain on the phonon

thermal transport of Si–Ge nanocomposites, we have devel-

oped a model based on phonon BTE with strain dependent

thermodynamic and phonon scattering properties calculated

from lattice dynamics. This model is described in detail in

Ref. 12; a short summary is given below.

Tersoff empirical interatomic potentials are used to

describe the atomic interactions in Si and Ge lattices. Me-

chanical strains are related to crystal lattice deformation

by the Cauchy-Born rule. For a deformed crystal lattice,

the lattice dynamics theory is employed to derive the

strain-dependent dynamical matrix DðkÞ for wave vector k

in the deformed configuration of the first Brillouin

zone; i.e.,34

D kð Þ ¼ 1

M

P
j

�U11
j;k i; jð Þeik0� X0

j�X0
ið Þ P

j

�U12
j;k i; jð Þeik0� X0

j�X0
i�F�1nð Þ

P
j

�U21
j;k i; jð Þeik0� X0

j�X0
iþF�1nð Þ P

j

�U22
j;k i; jð Þeik0� X0

j�X0
ið Þ

2
664

3
775;

i ¼ 1; j; k ¼ 1; 2; 3; i 2 Bp; j 2 Bq; p; q ¼ 1; 2;

(20)

where M is the atomic mass; U
pq

j; kði; jÞ denotes the force

constant between the jth component of atom i in Bravais lat-

tice p ðBpÞ and the kth component of atom j in Bravais lat-

tice q ðBqÞ; k0 represents the corresponding wave vector in

the undeformed crystal lattice; X0
i and X0

j are the equilibrium

positions of atoms i and j in the undeformed crystals,

respectively; n denotes the inner displacement of the two fcc

Bravais lattices and is calculated by minimizing the Helm-

holtz free energy of the lattice; and F�1 is the inverse tensor

of the deformation gradient F of the two Bravais lattices.

The phonon frequencies of the strained bulk Si and Ge are

then calculated by taking the square root of the eigenvalues

of the abovementioned strain dependent dynamical matrix.

For a given F, the calculated phonon frequency spec-

trum of Si and Ge lattices is used to compute the bulk ther-

modynamic properties of Si and Ge, including the phonon

specific heat, group velocity, and phonon mean free path.

The phonon specific heat for the sth polarization of wavevec-

tor k is determined by

Csk ¼ kB

�hxsk

kBT

� �2

e�hxsk=kBT

e�hxsk=kBT � 1ð Þ2
; (21)

where xsk is the corresponding frequency. The average pho-

non specific heat is obtained by summing Csk over the acous-

tic branches.

C ¼
X

k

X3

s¼1

Csk; s 2 acoustic phonon branches: (22)

The acoustic phonon group velocity for the sth polarization

of wavevector k is calculated by

vsk ¼
@xsk

@k

����
����: (23)

Then the average phonon group velocity can be obtained as

v ¼

P
k

P3
s¼1

Cskvsk

C
; s 2 acoustic phonon branches: (24)

The average phonon mean free path (MFP) is computed

from approximated kinetic theory by35

K � 3kb

Cv
; (25)

with the bulk thermal conductivity kb calculated via the

Slack relation.36

In Eqs. (22), (24), and (25), only the acoustic branches

of the phonon dispersion are included for a better approxima-

tion of the average phonon MFP, as optical phonons contrib-

ute little to the thermal conductivity for Si and Ge due to

their small group velocities in the temperature range we con-

sidered.35,37 Note that because the phonon frequencies

xskðF; nÞ depend on the applied strain, thermodynamic

properties such as C, v, K; and kb are all functions of strain.

For the simplicity of notation, “ðF; nÞ“ is not shown explic-

itly in their equations.

These properties are then used in a “gray” BTE to calcu-

late the effective phonon thermal conductivity of the Si–Ge

nanocomposites.

r � ðIðr; sÞ � sÞ ¼ � Iðr; sÞ � I0ðrÞ
K

; (26)

where Iðr; sÞ represents the phonon intensity at a spatial

position r over a path length ds in the direction of the unit

vector s, and I0ðrÞ denotes the equivalent equilibrium pho-

non intensity.

For a given nanocomposite material, the phonon inten-

sity Iðr; sÞ is obtained by solving Eq. (26) numerically. In

this work, we consider Si1�xGex with Ge nanowires
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embedded in a Si matrix. The Ge nanowires are uniformly

distributed in parallel, and strains are applied in the trans-

verse plane. In this case, the BTE can be solved to obtain the

phonon intensity by using the finite volume method in a 2D

unit cell of the nanocomposites with periodic boundary con-

ditions and a diffuse mismatch interface model, as shown in

Fig. 2, with the edge length of the unit cell LSi and the edge

length of a Ge nanowire LGe. For the top ðy ¼ LSiÞ and bot-

tom ðy ¼ 0Þ edges, the periodic boundary condition implies

that phonons coming in equal phonons going out for all x
and s; i.e.,

Iðx; LSi; sÞ ¼ Iðx; 0; sÞ: (27)

For the right ðx ¼ 0Þ and left ðx ¼ LSiÞ edges, the periodic

boundary condition means that the deviation between the

phonon intensities in any given direction at the right and left

edges is independent of y; i.e.,

Ið0; y; sÞ � IðLSi; y; sÞ ¼ vSiCSiDT

4p
; (28)

where vSi and CSi represent the average group velocity and

acoustic specific heat of Si, respectively, and DT denotes the

temperature difference. The diffuse interface scattering

assumes that at the interface, part of the phonons are trans-

mitted through while the rest are reflected back and are

evenly distributed across all angles on each side of the

interface.

After the phonon intensities are obtained, the effective

phonon thermal conductivity of Si–Ge nanocomposites kp is

calculated using Fourier’s law.

kp ¼
Ð LSi

0
qxðx; yÞdy

�Tð0Þ � �TðLSiÞ
; (29)

where qx is the heat flux in the x-direction and �Tð0Þ and
�TðLSiÞ are the average temperatures at x ¼ 0 and x ¼ LSi,

respectively. More details can be found in Ref. 12.

The electronic thermal conductivity ke is calculated via

the Wiedemann-Franz law as ke ¼ LzrT; where Lz is the Lor-

enz number. Here we assume that the nanocomposites are

heavily doped, and Lz for metals is used.

C. Strain effect on figure of merit of Si–Ge
nanocomposites

Once the strain dependent phonon thermal conductivity

and electrical properties have been obtained, the calculation

of the dimensionless figure of merit of nanocomposite thermo-

electric materials is straightforward; i.e., ZT ¼ S2rT
=ðkp þ keÞ:

III. RESULTS AND DISCUSSION

A. Thermoelectric properties of Si0.8Ge0.2

nanocomposites

This section investigates the effect of strain on the elec-

trical properties of bulk Si and Si1�xGex nanocomposites. To

validate the electrical conductivity model described in Sec.

II A, we calculated the electrical conductivities of unstrained

Si0:7Ge0:3 alloys and Si0:8Ge0:2 nanocomposites with differ-

ent doping densities and compared them with available ex-

perimental data obtained from Refs. 15, 33, and 38, as

shown in Fig. 3. The computational results show good agree-

ment with the experimental data.

The effect of strain on electrical conductivity is verified

by comparison of the electron mobility of intrinsic Si for

[100] uniaxial strain with data from Ungersboeck et al.’s
work,19 as shown in Fig. 4. The results show a similar de-

pendence on strain as in Ungersboeck’s results, although

they are not exactly the same. The difference comes from the

different modeling approaches and different scattering mech-

anisms considered. Our results are based on an analytical

model derived from the BTE with several fitting parameters.

The results in Ref. 19 were calculated numerically by solv-

ing the semiclassical BTE using a Monte Carlo method. We

considered ionized impurity and phonon deformation

FIG. 2. (Color online) Unit cell of Si1�xGex nanocomposite for numerical

solution of the BTE and calculation of the phonon thermal conductivity of

the materials.

FIG. 3. (Color online) Experimental (symbols) and computed (curves) elec-

trical conductivity of Si70Ge30 alloy and Si0:8Ge0:2 nanocomposite as a func-

tion of temperature.
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potential scatterings, whereas Ungersboeck’s models con-

tained ionized impurity scattering, phonon scattering, alloy

scattering, and impact ionization scattering. Figure 5 shows

the electron mobility enhancement of intrinsic Si as a func-

tion of strain for the stress direction along [100] calculated

from our model and experimental results obtained from Ref.

20. Our results show trends similar to those of the experi-

mental data. From the two figures, we observe that uniaxial

tensile strain along the [100] direction increases electron

mobility in the same direction but decreases it in the two

perpendicular directions, which implies a possible change in

the thermoelectric power factor.

The Seebeck coefficient of unstrained bulk Si with a

doping density of 1016=cm3 to 1019=cm3 is shown in Fig. 6.

The solid lines represent the Seebeck coefficients calculated

from our model, and the dashed lines are from Fig. 3.8 of

Ref. 39. The results indicate that the Seebeck coefficient

decreases with increasing temperature, and further decreases

with decreasing doping density.

B. Strain effect on figure of merit of Si0.8Ge0.2

nanocomposites

Three types of stresses are applied in the transverse

plane (assumed to be the (001) plane) of the Si0:8Ge0:2 nano-

composites in order to study the effect of strain on their ther-

moelectric properties. As shown in Fig. 7, the applied

stresses are (1) uniaxial stress in the [100] direction, (2) uni-

axial stress in the [110] direction, and (3) biaxial stress in the

[100] and [010] directions. These stresses are applied such

that the resultant strains are, respectively, (1) 1% normal

strain in the [100] direction, (2) a shear strain of 0.01 on the

(001) plane, and (3) 1% biaxial normal strain in the [100]

and [010] directions. In addition, to show the effect of the

size of the Ge nanowires, LGe ¼ 10nm and LGe ¼ 20nm are

used in the calculations, with the atomic percentage of Si

and Ge remaining fixed. The doping density of the Si0:8Ge0:2

nanocomposites is set at N = 1019 cm�3.

The calculated Seebeck coefficient, electrical conductiv-

ity, phonon thermal conductivity, and figure of merit are

shown in Figs. 8–10 for LGe ¼ 10nm and Figs. 11–13 for

LGe ¼ 20nm. For the two nanowire sizes, as shown in Figs. 8

and 11, the tensile strain along the [100] direction increases

the electrical conductivity and the Seebeck coefficient and at

the same time decreases the thermal conductivity along the

direction in which the stress is applied, resulting in an increase

in the dimensionless figure of merit along the applied stress

FIG. 4. (Color online) Bulk electron mobility of intrinsic Si as a function of

strain for stress along the [100] direction.

FIG. 5. (Color online) Electron mobility enhancement of intrinsic Si as a

function of strain for stress along the [100] direction.

FIG. 6. (Color online) Temperature and doping dependence of Seebeck

coefficient of Si. Solid curves: results from current model. Dashed curves:

results from Wagner (Ref. 39).

FIG. 7. (Color online) Three types of stresses applied on the Si0:8Ge0:2

nanocomposites: (a) uniaxial stress in the [100] direction, (b) uniaxial stress

in the [110] direction producing a shear strain on the (001) plane, and (c)

biaxial stress in the [100] and [010] directions.
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direction. The compressive strain in the [100] direction

largely decreases the electrical conductivity and, at the same

time, increases the phonon thermal conductivity. Under the

compressive strain in the [100] direction, the rate of decrease

of the Seebeck coefficient with increasing temperature is

higher than that in the tensile strain case. Even though the

magnitude of the Seebeck coefficient increases with compres-

sive strain at higher temperatures, ZT still decreases under

compressive strain in the [100] direction. Figures 9 and 12

show that the shear strain due to the applied stresses along the

[110] direction largely decreases the electrical conductivity

and increases the Seebeck coefficient in the [100] direction

for both tension and compression loads. Note that in n-type

semiconductors, the Seebeck coefficients are negative. The re-

sultant power factor is decreased by the shear strain. At the

same time, tension/compression loads in the [110] direction

decrease/increase the phonon thermal conductivity in the

[100] direction. Due to the combined effect, the shear strain

FIG. 8. (Color online) Thermoelectric

properties of Si0:8Ge0:2 with N¼ 1019

cm�3 under 1% normal strain in the

[100] direction when LGe ¼ 10 nm.

FIG. 9. (Color online) Thermoelectric

properties of Si0:8Ge0:2 with N = 1019

cm�3 under a shear strain of 0.01

LGe ¼ 10 nm.

054318-8 Y. Xu and G. Li J. Appl. Phys. 111, 054318 (2012)

Downloaded 21 May 2012 to 130.127.199.34. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



leads to a drop in ZT in the [100] direction. Figures 10 and 13

show the effect of strain on the thermoelectric properties of

Si0:8Ge0:2 nanocomposites along the [100] and [010] direc-

tions in which biaxial normal strain occurs. The results indi-

cate that biaxial tensile strain increases the electrical

conductivity and the Seebeck coefficient, whereas biaxial

compressive strain decreases the electrical conductivity but

increases the Seebeck coefficient. The phonon thermal con-

ductivity is decreased by tensile strain and increased by com-

pressive strain. When these effects are combined, we

observed that the ZT decreases under biaxial normal strain.

If we compare the figures of merit under different

strains, the uniaxial tensile strain is the only case that leads

to an increase in the figure of merit. This increase becomes

clearer when the temperature increases. At 800 K, 1% uniax-

ial tensile strain results in a 15% increase of the dimension-

less figure of merit in Si0:8Ge0:2 nanocomposites. The

corresponding dimensionless figure of merit is 0.093.

FIG. 10. (Color online) Thermoelectric

properties of Si0:8Ge0:2 with N¼ 1019

cm�3 under 1% biaxial strain when

LGe ¼ 10 nm.

FIG. 11. (Color online) Thermoelectric

properties of Si0:8Ge0:2 with N¼ 1019

cm�3 under 1% normal strain in the

[100] direction when LGe ¼ 20 nm.
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When we compare the results for the two Ge nanowire

sizes, LGe ¼ 10 nm and LGe ¼ 20 nm, we observe that the

decrease in the Ge nanowire size causes a greater reduction

of the phonon thermal conductivity than of the electrical

conductivity, leading to a higher ZT. Considering Figs. 8 and

11, for example, when LGe decreases from 20 nm to 10 nm,

the phonon thermal conductivity decreases by about 40%,

but the electrical conductivity decreases by less than 10%.

This behavior is due to the stronger phonon scattering at

Si–Ge interfaces when the characteristic length of the mate-

rial components decreases, as many authors have pointed out

in the literature.8–11 In addition, our results show that the

strain effect on the thermoelectric properties is similar for

the two Ge nanowire sizes, which implies that the strain

effect is insensitive to the characteristic length of the mate-

rial components.

FIG. 12. (Color online) Thermoelectric

properties of Si0:8Ge0:2 with N¼ 1019

cm�3 under a shear strain of 0.01 when

LGe ¼ 20 nm.

FIG. 13. (Color online) Thermoelectric

properties of Si0:8Ge0:2 with N¼ 1019

cm�3 under 1% biaxial strain when

LGe ¼ 20 nm.
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IV. CONCLUSION

The effect of strain on the thermoelectric properties of

Si–Ge nanocomposites is investigated in this paper. The

effect of strain on electron transport was studied via the use

of an analytical model derived from the BTE with band

structures obtained from a degenerate k � p theory. The effect

of strain on thermal transport was studied by solving the pho-

non BTE using strain dependent phonon scattering properties

calculated from lattice dynamics. Our results confirm that

nanocomposites are better thermoelectric materials than their

alloys. In the 300-800 K temperature range, uniaxial tensile

strain along the [100] direction can improve the ZT parallel

to the tension direction. Compressive strain in the [100]

direction, biaxial strain along the [100] and [010] directions,

and uniaxial stress along [110] decrease ZT. At 800 K with a

doping density of 1019cm�3, 1% uniaxial tensile strain along

the [100] direction can increase the figure of merit of

Si0:8Ge0:2 nanocomposites by 15% to ZT¼ 0.093.
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