
Strain effect analysis on phonon thermal conductivity of two-dimensional
nanocomposites

Y. Xu and G. Lia�

Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, USA

�Received 2 June 2009; accepted 10 October 2009; published online 1 December 2009�

In this paper, we present a model that combines lattice dynamics and the phonon Boltzmann
transport equation �BTE� to analyze strain effect on the cross-plane phonon thermal conductivity of
silicon wire-germanium host nanocomposites. For a given strain condition, mechanical strain is
translated to crystal lattice deformation by using the Cauchy–Born rule. Strain-dependent phonon
thermal properties of Si and Ge obtained from lattice dynamics with Tersoff empirical interatomic
potential are then incorporated into the BTE, in which ballistic transport within one material and
diffuse scattering between Si–Ge interface are employed. The strain-dependent BTE is solved
numerically on an unstructured triangular mesh by using a finite volume method. Nanocomposites
with different Si nanowire cross sections are also investigated. The results show that the phonon
thermal conductivity of the nanocomposites can be significantly decreased �or increased� by a
tensile �or compressive� strain. With the same length change, hydrostatic strain produces a larger
variation in phonon thermal conductivity than uniaxial strain. In addition, it is shown that with the
same atomic percentage, the cross-sectional shape makes little difference to the thermal conductivity
except at very small characteristic lengths of the Si nanowire. © 2009 American Institute of Physics.
�doi:10.1063/1.3259383�

I. INTRODUCTION

In the past decade, synthesis and processing techniques
have been developed to create nanostructured materials with
highly controlled material composition, structures, and re-
lated physical properties.1–4 Examples of the engineered
nanostructures include nanotubes, quantum dots, superlat-
tices, thin films, and nanocomposites. For these nanostruc-
tured solids, thermal conductivity is one of the most impor-
tant physical properties. Manipulation and control of thermal
conductivity in nanostructured materials such as nanocom-
posites have impacted a variety of applications. A well-
known example is the enhancement in energy conversion
efficiency in thermoelectric devices,5 which is measured by
the dimensionless figure of merit ZT=S2�T /k, where T is the
temperature, S is the Seebeck coefficient, � is the electrical
conductivity, and k is the thermal conductivity, which in-
cludes the contribution from phonon thermal conductivity
and electronic thermal conductivity.6 It has been shown that
the phonon thermal conductivity can be reduced significantly
in nanocomposites due to the increase in phonon interface
scattering, while the electron performance can be maintained
or improved.7,8 Significant increases in ZT values with nano-
composites have been reported.9,10 A few other applications
utilize nanocomposites to enhance thermal conductivity, such
as packaging materials of microelectronic circuits and
chips11 and conducting polymer nanocomposites.12 While the
size and volume fraction effects on the thermal conductivity
of nanocomposites have been investigated using computa-
tional analysis techniques,13 strain effect, which falls in a
broader category of mechanical effects, has not attracted

much attention in the design of nanocomposite materials.
Computational analysis of strain effect on the phonon ther-
mal conductivity could introduce additional dimensions to
the design space of nanocomposites for various applications.

Thermal conductivity of doped semiconductors under
uniaxial stress at low temperatures is relatively
well-understood.14–17 Recently, residual strain in nanocom-
posite materials has been studied by several groups. Borca-
Tasciuc et al.18 measured thermal conductivity in the cross-
plane direction of symmetrically strained Si–Ge
superlattices. Abramson et al.19 studied interfacial strain on
phonon transport and thermal conductivity of heterostruc-
tures around Debye temperature by molecular dynamics
�MD� study. Picu et al.20 have also employed MD to study
the residual strain effect on heat transport in nanostructures
by using a Lennard-Jones solid at low temperatures and con-
cluded that tensile �or compressive� strain led to a reduction
�or enhancement� in the lattice thermal conductivity. While
these studies have shown the significance of strain on the
nanoscale thermal transport, they are limited to single crystal
materials or the residual strain effect at the interface of two
different materials. Thermal conductivity variation in nano-
composite materials due to externally applied mechanical
strain has not been studied. In addition, either analytical or
pure atomistic methods such as MD were employed in pre-
vious studies of strain effect. In strained nanocomposites, it
is difficult to study the strain effect by using analytical ap-
proaches due to multiple material phases and complex geom-
etry of the inclusion phase. Although lattice strain can be
accommodated in MD calculations, the size of the system is
limited due to the computational cost. For nanocomposites
with characteristic length larger than a few nanometers, MD
simulations would become very inefficient. Another nano-
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scale thermal transport analysis approach is based on the
Boltzmann transport equation �BTE�.21 This approach pro-
vides greater computational flexibility and efficiency. It has
been successfully applied to compute the effective thermal
conductivity of complex materials including
nanocomposites.13 However, this approach does not include
mechanical variables such as strain in the model.

In this paper, we present an approach that enables the
calculation of thermal conductivity of strained nanocompos-
ite materials. The main idea is combining the lattice dynam-
ics for phonon dispersion change �i.e., wave effects� due to
strain with the BTE for interface scattering of phonons �i.e.,
particle effects�. Several strain-dependent phonon scattering
properties of the materials are used to link the lattice dynam-
ics and the BTE. In this approach, there is no fitting param-
eter in the calculation. In addition, the finite-volume solution
of BTE over unstructured meshes allows thermal transport
analysis of nanocomposites with complex geometries. In this
work, we focus on the calculation of the cross-plane thermal
conductivity of a Si0.2Ge0.8 composite with silicon wires em-
bedded in germanium host under tensile and compressive
hydrostatic and uniaxial strain conditions, as depicted in Fig.
1. For comparison, the thermal conductivity variation in
Si–Ge composites corresponding to square, circular and dia-
mond Silicon wire cross sections is calculated.

This paper is organized as follows: Sec. II presents the
theoretical model and computational procedure, including
lattice dynamics approach for computing the strain-
dependent phonon scattering properties and the finite-volume
solution of BTE for the nanocomposites. Results are shown
and discussed in Sec. III, and Sec. IV gives the conclusions.

II. THEORETICAL MODEL AND COMPUTATIONAL
PROCEDURE

Figure 2 illustrates the theoretical model of the analysis.

In this approach, atomic interactions are described by using
interatomic potentials. Mechanical strains are translated to
crystal lattice deformation by applying the Cauchy–Born
rule. For the deformed crystal lattice, we employ the lattice
dynamics theory to compute the strain-dependent phonon
scattering properties for both silicon and germanium, includ-
ing the group velocity, specific heat, and phonon mean free
path �MFP�. The strain-dependent phonon scattering proper-
ties are then incorporated into the BTE to describe the ther-
mal transport with interface scattering in the strained nano-
composites. Along with the BTE, a diffuse mismatch model
is adopted for the Si–Ge interface. In the numerical solution
of BTE, a unit cell of the nanocomposite material is taken as
the computational domain with a periodic boundary condi-
tion. The unit cell is discretized into unstructured triangular
volumes. The BTE is solved over the unstructured mesh by
using a finite-volume formulation. Heat flux and effective
temperature are calculated for the volumes and faces from
the intensity solution of the BTE. The strain-dependent ef-
fective thermal conductivity can then be obtained.

Several assumptions are implied in the theoretical model
described above: �1� Strain is assumed to be uniformly dis-
tributed throughout the nanocomposites, and residual strain
is not considered between Si–Ge interfaces; �2� the BTE
model employs a “gray” assumption with a single group ve-
locity and single relaxation time;22 �3� three-phonon scatter-
ing dominates the thermal transport within each material, and
phonon scattering due to defects and/or impurities is ne-
glected; and �4� the scattering between Si–Ge interface is
assumed to be diffuse.

A. Strain-dependent lattice dynamics

At the atomistic level, interaction between atoms in dia-
mond crystal lattices can be described by empirical inter-
atomic potentials such as the Tersoff,23 Brenner,24 and
Stillinger–Weber25 potentials. Tersoff empirical interatomic
potential is employed in this work for Si and Ge. Typically,
the total potential energy U of a N atom system is given by

U = �
�

U� =
1

2 �
���

V��, �1�

where � and � are the atoms of the system and V�� is the
bond energy between atoms � and � given by

circularsquare diamond

unit cell

Strain

Si wiresGe host

FIG. 1. �Color online� Si0.2Ge0.8 nanocomposite material with applied strain.

FIG. 2. �Color online� Theoretical model of the analysis.
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V�� = fC�r����a��fR�r��� + b��fA�r���� , �2�

where r�� is the distance between � and �, fR and fA denote
the repulsive and attractive pair potentials defined as

fR�r� = Ae−�1r, �3�

fA�r� = − Be−�2r, �4�

respectively, and fC�r��� is a smooth cutoff function going
from 1 to 0 in a small range around the cutoff distance Rc,
which is chosen to include only the first-neighbor shell for
most structures of interest. fC�r� is defined as

fC�r� = �
1 r � Rc − D

1

2
−

1

2
sin���r − Rc�

2D
� Rc − D � r � Rc + D

0 r � Rc + D
	 .

�5�

In Eq. �2�, a�� is taken to be 1.0 for both silicon and germa-
nium, b�� is a measure of the bond order given by

b�� = �1 + 	n
��
n �−1/2n, �6�


�� = �
���,�

fC�r���g������exp��3
3�r�� − r���3� , �7�

g������ = 1 + c2/d2 − c2/�d2 + �h − cos �����2� , �8�

where � denotes an atom and ���� is the bond angle between
the bonds �� and ��. All remaining variables are constant
parameters. For silicon, the constants are summarized in the
third column of Table I in Ref. 23. For germanium, the con-
stants are adopted from Table I in Ref. 26.

In the classical lattice dynamics, by using the periodicity
of the crystal structure, the phonon frequency spectrum can
be obtained by computing the eigenvalues of the dynamical
matrix D�k� for each wave vector k in the first Brillouin
zone, i.e.,27

D�k� =
1

M
��

 j,k
11��,��eik·�x�

0−x�
0 � �

�

 j,k
12��,��eik·�x�

0−x�
0 �

�
�

 j,k
21��,��eik·�x�

0−x�
0 � �

�

 j,k
22��,��eik·�x�

0−x�
0 � � j,k = 1,2,3, �9�

where � and � denote the atoms in the unit cell, M is the
mass of atom, k is wave vector, x�

0 and x�
0 are the equilib-

rium positions of atom � and �, respectively, and  j,k
pq�� ,��

is force constant defined by

 j,k
pq��,�� = � �2U�x�

�x�j � x�k
�

x=x0,��Bp,��Bq

j,k = 1,2,3 p,q = 1,2, �10�

in which x�j and x�k are the jth and the kth component of the
position of atoms � and �, respectively. Bp and Bq are Bra-
vais lattices p and q, respectively. Note that we choose � to
be the center atom and loop atom � over all the atoms in the
crystal lattice. The phonon frequencies can be calculated by
�sk=�sk, where �sk are the eigenvalues of the 6�6 dy-
namical matrix D�k� and s is the index of the polarization.

When there is an applied strain, to relate the continuum
level description of deformation to displacements of the at-
oms in the crystal lattice as shown in Fig. 3, we employ the
hypotheses of the Cauchy–Born rule,28 which states that the
crystal lattice is homogeneously distorted according to the
deformation gradient. For silicon/germanium crystal, there
exist additional inner displacements between the two Bravais
lattices. The Cauchy–Born rule gives

x�
0 − x�

0 = F�X�
0 − X�

0� + � , �11�

where F is the deformation gradient of the Bravais lattice,
X�

0 and X�
0 are the equilibrium positions of atom � and � in

the undeformed configuration, respectively, and � is the inner
displacement of the two fcc Bravais lattices. In the reciprocal
lattice of a Bravais lattice, from Eq. �11�, it is easy to show
that, a given wave vector k0 in the undeformed configuration
of the lattice deforms to k in the deformed configuration with
the relation

k = F−Tk0. �12�

Substituting Eqs. �11� and �12� into Eq. �9�, the strain-
dependent dynamical matrix can then be written as27

deformation gradient F

FIG. 3. �Color online� Atom configuration and deformation for a diamond
lattice.
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D�k� =
1

M
 �
�

̄ jk
11��,��eik0·�X�

0−X�
0 � �

�

̄ jk
12��,��eik0·�X�

0−X�
0−F−1��

�
�

̄ jk
21��,��eik0·�X�

0−X�
0+F−1�� �

�

̄ jk
22��,��eik0·�X�

0−X�
0 � � � = 1, j,k = 1,2,3, �13�

where

̄ j,k
pq��,�� = � �2U�x�

�x�j � x�k
�

x=x0�X0,F,��,��Bp,��Bq

j,k = 1,2,3 p,q = 1,2 �14�

and F−1 is the inverse of F. The phonon frequencies of the
strained bulk crystal Si and Ge, �sk�F ,��, can be obtained by
computing the eigenvalues of Eq. �13�. After the phonon
frequency spectrum is obtained, the Helmholtz free energy A
of the system can be calculated by

A = U�X0,F,�� +
1

2�
k

�
s=1

6

��sk�F,��

+ kBT�
k

�
s=1

6

ln�1 − e−��sk�F,��/kBT� , �15�

where U�X0 ,F ,�� is the total potential energy of the system
at the deformed equilibrium position, � is the reduced
Planck’s constant, kB is the Boltzmann constant, and T is
temperature. For a given deformation gradient F, the inner
displacement � can be determined by minimizing the Helm-
holtz free energy, i.e.,

�A

��
= 0. �16�

In this work, we impose uniaxial strains from �2% �com-
pressive� to 2% �tensile� in the x-direction, which gives a
maximum of 2% change in the crystal volume. This range of
the strain is achievable with moderate external loadings. In
terms of the deformation gradient, the uniaxial strains corre-
spond to F11= �0.98,1.02�, F22=F33=1.0, and Fij =0, i� j.
For the hydrostatic strains, Fii= �0.98, 1.02�, i=1,2 ,3 and
Fij =0, i� j. Note that for hydrostatic and uniaxial deforma-
tions, �=0 due to the symmetry of the lattice deformation.

B. Strain-dependent thermodynamic and phonon
scattering properties

For a given deformation gradient F, we compute the
phonon frequency spectrum of Si and Ge lattices by sam-
pling the k points in the first Brillouin zone. Once the pho-
non frequency spectrum is obtained, the bulk thermodynamic
and phonon scattering properties of Si and Ge can be calcu-
lated. Of particular interest are the specific heat, the average
phonon group velocity, and the average phonon MFP. As will
be described in Sec. II C, they are the physical variables used
in the BTE for the analysis of thermal transport in the Si–Ge
nanocomposites. To compute these thermodynamic and pho-
non scattering properties, we first compute the bulk thermal

conductivity of Si and Ge as a function of F by using the
Slack relation.29,30 The Slack relation is suitable for calculat-
ing the thermal conductivity of nonmetallic crystals at high
temperatures �above 1/5 of the Debye temperature�, where
heat is mainly carried by acoustic phonons and the scattering
is mainly intrinsic three-phonon process. The bulk thermal
conductivity is given by29,30

kb =
3.1 � 107�M��TD

3

T��2�Nc
2/3 , �17�

where �M� is the average atomic mass of the crystal, �3 is the
average volume per atom, Nc is the number of atoms in a
primitive cell, and TD is the high-temperature limit of the
Debye temperature defined by

TD
2 =

5h2�0
��2Dp���d�

3kB
2�0

�Dp���d�
, �18�

in which h is Planck’s constant, � is the frequency, and
Dp��� is the phonon density of states �PDOS�. ��2� is the
mode-averaged square of the Grüneisen parameter given by

��2� =
1

C
�
k

�
s=1

6

��sk�2Csk, �19�

where the Grüneisen parameter �sk for the sth mode of a
given wave vector k is defined as

�sk = −
� ln �sk

� ln V
, �20�

where V is the volume per atom, Csk is the phonon specific
heat given by

Csk = kB

���sk

kBT
�2

e��sk/kBT

�e��sk/kBT − 1�2 , �21�

and C is the total specific heat given by

C = �
k

�
s=1

6

Csk. �22�

Note that since the phonon frequencies �sk�F ,�� depend on
the applied strain, thermodynamic properties such as TD, �,
C, and kb are all functions of strain. For the simplicity of
notation, “�F ,��” is not shown explicitly for these quantities.
After the bulk thermal conductivity kb is obtained, the aver-
age phonon MFP can be calculated from approximated Ki-
netic theory by31
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kb �
�

3 �
k

�
s=1

3

Cskvsk s � acoustic phonon branches,

�23�

where vsk is the acoustic phonon group velocity given by

vsk = � ��sk

�k
� . �24�

Note that in Eq. �23�, only the acoustic branches of the pho-
non dispersion are included. The optical phonons are ex-
cluded for a better approximation of the average phonon
MFP since they contribute little to the thermal conductivity
around room temperature for Si and Ge due to their small
group velocities. More detailed justification for this choice
can be found in Refs. 32 and 31. The average phonon group
velocity is then obtained from the average phonon MFP as

v =
3kb

Ca�
, �25�

where Ca is the acoustic phonon specific heat, which is ob-
tained by summing Csk over the acoustic branches. Again,
the phonon scattering properties � and v are both functions
of the strain.

C. BTE model for nanocomposites

Once the strain-dependent phonon thermal properties of
the bulk Si and Ge are obtained, the effective thermal con-
ductivity of nanocomposites can then be calculated by using
a thermal transport model. Among various models that can
be used to predict the thermal conductivity of
nanocomposites,19,33,34 BTE-based thermal modeling ap-
proaches have been developed and applied to thermal trans-
port analysis in various applications with demonstrated accu-
racy and efficiency �see Ref. 22 for a review�. In this work,
we adopt the gray BTE approach for the computational ther-
mal transport analysis of Si–Ge nanocomposites. The BTE
model under gray assumption can be expressed in terms of
total phonon intensity as35,36

� · �I�r,s� · s� = −
I�r,s� − I0�r�

�
, �26�

where I�r ,s� is the total phonon intensity at a spatial position
r= �x ,y ,z� over a path length ds in the direction of unit vec-
tor s. As shown in Fig. 4, s is defined by

s = sin � cos �ex + sin � sin �ey + cos �ez, �27�

where �� �0,�� and �� �0,2�� represent polar and azi-
muthal angles, respectively, and ex, ey, and ez are the unit
vectors in the x, y, and z directions, respectively. I0�r� is the
equivalent equilibrium phonon intensity which is given by

I0�r� =
1

4�
�

0

2� �
0

�

I�r,s�sin �d�d� . �28�

Assuming a uniform distribution of the Si nanowires, the
BTE can be solved in a two-dimensional �2D� unit cell of the
nanocomposite material as shown in Fig. 5. The edge length
of the unit cell is denoted as L. The phonon intensities in the
Si–Ge domains are determined by the BTE. Periodic bound-
ary conditions are employed on the outer boundary of the
unit cell. The phonon scattering at the Si–Ge interface is
assumed to be diffuse. In this work, the boundary and inter-
face models developed by Yang and Chen13 for nanocompos-
ites are adopted and implemented using the finite volume
method �FVM�. The boundary and interface conditions are
briefly summarized as follows. For the top �y=L� and bottom
�y=0� edges, the periodic boundary condition can be written
as

I�x,L,s� = I�x,0,s� , �29�

for all x and s. For the right �x=0� and left �x=L� edges, the
periodic boundary condition implies that the difference be-
tween the phonon intensities in any given direction at the
right and left edges is independent of y. This constant differ-
ence is imposed by a temperature drop �T between the left
and right edges. The magnitude of �T, however, does not
affect the result of the thermal conductivity. The periodic
boundary condition is given by

I�0,y,s� − I�L,y,s� =
vGeCGe

a �T

4�
, �30�

where vGe and CGe
a denote the group velocity and acoustic

specific heat of germanium, respectively. The diffuse inter-
face scattering is represented by a simple diffuse mismatch
model which assumes, at the interface, part of the phonons is
transmitted through and the rest are reflected back. The trans-
mitted and reflected phonons are evenly distributed across all

x

y

z

s

r

FIG. 4. Directional phonon intensity.
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FIG. 5. �Color online� Unit cell of the nanocomposite material.
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angles on each side of the interface, as shown in Fig. 5. From
energy conservation, the relation of reflectivity R and trans-
missivity T is given by

TGS = RSG = 1 − TSG, �31�

where the subscript GS denotes from Ge into Si and vice
versa, and TGS is given by31

TGS =
CSi

a vSi

CGe
a vGe + CSi

a vSi

. �32�

By solving the BTE in both Si and Ge domains with the
boundary and interface conditions, the phonon intensity
I�x ,y ,s� can be obtained. It is then straightforward to calcu-
late the effective temperature distribution, heat flux, and ther-
mal conductivity. Note that since the local thermal equilib-
rium condition breaks down in nanostructures, an effective
temperature is used to represent the local energy density, i.e.,

T�x,y� =
4�I0�x,y�

Cav
. �33�

The average temperature at each y-z plane along the
x-direction is then obtained as

T̄�x� =
1

L
�

0

L

T�x,y�dy �34�

The heat flux in the x-direction qx is computed by integrating
the x-component of the phonon intensity over the entire solid
angle

qx�x,y� = �
0

2� �
0

�

I�x,y,s�sin2 � cos �d�d� . �35�

The effective thermal conductivity is then calculated by us-
ing Fourier’s law.

ke =
�0

Lqx�x,y�dy

T̄�0� − T̄�L�
. �36�

Note that ke is guaranteed to be constant along the x-axis by
the periodic boundary condition imposed by Eq. �29�.

D. Finite-volume solution of BTE

Due to the similarity between the thermal radiative trans-
fer equation �RTE� and the BTE, numerical methods for
solving RTE are often applicable to BTE. Among a variety of
numerical methods that are used to solve the RTE, the dis-
crete ordinates method �DOM� and the FVM are most popu-
lar. The DOM is known for its simplicity and efficiency.
However, like the finite difference method, the DOM typi-
cally requires a structured grid, which imposes a major dif-
ficulty for problems involving complex geometries. In com-
parison, the FVM can be easily applied to unstructured
meshes. Thus it provides greater flexibility in treating com-
plex geometries. In addition, integration over the control
angles is calculated exactly and heat flux in control volumes
is automatically conserved in FVM.37 Due to these attractive
properties, the FVM has been employed for radiative thermal
transport analysis in various applications.38–41 It has also
been applied to obtain BTE solution for heat transfer analysis
of submicron structures.42 In this work, as the Si–Ge nano-
composites to be investigated contain Si nanowires with dif-
ferent shaped cross sections as shown in Fig. 1, the FVM is
employed in the computational analysis. One difficulty in the
FVM solution of the BTE on an unstructured mesh is that the
control angles may overlap with the control volume bound-
aries. In such cases, the overlapping control angle contains
both the outgoing and incoming phonons. Several authors
have addressed this issue for radiative heat transfer
problems.39,40,43 We employ an exact treatment proposed in
Ref. 43. This treatment is found to be effective to resolve the
problem for our calculations.

Heat

periodic boundary

periodic boundary

Si

Ge

FIG. 6. �Color online� Spatial and angular discretization.
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As shown in Fig. 6, the 2D domain of the Si–Ge unit cell
is discretized into nonoverlapping triangular volumes �or el-
ements�. The volume of a given triangular element is denoted
as �V. The length of the edges is denoted as �Ai, i=1,2 ,3.
Within each triangular volume, the phonon intensity is de-
fined on the center node of the triangular volume. The total
solid angle 4� of the center node is discretized into N�

�N� control angles along � and � directions. The control
angles are denoted as ��mn �1�m�N� ,1�n�N��, with
the polar and azimuthal angles spanning from �m to �m+1 and
�n to �n+1, respectively, as shown in Fig. 6. Within each
control volume and control angle ��mn, the phonon intensity
is assumed to be constant and denoted as Imn. For each con-
trol volume and control angle, the governing BTE, Eq. �26�,
is integrated over �V and ��mn to yield

�
��mn

�
�V

� · �Is�dVd� = �
��mn

�
�V
�−

I − I0

�
�dVd� .

�37�

Applying the divergence theorem, Eq. �37� can be rewritten
as

�
��mn

�
�A

Is · ndAd� = �
��mn

�
�V
�−

I − I0

�
�dVd� .

�38�

For a given triangular control volume with a center node P,
the phonon intensity in the control angle ��mn is denoted as
IP

mn. Assuming that for a given control angle, facial intensities
are constant on each boundary face of the volume, the fol-
lowing finite-volume formulation can be obtained from Eq.
�38� as

�
i=1,2,3

Ii
mn�AiDCi

mn =
1

�
�− IP

mn + �I0
mn�P��V��mn, �39�

where Ii
mn is the facial intensity on �Ai, i=1,2 ,3, and the

directional weight DCi
mn is given by

DCi
mn = �

�m

�m+1 �
�n

�n+1

�s · ni�sin �d�d�, i = 1,2,3, �40�

where s is given by Eq. �27� and ni is the outward normal of
the ith face of the control volume. For 2D problems, DCi

mn can
be obtained as

DCi
mn = ���

2
−

1

4
�sin 2�m+1 − sin 2�m��

� �nx�sin �n+1 − sin �n� − ny�cos �n+1 − cos �n�� ,

�41�

where nx and ny are the x- and y-components of ni. In Eq.
�40�, the sign of DCi

mn �or equivalently, the sign of s ·ni� de-
termines whether the phonons are incoming or outgoing
across the faces of control volume.

The facial intensity Ii
mn is then related to the nodal inten-

sity by a step scheme assuming a downstream facial intensity
is equal to the upstream nodal intensity. For example, as
shown in Fig. 7, for face 2 of the control volume of node P,
if the azimuthal angle of s is between �2 and �3, one obtains

s ·n2�0, i.e., phonons are outgoing and P is the upstream
node. Therefore, Ii=2

mn = IP
mn. If s is between �4 and �5, then

s ·n2�0 and the node I of the neighbor control volume is the
upstream node. Therefore, Ii=2

mn = II
mn. However, as shown in

Fig. 7, the control angle from �3 to �4 overlaps with the face
and contains both incoming and outgoing phonons. It is more
involved to determine the facial intensity in this situation.
The solution to this control angle overlap problem has been
summarized in Ref. 39. In this work, we employ an exact
treatment described in Ref. 43 which splits the control angle
into ��3 ,��� and ��� ,�4� as shown in Fig. 7, and integrates
the two resultant control angles separately. The facial inten-
sity can be expressed by the following general expression as

Ii
mnDCi

mn = IP
mnDCi,out

mn + II
mnDCi,in

mn , �42�

where, for a nonoverlapping control angle,

if s · ni � 0 then

DCi,out
mn = �

�m

�m+1 �
�n

�n+1

�s · ni�sin �d�d�, DCi,in
mn = 0,

�43�

if s · ni � 0 then

DCi,in
mn = �

�m

�m+1 �
�n

�n+1

�s · ni�sin �d�d�, DCi,out
mn = 0,

�44�

For an overlapping control angle, without loss of generality,
assuming s ·ni�0 in ��n ,��� and s ·ni�0 in ��� ,�n+1�, we
have

DCi,out
mn = �

�m

�m+1 �
�n

��
�s · ni�sin �d�d� ,

DCi,in
mn = �

�m

�m+1 �
��

�n+1

�s · ni�sin �d�d� . �45�

When a control volume face is on the Si–Ge interface, the
interface condition given in Eq. �31� is applied by replacing
II

mn in Eq. �42� with

s

s

s

FIG. 7. Step scheme for the facial intensity.
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II
mn =

RPI

�
�
mn

IP
mnDCi,out

mn −
TIP

�
�
mn

II
mnDCi,in

mn , �46�

where RPI is the reflectivity from medium of node P to the
medium of node I and TIP is the transmissivity from medium
of node I to the medium of node P. It should be noted that
the interface condition only modifies II

mn in Eq. �42� and IP
mn

remains the same. Otherwise, the transmission and reflection
of the phonons would be double counted and the energy
conservation condition would be violated. Substituting Eq.
�42� into Eq. �39�, the finite-volume formulation of the BTE
for each control volume and control angle can be obtained as

��
i

�AiDCi,out
mn +

�V

�
��mn −

�V

4��
���mn�2�IP

mn

= − �
i

�AiDCi,in
mn II

mn

+
�V

4��� �
m�n��mn

IP
m�n���m�n����mn. �47�

For the global system, there are a total of NV�N��N� equa-
tions, where NV is the number of control volumes. These sets
of equations are solved iteratively by using the Gauss–Seidel
method. Note that, like the DOM, in Gauss–Seidel iterations,
the nodal intensities are calculated in each control volume
and control angle by using the values obtained from the last
iteration. No global matrix storage is required. The iteration
stops when the following convergence condition is reached,

max��IP
mn − �Imn�P

old�/IP
mn� � 10−6. �48�

Note that while in this work we investigate the thermal con-
ductivity of composite materials with periodic nanostruc-

tures, the approach presented is not limited to periodic sys-
tems. For nonperiodic systems, the analysis procedure
remains the same with the periodic boundary conditions
�Eqs. �29� and �30�� changing to temperature,44 diffuse,45 or
other appropriate boundary conditions.

III. RESULTS AND DISCUSSION

A. Strain effect on thermodynamic properties of bulk
Si and Ge

In this section, we investigate the strain effect on ther-
modynamic properties of bulk Si and Ge. From the lattice
dynamics with Tersoff potential, various thermodynamic
properties of bulk Si and Ge can be calculated. A few ther-
modynamic properties that are used in the calculation of the
thermal conductivity are first calculated under unstrained
condition. These results are compared with the experimental
data and other theoretical results. Table I lists the specific
heat �C�, Debye temperature �TD�, Grüneisen parameter ���,
longitudinal acoustic �LA� group velocity at � point in the
first Brillouin zone �vLA

� �, transverse acoustic group velocity
at � point �vTA

� �, LA group velocity at X point �vLA
X �, and the

bulk thermal conductivity �kb� of silicon. The comparison
shows that the Tersoff potential gives reasonable estimates to
the thermodynamic properties, including the bulk thermal
conductivity.

As mentioned in Sec. II A, we considered a maximum of
2% length change caused by four types of strains: hydrostatic
compressive, hydrostatic tensile, uniaxial compressive, and
uniaxial tensile. In the following discussion, if not otherwise
specified, the strains correspond to a 2% length change, i.e.,
Fii=0.98, i=1,2 ,3, and Fij =0, i� j for hydrostatic compres-
sive strain, Fii=1.02, i=1,2 ,3, and Fij =0, i� j for hydro-
static tensile strain, F11=0.98, F22=F33=1.0, and Fij =0, i
� j for uniaxial compressive strain, and F11=1.02, F22=F33

=1.0, and Fij =0, i� j for uniaxial tensile strain.
Figure 8 shows the strain effect on the PDOS of Si under

hydrostatic compressive and tensile strains. A direct sam-
pling method is used in the calculation of PDOS, which gen-
erates 100�100�100 uniformly distributed k-points in the
first Brillouin zone and approximates the PDOS by a normal-
ized histogram. It is shown that a shift in optical phonons to
the left occurs when the tensile strain is applied, while a shift
to the right occurs for the compressive strain. In other words,
compared to the unstrained case, most optical phonons will
be at a lower �or higher� energy when tensile �or compres-
sive� strain is applied. Note that there are similar peak shifts
for LA phonons, indicating that the hydrostatic strain has a
significant effect on them as well. Variations in transverse
acoustic phonons are also observed, although not equally sig-
nificant compared to the LA and optical phonons. Similar
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FIG. 8. �Color online� Strain-dependent phonon density of state of Si at T
=300 K.

TABLE I. Room temperature thermodynamic properties of bulk Si.

C
�J /m3K�

TD

�K�
� vLA

�

�m/s�
vTA

�

�m/s�
vLA

X

�m/s�
kb

�W/mK�

1.59�106 720 0.79 8705 5470 4540 167.6
1.65�106 �Ref. 46� 645 �Ref. 47� 0.8 �Ref. 48� 8480 �Ref. 49� 5860 �Ref. 49� 4240 �Ref. 49� 156 �Ref. 50�
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behavior of the PDOS is observed for Ge under strain �not
shown�. The different frequency shift direction of the PDOS
is largely due to the change in the stiffness of the atomic
bonds, which is represented by the force constants given in
Eq. �14�, i.e., a compressive �tensile� strain increases �de-
creases� the force constants and consequently increases �de-
creases� the vibration frequencies of the atoms. Figure 9
shows the overall Grüneisen parameter under hydrostatic
strain at different temperatures. It is shown that Grüneisen
parameter increases when temperature increases and when
tensile strain is applied. Again, similar behavior of the Grü-
neisen parameter of Ge is observed.

Figure 10 shows the Debye temperature of bulk Si crys-
tal under hydrostatic compressive, uniaxial compressive, hy-
drostatic tensile and uniaxial tensile strains at the tempera-
ture range 200–500 K comparing to the results of the
unstrained case. The Debye temperature is almost indepen-
dent of temperature but shows a strong dependence on
strains. Debye temperature’s increase with compressive
strains and its decrease with the tensile strains can be ex-
plained from the PDOS variation shown in Fig. 8. In addi-
tion, it is shown in the figure that with the same 2% length
change, hydrostatic strains produce a larger effect on TD than
the uniaxial strains.

With the decrease in Grüneisen parameter and the in-
crease in Debye temperature for compressive strains, the
Slack relation given in Eq. �17� predicts an increase in bulk
phonon thermal conductivity. Similarly, a reduction in ther-
mal conductivity is predicted for tensile strains. The same
conclusions can be obtained for Ge. Figure 11 shows the
bulk thermal conductivity of Si with respect to temperature
and strain. In Ref. 29, Slack has qualitatively explored the
strain effect on bulk thermal conductivity of crystalline sol-
ids by assuming possible changes in Debye temperature and
Grüneisen parameter due to strain. Our calculations have
confirmed his prediction quantitatively. Figure 11 shows that
hydrostatic strains have a stronger effect on bulk thermal
conductivity than the uniaxial strains. The stars in the figure
show the experiment data of unstrained bulk Silicon taken
from Table I of Ref. 50. The calculated unstrained bulk ther-
mal conductivities are higher than experiment results but in
reasonable agreement.

Figure 12 shows the contribution of optical phonons to
the overall specific heat. It is shown that, at low temperatures
�T�100 K�, acoustic phonons are the major contributors to
specific heat but at high temperatures �T�400 K�, optical
phonons contribute about half of the total specific heat. Simi-
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lar results have been obtained in Ref. 31. Since the optical
phonons contribute little to heat transfer due to their small
group velocities, it is justifiable to exclude the optical
phonons in the calculation of the phonon MFP and average
group velocity as shown in Eqs. �23� and �25�. MD data
taken from Fig. 10 of Ref. 27 and experiment data taken
from Fig. 1 of Ref. 51 are also shown in Fig. 12. The strain
and temperature-dependence of the acoustic specific heat is
shown in Fig. 13, where a compressive strain decreases the
specific heat and a tensile strain increases it. Once again, the
results for Ge are similar. The results are not shown for the
sake of brevity.

Figure 14 shows the variation in average group velocity
with respect to strain-induced length change. For the small
strains considered here, the group velocity shows a nearly
linear dependence on the length change, for both hydrostatic
and uniaxial cases. For the same length change, hydrostatic
strain leads to a larger variation than uniaxial strain. The
group velocities of unstrained Si and Ge at room temperature
are calculated to be 3138 and 2233 m/s, respectively. In Ref.
13, the group velocities of Si and Ge were calculated by
approximating the phonon dispersion using a simple sine
function. The results are 1804 m/s for Si and 1042 m/s for

Ge. It should be noted that this discrepancy is largely due to
the differences in the phonon dispersion and the PDOS given
by the Tersoff potential and the sine function.

B. Strain-dependent thermal conductivity of
nanocomposites

Having calculated the thermal properties of bulk Si and
Ge as functions of strain, the effective thermal conductivity
is computed for the Si–Ge nanocomposites shown in Fig. 1
by using the FVM and solving the BTE over unstructured
triangle meshes as shown in Fig. 6. The atomic percentage of
Si is fixed at 20%, i.e., the nanocomposites are all Si0.2Ge0.8.
In all calculations, � is discretized uniformly into 12 angles
from 0 to �, while � is discretized into 24 angles from 0 to
2�.

Figure 15 shows the size and temperature effects on pho-
non thermal conductivity of the Si0.2Ge0.8 nanocomposite
with square cross section Si nanowires. The x-coordinate is
the characteristic length of the Si nanowire, denoted as LSi,
which is the width of the square cross section. Thermal con-
ductivity of the nanocomposite decreases when the tempera-
ture increases or when size decreases. The large reduction in
the thermal conductivity with the decreasing characteristic
length is due to the dominance of the interface scattering
over the ballistic transport in nanocomposites.13 Figure 15
shows that this interface scattering induced thermal conduc-
tivity reduction holds over a wide range of temperatures
while the effect is more significant at low temperatures.

The heat flux in the x-direction of the unstrained
Si0.2Ge0.8 nanocomposite with 10�10 nm2 Si nanowire at
T=300 K is shown in Fig. 16. The low heat flux along the
path blocked by the Si wire is clearly due to the phonon
scattering at the Si–Ge interface. The effect of strain along
with the size effect on the effective thermal conductivity is
shown in Figs. 17 and 18. It is shown that strain has a sig-
nificant effect on the thermal conductivity of the nanocom-
posite. Depending on the characteristic length of the silicon
nanowire, with a length change of 2%, an applied hydrostatic
tensile or compressive strain can reduce or increase the ther-
mal conductivity up to 22%, while uniaxial tensile or com-
pressive strain can reduce or increase the thermal conductiv-
ity by as much as 8%. More importantly, the strain effect on
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the thermal conductivity of bulk materials is largely pre-
served in the composite configuration over all the sizes. This
result shows that the mechanical effect can be combined with
structural effects such as size and composition effects to fur-
ther manipulate and control the thermal conductivity of na-
nomaterials and nanostructures.

Another structural aspect to explore in this work is the
effect of the cross-sectional shape of the Si nanowire. Keep-
ing the atomic percentage of the Si nanowire at 20%, we
change the cross-sectional shape of the Si nanowire to be
circular and diamond-shaped. Note that, for circular cross
sections, the characteristic length LSi is the diameter. For
diamond cross sections, the characteristic length LSi is the
length of the edges. Same set of calculations are performed
to obtain the strain and size effects on the effective thermal
conductivity. The heat flux profiles for the circular and
diamond-shaped cross sections are shown in Figs. 19 and 20.
The difference in the heat flux profiles is obvious, especially

the shape of the low heat flux regions �the light colored re-
gions�. However, it is observed that the curves of the effec-
tive thermal conductivity are very similar to those shown in
Figs. 17 and 18, except at the lower limit of the characteristic
length. Figure 21 shows the thermal conductivities for the
three types of Si nanowires at the characteristic length of 10
nm under hydrostatic strains at 300 K. The strain effect is
almost the same for the three nanocomposites. The circular
and square cases have very close thermal conductivities, with
or without strain. The magnitude of the thermal conductivity
for diamond-shaped cross section is appreciably lower �about
5%�. Figure 22 shows the difference in thermal conductivity
for diamond and square cross sections over the characteristic
length from 10 to 200 nm. The thermal conductivity differ-
ence between the two nanocomposites drops exponentially.
These results show that, with the same atomic percentage of
Si, the cross-sectional shape makes little difference when the

FIG. 16. �Color online� Heat flux profile of unstrained Si0.2Ge0.8 at 300 K
�Si nanowire with 10�10 nm2 square cross section�.
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FIG. 17. �Color online� Thermal conductivity of Si0.2Ge0.8 under hydrostatic
strain at 300 K �square Si nanowire cross section�.
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FIG. 19. �Color online� Heat flux profile of unstrained Si0.2Ge0.8 at 300 K
�circular Si nanowire cross section with the characteristic length of 10 nm�.
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characteristic length increases. However, for very small sys-
tems �e.g., characteristic length �10 nm�, the cross-
sectional shape starts to play a role.

IV. CONCLUSIONS

A modeling and analysis approach to investigate the
strain effect on the thermal transport in 2D Si–Ge nanocom-
posites has been developed in this paper. Strains are incor-
porated into the lattice dynamics by using the Cauchy–Born
rule. Thermal properties calculated from strain-dependent
lattice dynamics are then used in the phonon BTE for the
thermal transport analysis of nanocomposites. A FVM is em-
ployed to solve the BTE over unstructured meshes. Our re-
sults show that the phonon thermal conductivity of the nano-
composites can be significantly decreased �or increased� by a
tensile �or compressive� strain. With the same length change,
hydrostatic strain produces a larger variation in phonon ther-

mal conductivity than uniaxial strain. Depending on the size
and shape of the embedded silicon nanowire, a hydrostatic
tensile strain corresponding to a length change of 2% can
reduce the thermal conductivity of Si0.2Ge0.8 by as much as
22%, while a uniaxial tensile strain of 2% length change
gives a maximum reduction of 8%. The shape effect on the
thermal conductivity is also studied, it is found that with the
same atomistic percentage, the cross-sectional shape makes
little difference to the effective thermal conductivity except
at very small characteristic lengths.

ACKNOWLEDGMENTS

We gratefully acknowledge support by the National Sci-
ence Foundation under Grant No. CMMI-0800474 and the
Clemson University start-up funds.

1Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and
H. Yan, Adv. Mater. 15, 353 �2003�.

2A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, and W. V. Schalkwijk,
Nature Mater. 4, 366 �2005�.

3R. J. Gehr and R. W. Boyd, Chem. Mater. 8, 1807 �1996�.
4P. T. Hammond, Adv. Mater. 16, 1271 �2004�.
5M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z.
Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 �2007�.

6H. J. Goldsmid, Thermoelectric Refrigeration �Plenum, New York, 1964�.
7R. Venkatasubramanian, Semicond. Semimetals 71, 175 �2001�.
8G. Chen and A. Shakouri, ASME J. Heat Transfer 124, 242 �2002�.
9R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature
�London� 413, 597 �2001�.

10B. Zhang, J. He, X. Ji, and T. M. Tritt, Appl. Phys. Lett. 89, 163114
�2006�.

11K. M. Lee, T. Weissgarber, and B. Kieback, J. Mater. Sci. 39, 5235 �2004�.
12Y. Yang, M. C. Gupta, J. N. Zalameda, and W. P. Winfree, Micro & Nano

Lett. 3, 35 �2008�.
13R. Yang and G. Chen, Phys. Rev. B 69, 195316 �2004�.
14R. W. Keyes and R. J. Sladek, Phys. Rev. 125, 478 �1962�.
15L. J. Challis and S. C. Haseler, J. Phys. C 11, 4681 �1978�.
16A. Ramdane, B. Salce, and L. J. Challis, Phys. Rev. B 27, 2554 �1983�.
17K. C. Sood and M. K. Roy, Phys. Rev. B 46, 7486 �1992�.
18T. Borca-Tasciuc, W. Liu, J. Liu, T. Zeng, D. W. Song, C. D. Moore, G.

Chen, K. L. Wang, M. S. Goorsky, T. Radetic, R. Gronsky, T. Koga, and
M. S. Dresselhaus, Superlattices Microstruct. 28, 199 �2000�.

19A. R. Abramson, C. L. Tien, and A. Majumdar, ASME J. Heat Transfer
124, 963 �2002�.

FIG. 20. �Color online� Heat flux profile of unstrained Si0.2Ge0.8 at 300 K
�diamond-shaped Si nanowire cross section with the characteristic length of
10 nm�.

0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02
12.5

13

13.5

14

14.5

15

15.5

L/L
0

T
he

rm
al

C
on

du
ct

iv
ity

(W
/(

m
K

))

Square cross−section

Circular cross−section

Diamond cross−section

FIG. 21. �Color online� Thermal conductivity of Si0.2Ge0.8 with different
cross section shapes of Si nanowire under hydrostatic strains at 300 K.

0 50 100 150 200
0

1

2

3

4

5

6

L
Si

(nm)

D
iff

er
en

ce
in

th
er

m
al

co
nd

uc
tiv

ity
(%

)

Hydrostatic compressive strain
Unstrained
Hydrostatic Tensile strain

FIG. 22. �Color online� Difference in thermal conductivity between
diamond-shaped and square cross sections as a function of characteristic
length.

114302-12 Y. Xu and G. Li J. Appl. Phys. 106, 114302 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp

http://dx.doi.org/10.1002/adma.200390087
http://dx.doi.org/10.1038/nmat1368
http://dx.doi.org/10.1021/cm9600788
http://dx.doi.org/10.1002/adma.200400760
http://dx.doi.org/10.1002/adma.200600527
http://dx.doi.org/10.1115/1.1448331
http://dx.doi.org/10.1038/35098012
http://dx.doi.org/10.1038/35098012
http://dx.doi.org/10.1063/1.2363954
http://dx.doi.org/10.1023/B:JMSC.0000039217.45509.11
http://dx.doi.org/10.1049/mnl:20070073
http://dx.doi.org/10.1049/mnl:20070073
http://dx.doi.org/10.1103/PhysRevB.69.195316
http://dx.doi.org/10.1103/PhysRev.125.478
http://dx.doi.org/10.1088/0022-3719/11/23/014
http://dx.doi.org/10.1103/PhysRevB.27.2554
http://dx.doi.org/10.1103/PhysRevB.46.7486
http://dx.doi.org/10.1006/spmi.2000.0900
http://dx.doi.org/10.1115/1.1495516


20R. C. Picu, T. Borca-Tasciuc, and M. C. Pavel, J. Appl. Phys. 93, 3535
�2003�.

21J. M. Ziman, Electrons and Phonons �Clarendon, Oxford, 1960�.
22S. V. J. Narumanchi, J. Y. Murthy, and C. H. Amon, Heat Mass Transfer

42, 478 �2006�.
23J. Tersoff, Phys. Rev. B 38, 9902 �1988�.
24D. W. Brenner, Phys. Rev. B 42, 9458 �1990�.
25F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 �1985�.
26J. Tersoff, Phys. Rev. B 39, 5566 �1989�.
27H. Zhao, Z. Tang, G. Li, and N. R. Aluru, J. Appl. Phys. 99, 064314

�2006�.
28M. Born and K. Huang, Dynamical Theory of Crystal Lattices �Clarendon,

Oxford, 1954�.
29G. A. Slack, Solid State Phys. 34, 1 �1979�.
30B. L. Huang and M. Kavianya, J. Appl. Phys. 100, 123507 �2006�.
31G. Chen, Phys. Rev. B 57, 14958 �1998�.
32G. Chen, ASME J. Heat Transfer 119, 220 �1997�.
33D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D. A. Stewart, Appl.

Phys. Lett. 91, 231922 �2007�.
34W. Zhang, T. S. Fisher, and N. Mingo, Numer. Heat Transfer, Part B 51,

333 �2007�.
35A. Majumdar, ASME J. Heat Transfer 115, 7 �1993�.
36G. Chen, ASME J. Heat Transfer 118, 539 �1996�.
37G. D. Raithby, Numer. Heat Transfer, Part B 35, 389 �1999�.
38E. H. Chui, G. D. Raithby, and P. M. J. Hughes, J. Thermophys. Heat

Transfer 6, 605 �1992�.
39M. Y. Kim, S. W. Baek, and J. H. Park, Numer. Heat Transfer, Part B 39,

617 �2001�.
40J. Y. Murthy and S. R. Mathur, J. Thermophys. Heat Transfer 12, 313

�1998�.
41J. C. Chai, H. S. Lee, and S. V. Patankar, J. Thermophys. Heat Transfer 8,

419 �1994�.
42S. V. J. Narumanchi, J. Y. Murthy, and C. H. Amon, ASME J. Heat

Transfer 126, 946 �2004�.
43S. W. Baek, M. Y. Kim, and J. S. Kim, Numer. Heat Transfer, Part B 34,

419 �1998�.
44D. Baillis and J. Randrianalisoa, Int. J. Heat Mass Transfer 52, 2516

�2009�.
45J. Zou and A. Balandin, J. Appl. Phys. 89, 2932 �2001�.
46P. Flubacher, A. J. Leadbetter, and J. A. Morrison, Philos. Mag. 4, 273

�1959�.
47C. Kittel, Introduction to Solid State Physics �Wiley, New York, 1995�.
48L. J. Porter, S. Yip, M. Yamaguchi, H. Kaburaki, and M. Tang, J. Appl.

Phys. 81, 96 �1997�.
49P. Chantrenne, J. L. Barrat, X. Blase, and J. D. Gale, J. Appl. Phys. 97,

104318 �2005�.
50C. J. Glassbrenner and G. A. Slack, Phys. Rev. 134, A1058 �1964�.
51V. M. Glazov, A. S. Pashinkin, and M. S. Mikhailova, Scand. J. Metall.

30, 388 �2001�.

114302-13 Y. Xu and G. Li J. Appl. Phys. 106, 114302 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp

http://dx.doi.org/10.1063/1.1555256
http://dx.doi.org/10.1007/s00231-005-0645-6
http://dx.doi.org/10.1103/PhysRevB.38.9902
http://dx.doi.org/10.1103/PhysRevB.42.9458
http://dx.doi.org/10.1103/PhysRevB.31.5262
http://dx.doi.org/10.1103/PhysRevB.39.5566
http://dx.doi.org/10.1063/1.2185834
http://dx.doi.org/10.1063/1.2396794
http://dx.doi.org/10.1103/PhysRevB.57.14958
http://dx.doi.org/10.1115/1.2824212
http://dx.doi.org/10.1063/1.2822891
http://dx.doi.org/10.1063/1.2822891
http://dx.doi.org/10.1080/10407790601144755
http://dx.doi.org/10.1115/1.2910673
http://dx.doi.org/10.1115/1.2822665
http://dx.doi.org/10.1080/104077999275802
http://dx.doi.org/10.2514/3.11540
http://dx.doi.org/10.2514/3.11540
http://dx.doi.org/10.1080/10407790152034854
http://dx.doi.org/10.2514/2.6363
http://dx.doi.org/10.2514/3.559
http://dx.doi.org/10.1115/1.1833367
http://dx.doi.org/10.1115/1.1833367
http://dx.doi.org/10.1080/10407799808915066
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.01.017
http://dx.doi.org/10.1063/1.1345515
http://dx.doi.org/10.1080/14786435908233340
http://dx.doi.org/10.1063/1.364102
http://dx.doi.org/10.1063/1.364102
http://dx.doi.org/10.1063/1.1898437
http://dx.doi.org/10.1103/PhysRev.134.A1058
http://dx.doi.org/10.1034/j.1600-0692.2001.300606.x

