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Quasiharmonic models for the calculation of thermodynamic properties
of crystalline silicon under strain
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Quasiharmonic models with Tersoff �Phys. Rev. B 38, 9902 �1988�� interatomic potential are used
to study the thermodynamic properties of crystalline silicon. It is shown that, compared to the
molecular dynamics simulation data, the reciprocal space quasiharmonic model accurately predicts
the thermal properties for temperatures up to 800 K. For higher temperatures, anharmonic effects
become significant. With a significantly higher computational cost, the results from the real space
quasiharmonic model approach the results from the reciprocal space quasiharmonic model as the
number of atoms increases. The local quasiharmonic model does not accurately describe the thermal
properties as it neglects the vibrational coupling of the atoms. We also investigate the effect of the
strain on the thermodynamic properties. The variation of the thermodynamic properties with
temperature under a tension, compression, and a shear deformation state is computed. © 2006
American Institute of Physics. �DOI: 10.1063/1.2185834�
I. INTRODUCTION

Thermodynamic properties of crystalline silicon have
long been a focus of interest because of their important role
in elucidating the material behavior. Computational analysis
is a powerful approach to investigate the thermodynamic
properties of materials. First-principles quantum-mechanical
methods are generally most accurate for predicting the ma-
terial properties. Ab initio local density functional techniques
have been used to determine the thermodynamic properties
of silicon1 and other materials.2 However, due to the com-
plexity of these methods and the need for large computa-
tional resources, ab initio calculations are limited to very
small systems. Empirical and semi-empirical interatomic
potentials3–5 have been developed to provide a simpler and
yet a reasonably accurate description of materials. The vari-
ous parameters in these potentials are determined by a
weighted fitting of the material property databases obtained
from experiments or ab initio calculations. Molecular dy-
namics �MD� and Monte Carlo �MC� simulations are the two
popular methods that are based on interatomic potentials. In
these methods, the thermal statistics are gathered to calculate
the ensemble average of the thermal properties. MD calcula-
tions on the thermodynamic properties of crystalline silicon
were carried out in Ref. 6, where the Tersoff potential4 was
used. In Ref. 7, a Monte Carlo method was used to calculate
the elastic properties of silicon by using both the Tersoff and
the Stillinger-Weber3 potentials. Despite their popularity,
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computational cost is still an inherent drawback with the MD
and the MC methods.

Another class of methods relies on the theory of
quantum-mechanical lattice dynamics, where the key step is
the quasiharmonic approximation of the interatomic
potential.8,9 For a system of N atoms with a given inter-
atomic potential, free energies and thermodynamic properties
can be computed by diagonalizing a 3N�3N force constant
matrix.9 For a perfect crystal lattice, due to the periodicity of
the atomic structure, it is more efficient to compute the rel-
evant quantities in the reciprocal space.9 As a further simpli-
fication of the quasiharmonic approximation, a local quasi-
harmonic approximation has been proposed10 to reduce the
3N�3N eigenvalue problem for a system of N atoms to
N 3�3 eigenvalue problems. In the local quasiharmonic ap-
proximation, it is assumed that the vibration of each atom in
the system is independent of other atoms, i.e., we neglect all
the terms in the quasiharmonic approximation that couple the
vibrations of different atoms. These models based on the
quasiharmonic approximation provide attractive alternatives
for computational analysis of material properties. For ex-
ample, along with the MD calculations, the quasiharmonic
model in real space has been used in Ref. 6 to compute
several thermodynamic properties of crystalline silicon.
However, the questions on the accuracy and to what extent
these models can describe the thermodynamic properties of
silicon still remain. In this paper, we answer these questions
by studying the bulk thermodynamic properties of crystalline
silicon using three quasiharmonic models with the Tersoff

interatomic potential: the quasiharmonic model in real space
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�QHM�, the quasiharmonic model in the reciprocal space or
the k-space �QHMK�, and the local quasiharmonic model
�LQHM�. The lattice constant, thermal expansion coefficient,
Helmholtz free energy, entropy, internal energy, and heat ca-
pacity at constant volume are computed by using these three
models and the results are compared with the MD simulation
data given in Ref. 6. It is shown in the paper that the QHMK
model accurately predicts the thermal properties for tempera-
tures up to 800 K. For higher temperatures, anharmonic ef-
fects become significant. When a sufficient number of atoms
are included ��216 atoms� in the QHM model, the differ-
ence between the results obtained from the QHMK and the
QHM models is small. The computational cost of the QHM
model, however, is much higher compared to that of the
QHMK model. The LQHM model is inaccurate for many
thermal properties, which indicates its limitation in predict-
ing the material properties at finite temperature.

Due to the advances in micro- and nanotechnologies,
silicon has been widely used to fabricate mechanical struc-
tures with applications in micro- and nanoelectromechanical
systems.11–13 Since the thermodynamic properties of silicon
are closely related to the mechanical behavior of the silicon
structure at finite temperature, it becomes necessary to inves-
tigate the thermodynamic properties of silicon under various
strain conditions. In this paper, we investigate the strain ef-
fects on the thermal properties of Tersoff silicon by using the
QHM and the QHMK models. In particular, we compute the
thermal properties when the silicon crystal is subjected to a
compression, stretch, and a shear deformation.

The rest of the paper is organized as follows: in Sec. II,
the Tersoff potential and the quasiharmonic theories are in-
troduced; in Sec. III, we compute the thermodynamic prop-
erties of a perfect silicon crystal by using the three quasihar-
monic models and compare the results with the MD data
given in the literature; the strain effect on the thermodynamic
properties is presented in Sec. IV, and conclusions are given
in Sec. V.

II. MODELS

A. Tersoff empirical potential

In the Tersoff empirical potential model,4 the interatomic
potential energy of a given system is expressed as the sum of
local many-body interactions. The total potential energy U of
a system is given by

U = �
�

U� =
1

2 �
���

V��, �1�

where � and � denote the atoms of the system and V�� is the
bond energy between atoms � and � and is given by

V�� = fC�r����a��fR�r��� + b��fA�r���� , �2�

where
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fC�r� = �1, r � Rc − D
1
2 − 1

2 sin���r − Rc�/�2D�� , Rc − D � r � Rc + D

0, r � Rc + D ,
�

fR�r� = A exp�− �1r� , �3�

fA�r� = − B exp�− �2r� .

In Eqs. �2� and �3�, r�� is the bond length or the distance
between atoms � and �, fC�r��� is a smooth cutoff function
used to limit the range of the potential, Rc is the cutoff dis-
tance, D is another cutoff parameter which specifies the re-
gion around Rc where the cutoff function goes smoothly
from 1 to 0, fR�r� is the repulsive pair potential, fA�r� is the
attractive pair potential associated with bonding, and A, B,
�1, and �2 are constants. a�� is taken to be 1.0 for silicon.
The function b�� is a measure of the bond order which de-
scribes the dependence of the bond-formation energy on the
local atomic arrangement due to the presence of other neigh-
boring atoms, which is given by

b�� = �1 + 	n
��
n �−1/2n,


�� = �
���,�

fC�r���g������exp��3
3�r�� − r���3� , �4�

g��� = 1 + c2/d2 − c2/�d2 + �h − cos ��2� ,

where � denotes an atom, 
�� is called the effective coordi-
nation number, ���� is the bond angle between the bonds ��
and ��, and g��� is the stabilization function of the tetrahe-
dral structure. The remaining variables are constant param-
eters which can be found in Table I of Ref. 4.

B. N-atom real space quasiharmonic „QHM… model

For an N-atom system, the Hamiltonian is given by8

H =
1

2
m�

�=1

N

v̇�
Tv̇� + U�x1, . . . ,xN� , �5�

where m is the mass of the silicon atom, U is the total po-
tential energy of the system, and x� and v̇�, �=1, . . . ,N, are
the position and the velocity vectors of atom �, respectively.
The instantaneous position vector x� can be further written
as

x� = x�
0 + v�, �6�

where x�
0 is the equilibrium position vector and v� is the

displacement of atom � due to thermal vibration. In a har-
monic approximation, the Tersoff potential function is writ-
ten in a quadratic form by neglecting the higher-order ��2�
terms in its Taylor’s series expansion. The total potential
energy can thus be rewritten as
U�x1, . . . ,xN� = U�x1
0, . . . ,xN

0 � +
1

2 �
�,�=1

N

�
j,k=1

3 � �2U�x1, . . . ,xN�
�x�j�x�k

�
x1,. . .,xN=x1

0,. . .,xN
0
v�jv�k, �7�
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where x�j and x�k are the jth and the kth component of the
position of atoms � and �, respectively, and v�j and v�k are
the jth and the kth component of the displacement of atoms
� and �, respectively. Denoting x= �x1 , . . . ,xN� and x0

= �x1
0 , . . . ,xN

0 �, Eq. �7� can be rewritten in a matrix form as

U�x� = U�x0� + 1
2vT�v , �8�

where v= �v1 , . . . ,vN�T and � is the 3N�3N force constant
matrix given by


3�+j−3,3�+k−3 = � �2U�x�
�x�j�x�k

�
x=x0

,

�9�
�,� = 1, . . . ,N, j,k = 1,2,3.

Note that in the classical harmonic approximation, the force
constant matrix is independent of temperature T, i.e., the
equilibrium position x0 in Eq. �9� does not depend on tem-
perature �	x0
x0	T=0�. However, typically the volume of the
crystal and the equilibrium position of the atoms, x0, vary
with temperature. If the force constant matrix is allowed to
change with the volume of the crystal, the harmonic approxi-
mation is then called the quasiharmonic approximation. Sub-
stituting Eq. �8� into the Hamiltonian, Eq. �5�, one obtains

H = 1
2mv̇Tv̇ + 1

2vT�v + U�x0� . �10�

By diagonalizing the real symmetric force constant matrix
�, Eq. �10� can be rewritten as

H = 1
2mv̇Tv̇ + 1

2vTLT�Lv + U�x0� , �11�

where � is a 3N�3N real diagonal matrix whose entries
��1 ,�2 , . . . ,�3N� are the eigenvalues of the force constant
matrix � and L is a 3N�3N orthogonal matrix �LTL=I�
whose columns are the eigenvectors of �. Defining q=Lv
and q̇=Lv̇, Eq. �11� can be rewritten as

H = 1
2mq̇Tq̇ + 1

2qT�q + U�x0� , �12�

where q and q̇ are the normal coordinates. Since the matrix
� is diagonal, the Hamiltonian given in Eq. �12� can be
rewritten as the sum of the energies of 3N independent har-
monic oscillators in the normal coordinate system. For the
jth harmonic oscillator, the Hamiltonian is given by

Hj = 1
2mq̇ j

2 + 1
2� jq j

2 + Uj�x0� , �13�

where Uj�x0� is the potential energy for the jth oscillator at
the equilibrium position. By solving the Schrödinger
equation14 for the harmonic oscillator given in Eq. �13�, the
energy levels of the jth harmonic oscillator are given by

�n,j = Uj�x0� + �n +
1

2
��� j ,

�14�
n = 0,1,2, . . . , j = 1, . . . ,3N ,
where � j is the frequency of the jth oscillator given by
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� j = 
� j/m , �15�

� is the reduced Planck’s constant and n is the quantum
number. Once the energy levels are obtained, the Helmholtz
free energy A can be readily computed as15

A = − kBT�
j=1

3N

ln �
n=0

�

e−�n,j/�kBT� = U�x0� +
1

2�
j=1

3N

�� j

+ kBT�
j=1

3N

ln�1 − e−��j/�kBT�� , �16�

where kB is the Boltzmann constant and T is the temperature.
Note that on the right hand side of Eq. �16�, the first term is
the static lattice potential energy which is determined by the
equilibrium positions of the atoms, the second term is the
quantum-mechanical zero point energy, and the third term is
the vibrational energy, which is a function of both the tem-
perature and the atom positions. After the Helmholtz free
energy is obtained, the internal energy E, the entropy S, and
the heat capacity at constant volume, Cv, can be computed,
as will be discussed in Sec. III.

C. Local quasiharmonic „LQHM… model

In the QHM model described in the previous section, the
3N�3N force constant matrix � given in Eq. �9� must be
diagonalized. If the system has a large number of atoms, i.e.,
N is large, the computational cost associated with solving the
3N�3N eigenvalue problem could be expensive. To over-
come this difficulty, LeSar et al.10 proposed a LQHM model.
The main idea in the LQHM model is to assume that the
vibration of each atom in the system is independent of other
atoms and, hence, to neglect all terms in the QHM model
that couple vibrations of different atoms. For each atom, a
local 3�3 force constant matrix is constructed by fixing its
neighboring atoms �Fig. 1� and the frequency of the center
atom is computed by diagonalizing the local force constant
matrix. In this section, the LQHM model is briefly reviewed
in the context of calculating the thermodynamic properties of

FIG. 1. The local quasiharmonic model.
Tersoff silicon.
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In the LQHM model, the Hamiltonian of the center atom
� is given by

H� =
1

2
mv̇�

Tv̇� +
1

2
v�

T����v� + U��x0� , �17�

where U��x0� is the potential energy of the center atom � at
the equilibrium position, v� and v̇� are 3�1 position and
velocity vectors of the center atom �, respectively, and ����
is the force constant matrix given by


 j,k��� = � �2Ulocal���
�x�j�x�k

�
x=x0

, j,k = 1,2,3, �18�

where Ulocal��� is the local potential energy of atom �, which
contains contributions from the first and the second nearest
neighbors. In the LQHM model, the center atom � vibrates
about its equilibrium position while the surrounding atoms
are considered fixed. As shown in Fig. 1, the instantaneous
position of the center atom ��=1� affects the potential en-
ergy of atoms 1–5, i.e., the potential energy U�, �=1, . . . ,5,
is a function of the center atom position. Therefore, Ulocal���
can be calculated within a cell that includes the first and the
second nearest neighbors of the center atom �i.e., 17 atoms,
as shown in Fig. 2�. Ulocal��� is given by

Ulocal��� = �
�=1

5

U��x��, � = 1, � � �1, . . . ,17� , �19�

where x� denotes the equilibrium position of atom � and its
four neighbor atoms, and U� is the potential energy of atom
�. By following the same procedure outlined in Sec. II B, the
energy levels of the center atom are given by

�n,j = U��x0� + �n +
1

2
����j ,

�20�
n = 0,1,2, . . . , j = 1,2,3,

where ��j is the jth frequency of atom �. The Helmholtz

FIG. 2. Atom configuration and numbering for a center atom ��B1.
free energy for an atom � in the LQHM approach is given by
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A��� = U��x0� +
1

2�
j=1

3

���j

+ kBT�
j=1

3

ln�1 − e−���j/�kBT�� . �21�

The Helmholtz free energy for a perfect N-atom crystal is
given by

A = �
�=1

N

A��� . �22�

As outlined above, the LQHM approach reduces the di-
agonalization of a 3N�3N force constant matrix to the di-
agonalization of N 3�3 matrices. For a system involving
more than a few thousand atoms, the LQHM approach is
considerably more efficient than the QHM approach.

D. Quasiharmonic model in the reciprocal space
„QHMK…

As discussed in the previous sections, the size of the
force constant matrix in the QHM approach is 3N�3N,
while the LQHM approach reduces the size of the force con-
stant matrix to 3�3 by neglecting all terms in the QHM
model that couple vibrations of different atoms. An alterna-
tive approach is the QHMK approach, which preserves the
coupling of the vibrations of different atoms but significantly
reduces the size of the force constant matrix. The key idea in
the QHMK approach is to reduce the size of the force con-
stant matrix based on the fact that the vibration of the atoms
in a Bravais lattice has the same magnitude and direction and
only differs in phase.16 Before we express the Hamiltonian in
the k-space, we introduce some notation for the silicon dia-
mond structure, which contains two interpenetrating fcc Bra-
vais lattices—denoted as B1 and B2. Figures 2 and 3 show
the open and the shaded balls representing the two types of
atoms belonging to the interpenetrating fcc Bravais lattices
B1 and B2, respectively. Typically, for an N-atom silicon sys-
tem, both B1 and B2 contain N /2 atoms. Figure 2 shows the

FIG. 3. Atom configuration and numbering for a center atom ��B2.
atom configuration where the center atom � belongs to the
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Bravais lattice B1 and Fig. 3 shows the atom configuration
where the center atom � belongs to the Bravais lattice B2.
The atom configuration shown in Fig. 3 is simply that shown
in Fig. 2 with 90° rotation about the z-axis.

To express the Hamiltonian given in Eq. �10� in the re-
ciprocal space, we use the Bloch’s theorem17 and express the
jth component of the displacement of an atom �, v�j, as

v�j = �Nm/2�−1/2�
k

Aj
1�k�eik·x�

0
, j = 1,2,3, if � � B1,

�23�

and

v�j = �Nm/2�−1/2�
k

Aj
2�k�eik·x�

0
, j = 1,2,3, if � � B2,

�24�

where k is the wave vector and for an N-atom silicon system,
k takes N /2 distinct values,18 and Aj

t�k�, t=1,2, are the un-
known coefficients which are independent of the atom posi-
�=2,. . .,5 �=1,6,. . .,17
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tions within a Bravais lattice. Substituting Eqs. �23� and �24�
into Eq. �10�, the Hamiltonian can be rewritten as

H = U�x0� +
1

2�
k

�
t=1

2

�
j=1

3

Ȧj
t*�k�Ȧj

t�k�

+
1

2m
�
k

�
t,s=1

2

�
j,k=1

3

�
�=1

N/2 � �2U�x�
�x�j�x�k

�
x=x0,��Bt,��Bs

· eik�x�
0−x�

0 � · Aj
t*�k� · Ak

s�k� , �25�

where � denotes the center atom ��=1� as shown in Figs. 2

and 3, and Ȧj
t�k� and Aj

t*�k� are the time derivative and com-
plex conjugate of Aj

t�k�, respectively. Denoting
	�2U�x� / ��x�j�x�k�	x=x0,��Bt,��Bs

as 
 j,k
ts �� ,��, Eq. �25� can

be rewritten in a matrix form as
H = U�x0� +
1

2�
k

�Ȧj
1*�k�Ȧj

2*�k���Ȧj
1�k�

Ȧj
2�k�

�
+

1

2�
k ��Aj

1*�k�Aj
2*�k��

1

m��
�=1

N/2


 j,k
11��,��eik·�x�

0−x�
0 � �

�=1

N/2


 j,k
12��,��eik·�x�

0−x�
0 �

�
�=1

N/2


 j,k
21��,��eik·�x�

0−x�
0 � �

�=1

N/2


 j,k
22��,��eik·�x�

0−x�
0 � ��Ak

1�k�
Ak

2�k�
��, j,k = 1,2,3. �26�

Denoting A�k�= �Aj
1�k�Aj

2�k��T, j=1,2 ,3, and the center matrix of the potential energy term in Eq. �26� as D�k�, Eq. �26� can
rewritten in a short form as

H =
1

2�
k

ȦH�k�Ȧ�k� +
1

2�
k

AH�k�D�k�A�k� + U�x0� , �27�

where AH�k� is the Hermitian of A�k�, and the 6�6 matrix D�k� is called the dynamical matrix. By diagonalizing the 6
�6 Hermitian dynamical matrix D�k�, the Hamiltonian given in Eq. �27� can be further written as

H =
1

2�
k

ȦH�k�Ȧ�k� +
1

2�
k

AH�k�WH�k���k�W�k�A�k� + U�x0�

=
1

2�
k

Q̇H�k�Q̇�k� +
1

2�
k

QH�k���k�Q�k� + U�x0� , �28�

where Q�k�=W�k�A�k� is the 6�1 vector of normal coordinates and ��k� is a 6�6 diagonal matrix whose components
�1�k� , . . . ,�6�k� are the eigenvalues of the dynamical matrix D�k�. Equation �28� shows that the kinetic and the potential
energy in the Hamiltonian are diagonalized simultaneously. Note that in Eq. �26�, 
 j,k

11�� ,�� and 
 j,k
22�� ,�� involve interactions

between atoms of the same Bravais lattice, and 
 j,k
12�� ,�� and 
 j,k

21�� ,�� represent interactions between atoms of different
Bravais lattices. In the calculation of the dynamical matrix, for the center atom �, atom � loops over all the atoms in the
system. However, as the Tersoff potential only includes the nearest neighbor interactions, it can be shown that 
 j,k

ts �� ,�� has
nonzero values only if the atom � is within two layers of atoms surrounding the center atom �, i.e., as shown in Figs. 2 and
3 for a given center atom �, � only needs to loop over the nearest 17 atoms �including the center atom� of atom �, i.e.,

D�k� =
1

m� �
�=1,6,. . .,17


 j,k
11��,��eik·�x�

0−x�
0 � �

�=2,. . .,5

 j,k

12��,��eik·�x�
0−x�

0 �

� 
 j,k
21��,��eik·�x�

0−x�
0 � � 
 j,k

22��,��eik·�x�
0−x�

0 � �, j,k = 1,2,3. �29�
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Note that, in 
 j,k
11�� ,�� and 
 j,k

12�� ,��, the center atom �
belongs to the Bravais lattice B1 as shown in Fig. 2, and in

 j,k

21�� ,�� and 
 j,k
22�� ,��, � belongs to B2 as shown in Fig. 3.

The transformed Hamiltonian, Eq. �28�, is the sum of the
energies of 3N independent harmonic oscillators in k-space.
The energy levels are given by

�n,ks =
U�x0�

3N
+ �n +

1

2
���s�k� ,

�30�
n = 0,1,2, . . . , s = 1, . . . ,6,

where k takes N /2 distinct values and �s�k�=
�s�k�, s
=1, . . . ,6, is the frequency of the sth oscillator for a given k.
For a silicon crystal with dimensions N1a1, N2a2, and N3a3

along the three axes and with the Born–von Karman bound-
ary condition,19 where N1�N2�N3=N /2 and a1, a2, and a3

are the three fcc Bravais lattice basis vectors, the allowed
values of k are given by

k =
n1

N1
b1 +

n2

N2
b2 +

n3

N3
b3, n1 = 1, . . . ,N1,

�31�
n2 = 1, . . . ,N2, n3 = 1, . . . ,N3,

where bi, i=1,2 ,3, are the basis vectors of the reciprocal
lattice. The Helmholtz free energy of the system is computed
as

A = U�x0� +
1

2�
k

�
s=1

6

��s�k�

+ kBT�
k

�
s=1

6

ln�1 − e−��s�k�/�kBT�� . �32�

Due to the periodicity of the reciprocal lattice, k can be
chosen to lie in the first Brillouin zone.8 Furthermore, due to
the point symmetry of the normal mode frequency �s�k�, it
is sufficient to evaluate �s�k� only in a small fraction of the
first Brillouin zone.20 This result can greatly reduce the com-
putational effort required to calculate the free energy and
other thermal properties of the silicon crystal. In this paper,
as we compute the thermodynamic properties of the bulk
silicon crystal, i.e., N→�, k is taken as a continuous vari-
able and �k in Eq. �32� is replaced by an integral of k.
Therefore, Eq. �32� can be rewritten as

A = U�x0� +
1

2
�

k
�
s=1

6

��s�k�dk

+ kBT�
k
�
s=1

6

ln�1 − e−��s�k�/�kBT��dk . �33�

The integration domain is chosen to be one quadrant of the
first Brillouin zone which is decomposed into nine tetrahe-
drons as shown in Fig. 4. The integration is carried out by
using Gaussian quadrature21 for each tetrahedron.

For an N-atom system with the Born-von Karman
boundary condition, the QHMK approach is mathematically
equivalent to the QHM approach. However, due to the peri-

odic and symmetric characteristics of the silicon lattice, one
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is able to reduce the size of matrix diagonalization from
3N�3N to 6�6, and confine the calculations within a frac-
tion of the first Brillouin zone.

III. THERMAL PROPERTIES OF SILICON: MODEL
EVALUATION

In this section, we calculate several thermodynamic
properties of the Tersoff silicon by using the three quasihar-
monic models described in Sec. II. In the QHM model, 64,
216, and 512 atoms which correspond to 2�2�2, 3�3
�3 and 4�4�4 unit cells, respectively, are used in the
calculations. In addition, periodic boundary conditions are
applied in the QHM model. The results are compared with
the molecular dynamics �MD� data presented in Ref. 6.

A. Lattice constants

Thermal expansion coefficient as a function of tempera-
ture is a fundamental property of materials. It is well known
that the classical harmonic approximation predicts no ther-
mal expansion. Thermal expansion is indeed due to the an-
harmonic characteristics of the interatomic potential. As dis-
cussed in Sec. II, the quasiharmonic approximation, which
accounts for the dependence of the phonon frequencies on
the temperature, is a simple extension of the classical har-
monic approximation. We compute the zero pressure lattice
parameter a�T� at various temperatures �0–1500 K� by using
the three quasiharmonic models. The lattice parameter a�T�
is obtained when the Helmholtz free energy is minimized
with respect to a�T�, i.e.,

�A

�a
= 0. �34�

Figure 5 shows the comparison of the computed lattice pa-
rameter with the MD results. The values computed from the
QHMK model are in good agreement with the results from
the MD simulations. However, the LQHM approach overes-
timates, by more than 50%, the variation of the lattice pa-
rameter with temperature. The lattice parameters obtained
from the QHM model with 64, 216, and 512 atoms are also

FIG. 4. A quadrant of the first Brillouin zone is decomposed into nine

tetrahedrons.
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in good agreement with the MD data. However, the CPU
time of the QHM model is about 2, 90, and 1600 times
higher than that of the QHMK approach for these cases,
respectively. In addition, anharmonic effects become signifi-
cant at high temperature as evidenced by the deviation be-
tween the QHMK approach results and the MD results at
temperatures above 1000 K.

The thermal expansion coefficient c is defined by

c =
1

a

�a

�T
. �35�

The thermal expansion coefficient is obtained by fitting the
simulation data shown in Fig. 5 with a fifth order polynomial
of T. The comparison between the computed thermal expan-
sion coefficients and the MD data is shown in Fig. 6. The
LQHM approach predicts a much larger thermal expansion
coefficient compared to the MD data. The QHMK and the
QHM models give fairly accurate results for temperatures

FIG. 5. Variation of the lattice parameter with temperature obtained from
the LQHM approach, the QHM approach with 64, 216, and 512 atoms, the
QHMK approach and MD �MD results are from Ref. 6�.

FIG. 6. Variation of the thermal expansion coefficient with temperature
obtained from the LQHM approach, the QHM approach with 64, 216, and

512 atoms, the QHMK approach and MD �MD results are from Ref. 6�.
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below 800 K. For higher temperatures, as anharmonic effects
play an important role the deviation is significant.

B. Helmholtz free energy, internal energy, entropy,
and heat capacity

Figure 7 shows the variation of the free energy with
temperature obtained by using the three quasiharmonic mod-
els along with the MD simulation results. Note that all the
MD results are from Ref. 6. As shown in Fig. 7, for low
temperatures �T�200 K�, the results from all the three
methods are close to the MD results. However, for a tem-
perature larger than 300 K, the results start to deviate. The
results from the QHMK model are the closest to the MD
data, the LQHM model results have the largest error com-
pared to the MD data, and the QHM model results lie in
between depending on the number of atoms used. The results
from the QHM model converge to the QHMK results as the
number of atoms increases. At 1500 K, the relative error be-
tween the QHMK and the QHM models with 64, 216, and
512 atoms is 0.35%, 0.12% and 0.05%, respectively. Since
the results from the QHM model with 512 atoms are very
close to the QHMK model results, they are not shown in
Figs. 8–10. At higher temperatures, the error increases with
all the quasiharmonic models indicating the significance of
anharmonic effects.

After the Helmholtz free energy A is obtained, internal
energy E, entropy S, and the heat capacity at constant vol-
ume Cv, can all be computed. The internal energy E is given
by

E = A − T
�A

�T
. �36�

The variation of the internal energy with temperature is
shown in Fig. 8, where all the models give similar results. In
this case, both the non-local effects and the anharmonic ef-
fects are quite small. Even at T=1500 K the error is within
0.004% of the MD results. Entropy, S, is a measure of the

FIG. 7. Comparison of the Helmholtz free energy obtained from the LQHM,
QHM with 64, 216, and 512 atoms, and the QHMK models with the MD
data.
amount of energy in a physical system that cannot be used to
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do work. It is also a measure of the disorder present in a
system. S is computed by

S =
E − A

T
. �37�

The LQHM approach considers each atom in the N atom
system to be an isolated subsystem. It is well known that the
entropy of a collection of N isolated systems is smaller than
that of N interacting systems. For this reason, the entropy
predicted by the LQHM model is lower compared to the MD
data as shown in Fig. 9. The results obtained from the
QHMK approach match well with the MD data for tempera-
tures below 800 K. At 1500 K, the relative error of the
LQHM and the QHMK models compared to the MD data is
about 7.9% and 4.3%, respectively. The QHM model results
lie in between the LQHM and the QHMK model results de-
pending on the number of atoms used. The heat capacity Cv
is given by

FIG. 8. Comparison of the internal energy obtained from the LQHM, QHM
with 64 and 216 atoms, and the QHMK models with the MD data.

FIG. 9. Comparison of the entropy obtained from the LQHM, QHM with 64

and 216 atoms, and the QHMK models with the MD data.
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Cv = − T
�2A

�T2 . �38�

The computed heat capacity is shown in Fig. 10. The LQHM
approach underestimates the heat capacity at low tempera-
tures ��150 K� while the QHMK approach shows a good
match with the MD data.

The remarks are indicated as follows.

�1� The local quasiharmonic approximation is computation-
ally attractive as it reduces the degrees of freedom by
neglecting the correlations between the vibrations of dif-
ferent atoms. However, this computational efficiency is
at the cost of the model’s accuracy. As a result, the lat-
tice constant, thermal expansion coefficient, Helmholtz
free energy, and the entropy predicted by the local quasi-
harmonic model are in significant error compared to that
of the MD data. Table I presents a comparison of the
LQHM, QHM, and the QHMK models.

�2� The anharmonic effects are found to be significant at
higher temperatures �typically �800 K� and the quasi-
harmonic models fail to capture the anharmonic effects.

IV. THERMAL PROPERTIES OF SILICON: STRAIN
EFFECTS

The results in Sec. III indicate that the QHMK model
gives the best results among the quasiharmonic models and
the results from the QHM model approach the QHMK model
results as the number of atoms increases. In this section, we
study the strain effects on thermal properties of bulk silicon
crystal by using both the QHM and the QHMK models. In
particular, we compute the thermal properties when the sili-
con crystal is subjected to a compression, stretch and a shear
deformation.

The silicon diamond structure contains two interpen-
etrating fcc lattices. As shown in Figs. 2 and 3, any given
atom and its four nearest neighbor atoms belong to different

FIG. 10. Comparison of the heat capacity obtained from the LQHM, QHM
with 64 and 216 atoms, and the QHMK models with the MD data.
Bravais lattices. When a perfect Bravais lattice is subjected
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to a homogeneous deformation, the change in the atom po-
sitions is assumed to follow the Cauchy-Born rule,15 i.e.,

x�
0 − x�

0 = F�X�
0 − X�

0� = �F11 F12 F13

F21 F22 F23

F31 F32 F33
��X�

0 − X�
0� ,

�39�

where X�
0 and X�

0 are the equilibrium positions of atoms �
and �, respectively, in the undeformed configuration and F is
the deformation gradient of the Bravais lattice. Let r��

0 =x�
0

−x�
0 , R��

0 =X�
0 −X�

0 be the vectors between the equilibrium
positions of atoms � and � in the deformed and undeformed
configurations, respectively. When the silicon crystal is sub-
jected to a deformation, as the diamond structure contains
two fcc Bravais lattices, an additional relative displacement
can exist between the two fcc lattices. In this case, the
Cauchy-Born rule gives

r��
0 = FR��

0 + � j − �i, � � Bi, � � Bj, i, j = 1,2,

�40�

where �i, i=1,2, are the additional inner displacements of
the two Bravais lattices which can be determined by the en-
ergy minimization for a given deformation gradient F. Since
the inner displacements �1 and �2 are relative displacements
between the two Bravais lattices, in order to rule out rigid-
body translations we fix the lattice by setting �2=0. There-
fore, �2 can be simply discarded. To simplify the notation, �1

is denoted as � in the rest of the paper. The Cauchy-Born rule
can then be rewritten as

r��
0 = FR��

0 + � if � � B2 and � � B1, �41�

r��
0 = FR��

0 − � if � � B1 and � � B2, �42�

r��
0 = FR��

0 if �,� � same Bravais lattice. �43�

In the QHM approach, substituting Eqs. �39� and �41�–
�43� into the force constant matrix, Eq. �9�, the elements of
the force constant matrix can be rewritten as a function of

0

TABLE I. Comparison of the quasiharmonic models

LQHM

Space Real
Model Local

Vibration correlations No
Dimension of the force

constant matrix
3�3

CPU time 0.01s
Error in free energy at 1500 K
�compared with MD results�

1.24%
X , F, and �, i.e.,
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3�+j−3,3�+k−3 = � �2U�x�
�x�j�x�k

�
x=x0�X0,F,��

,

�44�
�,� = 1, . . . ,N, j,k = 1,2,3.

The eigenvalues of the force constant matrix �Eq. �44��, � j,
j=1, . . . ,3N, are therefore functions of F and �. Conse-
quently, the frequencies of the harmonic oscillators and the
Helmholtz free energy given in Eqs. �15� and �16�, respec-
tively, are also functions of F and �. For a given temperature
T and deformation F, we first compute the lattice constant at
temperature T for the undeformed crystal by using Eq. �34�.
Based on the computed lattice constant, the undeformed con-
figuration of the crystal lattice, X0, at the given temperature
T is obtained. The inner displacement � can then be calcu-
lated by minimizing the free energy with the given F

�A

��
=

�U�x0�
��

+ ��
j=1

3N �1

2
+

1

e���j/�kBT� − 1
� �� j

��
= 0. �45�

Equation �45� is solved by using the Newton’s method.22

Note that the derivatives of the eigenvalues � j shown in Eq.
�45� can be calculated either analytically23,24 or by using a
numerical technique, e.g., the finite difference method.22 Af-
ter � is computed, � j can be calculated from the eigenvalues
of the force constant matrix given in Eq. �44�. The Helmholtz
free energy and other thermodynamic properties can then be
computed as discussed in the previous sections.

In the QHMK approach, from Eq. �39�, it is easy to show
that, in the reciprocal lattice of a Bravais lattice, a given
wave vector k0 in the undeformed configuration deforms to k
in the deformed configuration with the relation

k = F−Tk0. �46�

Substituting Eqs. �39�–�46� into the dynamical matrix given

QHM QHMK

Real Reciprocal
Nonlocal Nonlocal

Yes Yes
3N�3N 6�6

for silicon
s �N=64� 163s �N=512� 0.1s
0.84% 0.55% 0.49%
.

0.2
in Eq. �29�, one obtains
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D�k� =
1

m� �
�=1,6,. . .,17


 j,k
11��,��eik0·R��

0 �
�=2,. . .,5


 j,k
12��,��eik0·�R��

0 −F−1��

�
�=2,. . .,5


 j,k
21��,��eik0·�R��

0 +F−1�� �
�=1,6,. . .,17


 j,k
22��,��eik0·R��

0 �, � = 1, j,k = 1,2,3, �47�
where


 j,k
ts ��,�� = � �2U�x�

�x�j�x�k
�

x=x0�X0,F,��,��Bt,��Bs

,

�48�
j,k = 1,2,3, t,s = 1,2.

Note that, � does not appear in the exponential term of the
diagonal entries of the dynamical matrix shown in Eq. �47�,
where the atoms � and � belong to the same Bravais lattice.
For a given F, the inner displacement � is computed by

�A

��
=

�U�x0�
��

+ ��
k
�
s=1

6 �1

2
+

1

e��s�k�/�kBT� − 1
� ��s�k�

��
dk = 0.

�49�

Figure 11 shows the variation of the internal energy with
temperature when the silicon crystal is under tension �F11

�1, F22=F33=1 and Fij =0 for i� j� and compression �F11

�1� in the x direction ��100� direction�. Figure 12 shows the
results from both the QHM and the QHMK approaches. For
all the calculations shown in this section, 512 atoms �4�4
�4 unit cells� are employed in the QHM approach. All the
results from the two approaches differ by less than 0.1%. For
this reason, the QHM model results are not presented for the
rest of the examples in this section. Figure 13 shows the
variation of the Helmholtz free energy with temperature
when the silicon crystal is under tension and compression.
The variation of the internal energy and the free energy with

FIG. 11. Variation of the internal energy with temperature for tension �F11

=1.075, F11=1.15� and compression �F11=0.925, F11=0.85� of a bulk sili-

con crystal. F11=1.0 is the unstrained case.
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tension and compression is asymmetric. It is largely due to
the asymmetry of the Tersoff potential energy with tension
and compression, i.e., when the distance between the atoms
increases �tension�, the potential energy increases slowly;
whereas when the distance between the atoms decreases, the
potential energy increases quickly. Therefore, the change in
internal energy and free energy under an identical tension
and compression state is different. In addition, at low tem-
peratures, a compression state has higher internal energy
compared to the tension state, while at high temperatures the
situation is opposite.

Figure 14 shows the variation of the entropy with tem-
perature for tension and compression of the bulk silicon crys-
tal. While the entropy increases with temperature in all cases,
the entropy of the system, when compared to the unstrained
case, is lower when the silicon crystal is under compression
and higher when the crystal is under tension. When the crys-
tal is under tension �or compression�, the volume of the crys-
tal increases �or decreases� and the disorder of the system
�entropy� increases �or decreases�.

Figure 15 shows the tension/compression effect on the
heat capacity. Heat capacity is an extensive thermodynamic
variable which depends on the volume of the system. The
volume change due to tension/compression changes the heat
capacity at intermediate temperatures �150–800 K�. It is
well known that, as the temperature gets larger than the De-
bye temperature �625 K for silicon8�, the heat capacity con-
verges to a value close to 3kB per atom regardless of the
configuration. Therefore, at high temperatures ��1000 K�,
lattice deformation has little effect on the heat capacity as

FIG. 12. Comparison of the internal energy obtained from the QHM model
with 512 atoms and the QHMK model for tension �F11=1.075, F11=1.15� of

a bulk silicon crystal. F11=1.0 is the unstrained case.
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shown in Fig. 15. As the temperature decreases, both the
value of the heat capacity and the variation of the heat ca-
pacity with strain approach zero.

Figures 16–19 show the variation of the thermodynamic
properties under shear deformation. In contrast to the
tension/compression state, due to the structure of the silicon
lattice, the thermodynamic properties are symmetric with re-
spect to F12 and F21. In addition, changing the sign of the
shear makes no difference to the thermal properties. Under
shear deformation, some atoms move closer and the others
move farther. This aspect along with the small volume
change under shear deformation, gives rise to a smaller in-
crease in the internal energy and the Helmholtz free energy,
as shown in Figs 16 and 17. Furthermore, the volume change
under shear is much smaller compared to the volume change
under tension or compression. For this reason, the change in
the entropy, shown in Fig. 18, and the change in the heat
capacity, shown in Fig. 19, with shear is quite small.

V. CONCLUSIONS

In this paper, we assess the accuracy of various quasi-
harmonic models to compute thermodynamic properties of

FIG. 13. Variation of the Helmholtz free energy with temperature for ten-
sion �F11=1.075, F11=1.15� and compression �F11=0.925, F11=0.85� of a
bulk silicon crystal. F11=1.0 is the unstrained case.

FIG. 14. Variation of entropy with temperature for tension �F11=1.075,
F11=1.15� and compression �F11=0.925, F11=0.85� of a bulk silicon crystal.

F11=1.0 is the unstrained case.
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FIG. 15. Variation of the heat capacity with temperature for tension �F11

=1.075, F11=1.15� and compression �F11=0.925, F11=0.85� of a bulk sili-
con crystal. F =1.0 is the unstrained case.
FIG. 16. Strain effect on the internal energy with shear deformation of
F = ±0.15, F = ±0.075, and F =0.00.
FIG. 17. Strain effect on the Helmholtz free energy with shear deformation

of F12= ±0.15, F12= ±0.075, and F12=0.00.

 AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



064314-12 Zhao et al. J. Appl. Phys. 99, 064314 �2006�
bulk crystalline silicon described by the Tersoff interatomic
potential. We show that the local harmonic model signifi-
cantly overestimates the lattice constant and the thermal ex-
pansion coefficient, and underestimates the entropy of the
silicon crystal compared to the MD data. The quasiharmonic
model in the reciprocal space gives accurate results for tem-
peratures up to 800 K. For higher temperatures, anharmonic
effects become significant. When a sufficient number of at-
oms ��216� are used, the results obtained from the real
space quasiharmonic model approach the QHMK model re-
sults, but with a significantly higher computational cost. In
the second part of the paper, we compute the effect of the

FIG. 18. Strain effect on entropy with shear deformation of F12= ±0.15,
F12= ±0.075, and F12=0.00.

FIG. 19. Strain effect on the heat capacity with shear deformation of F12

= ±0.15, F = ±0.075, and F =0.00.
12 12
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strain on the thermodynamic properties of silicon by using
the QHM and the QHMK models. The thermodynamic prop-
erties vary significantly under a tension and a compression
state and the variation under an identical tension and a com-
pression deformation is asymmetric. Under a shear deforma-
tion, the thermal properties are symmetric as they do not
vary with the direction of the shear. In addition, the effect of
shear on the thermodynamic properties is small compared to
the effect under tension/compression deformation.
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