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An elastic membrane stretched between two walls takes a shape defined by

its length and the volume of fluid it encloses. Many biological structures,

such as cells, mitochondria and coiled DNA, have fine internal structure in

which a membrane (or elastic member) is geometrically ‘confined’ by another

object. Here, the two-dimensional shape of an elastic membrane in a ‘confin-

ing’ box is studied by introducing a repulsive confinement pressure that

prevents the membrane from intersecting the wall. The stage is set by contrast-

ing confined and unconfined solutions. Continuation methods are then used

to compute response diagrams, from which we identify the particular mem-

brane mechanics that generate mitochondria-like shapes. Large confinement

pressures yield complex response diagrams with secondary bifurcations and

multiple turning points where modal identities may change. Regions in

parameter space where such behaviour occurs are then mapped.
1. Introduction
The mitochondrion is an organelle of the cell that is responsible for converting

sugars into adenosine triphosphate (ATP) and is for good reason considered

the ‘engine’ of the cell [1]. This double-membrane structure, shown in figure 1,

consists of a permeable outer membrane, which allows transport of sugars into

the intermembrane space, bounding an impermeable inner membrane where

the production of ATP takes place. The efficiency with which a mitochondrion

processes sugars is directly related to the surface area of the inner membrane,

which can be anywhere from 4 to 10 times as large as the surface area of the

outer membrane. The typical inner membrane has size 1 mm and is characterized

by a bending rigidity a ¼ 10212 erg, tension b ¼ 1023 � 1021 pN nm21 and

internal pressure p ¼ 4 � 1022 atm [2,3]. To accommodate such large surface

areas, the inner membrane deforms itself into a series of sharp folds (invagina-

tions) known as cristae. In addition to energy production, the structure of the

inner membrane can affect specific chemical pathways and processes, such as cel-

lular differentiation and the cell cycle, through its geometry. The mechanics

governing the morphology of the inner membrane is our focus.

As shown in figure 1, the inner membrane behaves like a closed elastic sheet

that deforms as a two-dimensional object. This sheet fits within the outer mem-

brane and has three-dimensional aspects, but it is expected that the mechanics

should be described well with a two-dimensional model. In this study, we

develop a two-dimensional Cartesian model of a mitochondrion where we

hold the outer membrane as a rigid confining surface and focus on the shape

of the inner membrane. The inner membrane is characterized by a tension b

that encloses a volume of fluid V (intermembrane space) with pressure p. The

interactions between the inner membrane and outer membrane are modelled

using a general confining pressure that prevents the inner membrane from

penetrating the outer surface. Our idealized model for the observed confine-

ment (outer membrane) geometry should reproduce the essential feature of

the interaction, especially in the limiting case having a large number of folds.

Biological interfaces/membranes are subject to instabilities such as surface

wrinkling, folding and creasing in the presence of (i) geometrical constraints

(e.g. particles [4,5], fibres [6,7] and thin films [8]) or (ii) external loadings

(e.g. mechanical forces [9], hydration stresses [10–12] or capillarity [13,14]).

The review by Li et al. [15] catalogues the complex morphology of observed
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Figure 1. Experimental image of a typical mitochondrion showing a large
inner membrane confined by a smaller outer membrane. (Reproduced
from Fawcett [1].) (Online version in colour.)
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Figure 2. Definition sketch. An interface @D with tension b and length S,
defined in Cartesian coordinates y ¼ h(x), encloses a domain D with volume
V and pressure p that is confined between two solid walls at y ¼+H.
(Online version in colour.)
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‘surface instabilities’ that occur in soft biological materials

and illustrates the relevance of such phenomena to industrial

applications, such as soft lithography, flexible electronics and

biomedical engineering. The transition from wrinkle to fold is

seen upon increasing the membrane compression to a given

threshold [16]. In unconfined geometries, the shape of surface

wrinkles may be computed using any number of mathemat-

ical techniques, such as elastic rod theory or by considering a

fluid–structure interaction problem of a periodic, length-

preserving bilipid membrane modelled by the Helfrich

energy immersed in a viscous fluid [17]. The latter technique

has been used to simulate the flow of red blood cells [18].

Here, we use numerical continuation to compute membrane

shapes [19].

Continuation methods allow one to ‘follow’ a solution to a

given problem as a parameter changes. The method is well

known in a number of different fields: astrophysics [20–22],

vortex flows [23], capillary surfaces [24] and rigid body

dynamics [25], but has yet to become popularized with elastic

membranes to our knowledge. We use the method to mimic the

mechanics of the inner membrane of the mitochondrion. In

essence, we perform ‘numerical experiments’ and compare

our predictions against experimental observations. We con-

sider two scenarios. The first treats the mitochondrion as a

‘closed system’ with fixed fluid volume. We then calculate

the membrane response ( p, b) to increased length S. The

second assumes the membrane tension is a material parameter

(fixed) and the system is ‘open’ to allow fluid transport through

the ‘intermembrane space’. It is clear from the comparison of

our results that the second scenario most probably governs

the mechanics of the inner membrane, whereas the first scen-

ario is potentially relevant to other applications such as

wrinkling [26] and folding [27,28] in elastic sheets.

From a broader mechanical perspective, the shape of elastic

membranes belongs to a class of problems classically referred to

as an ‘elastica’. Examples include, but are not limited to, vesicles

whose shapes can be determined using analytical techniques

[29,30] or numerical techniques such as the finite-element

methods [31] or the discrete space variation method [32].

More recently, attention has been paid to solid elastic members

geometrically constrained to lie within a rectangular [33] or cir-

cular channel [34]. Typical modelling of such situations involves

introducing geometric pseudo-forces to account for the presence

of the geometrical support [9,35]. Alternatively, one can

introduce intermolecular forces, as done with the adhesion of

elastic sheets [36], snap-through of graphene sheets onto com-

plex substrate geometries [37], peeling of elastic sheets [38]

and the pull-in instability of carbon nanotube tweezers [39].
An elastic member in contact with a fluid reservoir can

deform from the associated fluid pressure, either hydrostatic

or capillary. For hydrostatic pressures, the buckled shapes of

thin elastic sheets have a closed-form solution [40,41] with

post-buckling solutions numerically computed using continu-

ation techniques [42]. For liquid interfaces endowed with

surface tension, e.g. drops, capillary pressure and other wetting

forces [43] give rise to ‘elastocapillary deformations’ with appli-

cations such as capillary origami [44], wrapping of droplets by

elastic sheets [45] and the formation of wetting ridges [46].

The construction of the governing equations through a vari-

ational principle subject to auxiliary constraints has been well

studied in related problems on capillary surfaces (membranes

with negligible elastic resistance), whereby the stability of sol-

utions to the Euler–Lagrange equations associated with the

respective energy functional can be read off a preferred bifur-

cation diagram [24,47]. Although we do not discuss stability

of solutions here, the relationship between these mathemati-

cal theorems and stability of the shapes predicted in this

manuscript would certainly be of interest.

We begin this paper by formulating a mathematical

model that describes the shape of an elastic membrane con-

fined by two parallel surfaces by introducing a confinement

pressure. Families of membrane shapes are computed accord-

ing to two alternative representations for the mechanics of the

inner membrane of the mitochondria. Response diagrams

which plot the membrane tension and fluid pressure as func-

tions of total arclength are computed. For large confinement

pressures, the membrane response often exhibits secondary

bifurcations (SBs) and multiple turning points where the

membrane’s modal identity may change. We catalogue the

canonical behaviours and map the corresponding regions of

parameter space. Our results predict membrane shapes

close to observed morphologies of the inner membrane and

provide insight into the governing mechanics. Finally, some

concluding remarks are offered regarding the relevance of

our model to experimental observation and the applicability

of our methods to related problems.
2. Mathematical formulation
Consider an elastic membrane @D of length S held by tension

b that encloses a domain D with volume of fluid per unit

length V and pressure p, as shown in figure 2. The membrane

shape h(x) is defined in Cartesian coordinates and ‘confined’

to lie within the domain bound by two rigid walls at y ¼+H,

with incompressible fluid of fixed volume above and below

http://rsif.royalsocietypublishing.org/
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Figure 3. Unconfined (M ¼ 0) long-wave approximation: (a) bifurcation dia-
gram plotting arclength S against tension b and (b) the family of solutions
along the k ¼ 1 branch. (Online version in colour.)
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the interface. Our model can be viewed as an idealized mito-

chondrion by treating the solid wall as the outer membrane,

the volume of fluid as the intermembrane space and the inter-

face h as the inner membrane. The energetics of this

configuration are described by the Helfrich [48,49] free

energy functional

E ¼
ð
@D
ðak2 � bÞdsþ

ð
D
ðpþ pcÞdV; ð2:1Þ

where k and a are the curvature and bending rigidity of the

membrane, respectively, and pc is a confinement pressure

introduced to model the interactions between the membrane

and bounding surfaces. Although referred to as tension

herein, note that b . 0 corresponds to compressive forces.

We are interested in membrane shapes on a periodic

domain and therefore introduce a horizontal length scale L.

Lengths are then scaled by L, while tension b and pressure

p are scaled by the bending rigidity a;

ŝ ¼ s
L

, x̂ ¼ x
L

, ĥ ¼ h
L

, k̂ ¼ Lk, b̂ ¼ bL2

a

and p̂ ¼ pL3

a
:

ð2:2Þ

Herein, we drop the hats for simplicity.

The Euler–Lagrange equations for the functional (2.1) are

given by

2Dkþ k3 þ bkþ pþ pcðhÞ ¼ 0, ð2:3Þ

where D is the surface Laplacian [50] and we have introduced

a general confinement pressure pc(h). We model the inter-

actions between the membrane and the bounding solid

using the power-law form,

pcðhÞ ¼M
1

ðH � hÞn �
1

ðH þ hÞn
� �

, ð2:4Þ

whose magnitude is controlled by the parameter M. Here 2H
is the wall spacing that defines confinement geometry,

whereas the exponent n models the interaction, e.g. n ¼ 3

for medium range van der Waals [36,37,51]. For simplicity,

we set n ¼ 1 and H ¼ 1/2 unless otherwise stated. We

choose the power-law form (2.4), because it is a ‘hard’ poten-

tial that prevents the membrane from penetrating the solid. It

is straightforward to analyse other functional forms for the

repulsive confinement pressure, such as the ‘soft’ potential

for hydration stresses [12,52] (see appendix A).

The membrane equation (2.3) is coupled to an equation

for the curvature k ¼ k(h), written in Cartesian coordinates,

which will be defined shortly. These governing equations

are augmented by the following boundary conditions:

h0ð0Þ ¼ h0ð1Þ ¼ 0, k0ð0Þ ¼ k0ð1Þ ¼ 0, ð2:5Þ

which are periodic conditions (with period 2L), where we

have taken the symmetric extension about the midplane

x ¼ 0. Note that this is tantamount to setting the phase of

the membrane shape. Finally, the integral conditions

ð1

0

ðhþHÞdx ¼ V and

ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02

q
dx ¼ S ð2:6Þ

fix the volume V of fluid and total arclength S of the

membrane, respectively. Note that these are defined on the

half-domain.
3. Results
The energy functional (2.1) can be viewed as a constrained vari-

ational principle provided one treats the tensionb and pressure

p as Lagrange multipliers (unknowns) that are fixed by the

integral constraints on volume V and arclength S. Here, (b, S)

and ( p, A) are dual variables. One can consider the tension b

and pressure p as known parameters, in which case V and S
are solution measures. This dual construction lends itself to

computational methods that involve continuation, whereby a

known solution is ‘continued’ in one or more parameters to

obtain families of solutions [53]. We use the continuation soft-

ware package AUTO [19] to compute families of membrane

shapes. With regard to the morphology of the inner membrane

of the mitochondria, the strategy we employ is to perform

‘numerical experiments’ using continuation that represents

the mechanics typical to the inner membrane.

3.1. Long-wave approximation
We begin by examining the long-wave limit jhxj � 1 with

curvature given by k ¼ h00. In this limit, equation (2.3)

becomes

h0000 þ bh00 þ p ¼M
1

ðH � hÞ �
1

ðH þ hÞ

� �
: ð3:1Þ

For fixed V, the ‘unconfined’ (M ¼ 0) solutions,

hkðxÞ ¼ C cosðkpxÞ, bk ¼ ðkpÞ2, p ¼ 0, ð3:2Þ

belong to the one-parameter family shown in the bifurcation

diagram of figure 3a, which plots tension b against arclength

S. Solution branches emanating from the trivial branch S ¼ 1

are characterized by a wavenumber k and parametrized by

arclength, as shown for the k ¼ 1 solution in figure 3b. Note

that the membrane tension is constant, regardless of the

arclength. The response diagram illustrates the dual construc-

tion mentioned above: (i) traversing the graph horizontally

for prescribed arclength S reveals the computed tension b

(Lagrange multiplier), while (ii) traversing the graph vertically

for fixed tension gives the arclength of that solution.

http://rsif.royalsocietypublishing.org/
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The response of a membrane in confinement (M = 0)

becomes more complicated, as shown in figure 4a for the

branch k ¼ 1. Here, we compute the response diagram for

fixed V ¼ 0.5 by continuing in S from the trivial state h ¼ 0

and contrasting against the unconfined (M ¼ 0) response.

Both confined and unconfined branches bifurcate from the tri-

vial branch at b ¼ p2 and, upon increasing S, the membrane in

confinement responds by increasing its tension (stiffening) in

order to accommodate the additional membrane length. The

corresponding membrane shape tends to steepen on the sides

and hug the bounding surface when compared with the limit-

ing unconfined solution that obeys the geometrical constraint,

as shown in figure 4b.

3.2. Full model
The governing membrane equation (2.3) is coupled to the

nonlinear curvature

k ¼ h00

ð1þ h02Þ
3=2
: ð3:3Þ

Recall that we have used Cartesian coordinates for con-

venience to simply analyse the confinement pressure and

avoid self-intersecting shapes. This construction ensures

single-valued functions h(x). As mentioned above, we use con-

tinuation methods to solve the nonlinear problem in order to

better understand the mechanics of the inner membrane by

comparing our predictions against observed morphologies.

We explore two possible scenarios: (i) fixed V and (ii) fixed b.

In the first case, we fix V and use S as the principal continuation

parameter, adjusting the tension and pressure accordingly.

That is, we study how the membrane responds ( p, b) as

more arclength is packed between the two ‘outer membranes’.

By contrast, for fixed b we vary p and observe V and S for each
( p, b). The two alternatives highlight the dual construction of

the variational principle.
3.2.1. Prescribed fluid volume
Figure 5a plots the response diagram b2S for fixed V ¼ 0.5

with confining pressure magnitude M ¼ 0.1. Note that the

membrane initially responds by slightly decreasing its tension

(softening) as arclength increases, which is different from the

long-wave model of figure 4a. We attribute this feature to the

nonlinear terms in the model which allows for high local

stress to be balanced by the confinement pressure terms instead

of surface tension. As arclength increases further the mem-

brane begins to feel the bounding surface and responds by

increasing its tension. For the mode k ¼ 2, the tension dramati-

cally increases from 25 to 160 despite a marginal increase in

arclength. Limiting cases of membrane shapes with the largest

arclength on the respective branches are shown in figure 5b.

Our computational approach did not find solutions past

these values of b, which is not surprising given the large curva-

tures and steep sides observed in figure 5b. Note the steep sides

reminiscent of the inner membrane shapes in figure 1.

Continuation methods also allow one to ‘continue’ differ-

ent solution measures, such as the bifurcation points shown

in figure 5a, in a given parameter. Figure 6 plots the locus

of bifurcation points in different parameters; (a) confinement

pressure M, (b) V and (c) p. Interestingly, for large confine-

ment pressure M the order in which membrane shapes

appear can become distorted. For example, traversing the

graph by increasing tension b for fixed M ¼ 1 intersects (in

order) the k ¼ 1, 2, 3 branches, whereas for M ¼ 80 the order

becomes distorted k ¼ 2, 1, 3; the k ¼ 2 shape appears before

the k ¼ 1 shape. We attribute this feature to the strong inter-

actions with the solid surface through the nonlinearity of the

confinement pressure.

Along the same lines, the locus of bifurcation points in the

volume V space reveals that starting from the neutral state

V ¼ 0.5 the membrane dramatically increases its tension

and pressure as V is removed. Note the symmetry for increas-

ing volume V from the neutral state. With regard to the

mitochondrion, large pressures and tensions may be expected

http://rsif.royalsocietypublishing.org/
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to result in rupture of the inner membrane under such cir-

cumstances. As such, figure 6b could be viewed as a guide

in controlling the hydration (equivalently, V ) or p to ensure

the membrane tension remains below a critical rupture

threshold. As with the confinement pressure M, spectral reor-

dering may occur when the membrane strongly feels the

presence of the confining surface.

In general, the membrane response becomes more complex

with increasing M, as shown in figure 7a which plots b against S
for M ¼ 1. Initially, for increasing S, the membrane responds by

softening (b decreasing) until the first limit point (LP), defined

by the appearance of two solutions, is traversed, after which the

membrane stiffens (b increasing) until the second LP, whereby

the membrane changes its modal identity from k ¼ 1 to 3, after

which it continues to soften. Our continuation method allows

us to follow the second LP, thereby constructing the curve in

the b2M parameter space where the modal identity changes.

The locus of LPs shown in figure 7b is a non-monotonic curve

that could not have been predicted either a priori or by long-

wave theory. Needless to say, cataloging membrane shapes

for large M becomes increasingly difficult.

SBs off the primary branch are typical for larger values of

M. Figure 8a plots the response diagram that exhibits an SB

off the primary branch k ¼ 2 for M ¼ 0.25 and V ¼ 0.5. Sol-

utions on the secondary branch preserve the modal identity
k ¼ 2, but exhibit a different symmetry. Both solutions are sym-

metric about the centre line x ¼ 0. However, solutions on the

primary branch are also symmetric about the vertical generator

x ¼ 1/2, while solutions on the secondary branch are not. The

locus of SB points for the branch k ¼ 2 are shown in figure 8b in

the b2M parameter space. As could be expected, larger

http://rsif.royalsocietypublishing.org/
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confinement pressures M lead to increased membrane tension

b. The classification of the space of membrane shapes can

become quite complex, as there are three equivalent membrane

shapes for b ¼ 30. The question of which membrane shape

occurs in the mitochondrion may depend upon the loading

path and can only be answered by stability analysis, which is

outside the scope of this paper.

3.2.2. Prescribed membrane tension
The second scenario we consider is one where the membrane

tension b is fixed and the pressure p is allowed to vary. As

stated earlier, in this case the volume and arclength are solution

measures, b, p are known material parameters. The response

diagram of figure 9a plots the pressure p against arclength S
for fixed b ¼ 10. As shown, the pressure dramatically increases

with the arclength due to the strong interactions between the

membrane and confining surface; a large fraction of the mem-

brane shape lies near the idealized ‘outer membrane’. The

limiting case corresponds to a total arclength S � 2.84, which

is nearly 95% of the length S ¼ 3 of the confining slot geometry

with H ¼ 0.5. Figure 9b plots the volume V against arclength S
to show volume is removed as pressure increases. The limiting

case has volume V � 0.058. The morphology of the membrane

shape shown in figure 9a (inset) closely resembles the inner

membrane of the mitochondrion observed in the literature

(figure 1), leading us to believe that one should treat the mem-

brane tension as a known material parameter. In addition, our

computed shapes qualitatively resemble those computed by

Guo & Li [32], who introduce a repulsive intermembrane poten-

tial (disjoining pressure) to model self-avoiding behaviour and

prevent membrane self-intersection. Note that our shapes are

non-intersecting via construction in Cartesian coordinates.

3.3. Biological interpretation
We revisit our results to interpret the biological mechanics of the

inner membrane of the mitochondrion. The first scenario could
be idealized as a ‘closed system’ in which the fluid volume V is

fixed and the membrane responds ( p, b) to increasing length S.

Note that our computed membrane tensions b in figures 5a, 6

and 8 are all consistent with observed values for the mitochon-

drion b̂ � 101 � 103 (see the Introduction) [2,3]. Figure 7 shows

the response can be complex; the membrane initially softens,

followed by a period of stiffening and then softens again after

changing its wavenumber character. In this case, the membrane

tension must actively change throughout the process and this

must be accomplished through the chemistry of the lipid

bilayer. Although it is well known that biochemical processes

can be complex, this scenario seems unlikely.

By contrast, the second scenario, where the membrane ten-

sion is treated as a material parameter, can be idealized as an

‘open system’ that allows for fluid transport through the ‘inter-

membrane space’. Our results predict membrane shapes that

closely resemble the morphology of the mitochondrion

(figure 9). Additionally, the limiting case has a large pressure

p � 104 whose order is consistent with experimental obser-

vations [2,3] (p̂ � 4� 104 calculated from the numerical

values given in the Introduction). These two observations

strongly suggest that the inner membrane obeys the mechanics

of the second scenario.
4. Concluding remarks
We have developed an idealized model of an elastic membrane

in confinement in order gain insight into the mechanics of the

inner membrane of the mitochondrion, a double-membrane

structure, whose outer membrane acts as a confining surface.

The governing equations are derived from a constrained vari-

ational principle that has a dual interpretation that we exploit

to perform ‘numerical experiments’ that replicate typical mech-

anics that may lead to the unique morphology of the inner

membrane. Recall that we have chosen to use a Cartesian rep-

resentation to avoid self-intersecting shapes, which restricts the

class of allowable functions. For example, shapes with a bul-

bous tip are not allowed here but would be in an arclength

parametrization. This construction could affect the response

diagrams (e.g. figures 5a and 7a). We compute the bifurcation

diagrams using the continuation software AUTO to show

how the membrane’s tension and associated fluid pressure p
respond to increases in total arclength. For small confinement

pressures, the membrane initially softens as its length grows

until it feels the presence of the confining surface, after which

the membrane stiffens significantly in order to accommodate

additional length (figure 5a). As the confinement pressure M
increases, the membrane response can become complex,

often exhibiting multiple turning points and SBs (cf. figures 7

and 8). Our work has catalogued such behaviour and

mapped corresponding regions in parameter space.

Our results indicate that treating the membrane tension b

as a material parameter in an ‘open system’ that allows

for fluid transport through the ‘intermembrane space’ yields

membrane shapes that compare favourably with observed

morphologies, thereby generating insight into the mechanics

of the inner membrane. This interpretation is consistent with

the mechanism by which the mitochondrion controls the

transport of sugars across the outer membrane into the inter-

membrane space to be processed by the inner membrane.

Clearly, it is crucial to include the fluid mechanics of the

transport process in developing future models of the

http://rsif.royalsocietypublishing.org/
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mitochondrion. For example, how does dehydration or rehy-

dration affect the efficiency with which the mitochondrion

can process sugars into ATP?

From a mathematical perspective, we hope our results

show that the application of continuation methods, which are

typically applied to problems on capillary surfaces, can be

used on related problems involving elastic membranes.

Although we do not focus on stability issues here, the con-

strained variational structures inherent in problems on elastic

membranes are well suited to bifurcation theoretic approaches,

such as the Poincaré–Maddocks turning point theorems [54].

Extensions to our model will involve changing the geo-

metry of the confining surface to better reflect the outer

membrane of the mitochondria or increasing the degree of

freedom in the model by treating the confining surface as a

deformable membrane, whose shape must also be deter-

mined as part of the problem solution. Along a similar

thread, there are many problems in biological mechanics

that involve biological members ‘confined’ by some geome-

try, such as DNA coiling, that may be applicable to our

general solution procedure. Perhaps the most direct extension

would be to consider the three-dimensional case; this is non-

trivial and involves solving a complicated partial differential

equation associated with the free boundary value problem.
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Figure 11. Membrane shapes (k ¼ 1, 2) in the long-wave limit in the pres-
ence of hydration stresses with M ¼ 10 for fixed arclength S ¼ 3, as it
depends upon the characteristic length l, penetrate the solid for certain
values of l which cannot be predicted a priori. (Online version in colour.)
Appendix A. Hydration stresses
It is straightforward to analyse a membrane in the presence of

a confinement pressure resulting from hydration stresses

[12,52],

pcðhÞ ¼M[e�(H�h)=l þ e�(Hþh)=l], ðA 1Þ

by substituting into equation (2.3). Here l is a characteristic

length scale over which the hydration forces act. Repulsive

hydration forces have been observed experimentally by

Israelachvili & McGuiggan [55] and Leikin et al. [56].

Equation (A 1) can be viewed as a ‘soft’ potential whose mag-

nitude remains finite as the membrane touches the solid

support. By contrast, the hard potential (2.4) used in the

main text gives rise to infinite forces as the membrane

approaches the solid that prevents penetration into the solid.

Figure 10 plots the bifurcation diagram S against b in the

long-wave limit for a membrane in the presence of hydration

stresses. Note that the response diagram is qualitatively similar
to that reported in figure 7 for the hard potential (2.4), with the

exception that the membrane intersects the solid for these

values of the parameters M, l (see inset figure 10). That is,

these computed membrane shapes do not physically represent

the observed mitochondrion shapes that we seek to model. For

the soft potential (A 1), there is a pseudo-support at some dis-

tance away from the actual solid, whose position cannot be

predicted a priori. In figure 11, we plot the membrane shape for

fixed arclength S ¼ 3, as a function ofl, to show that the location

of the pseudo-support depends strongly on (i) l and (ii) the

wavenumber k. For fixed l, the k¼ 2 shapes may not intersect

the solid while the k¼ 1 shapes may do so. Whether or not

this occurs is not predictable a priori and it is primarily for this

reason that we consider the hard potential (2.4) in this paper.
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