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Response of driven sessile drops with contact-line
dissipation†

Joshua B. Bostwick*a and Paul H. Steenb

A partially-wetting sessile drop is driven by a sinusoidal pressure field that produces capillary waves on the

liquid/gas interface. Response diagrams and phase shifts for the droplet, whose contact-line moves with

contact-angle that is a smooth function of the contact line speed, are reported. Contact-line dissipation

originating from the contact-line speed condition leads to damping for drops with finite contact-line

mobility, even for inviscid fluids. The critical mobility and associated driving frequency to generate the

largest contact-line dissipation is computed. Viscous dissipation is approximated using the irrotational flow

and the critical Ohnesorge number bounding regions beyond which a given mode becomes over-damped

is computed. Regions of modal coexistence where two modes can be simultaneously excited by a single

forcing frequency are identified. Predictions compare favorably to related experiments on vibrated drops.

1 Introduction

Driven droplets play a critical role in a number of emerging
technologies, such as 3D printing1 with application to rapid
prototyping,2 self-cleansing surfaces for enhanced solar cell
efficiency,3 microfluidics,4 inkjets,5,6 spray cooling for high heat
flux applications,7 and drop atomization for drug delivery (aerosol)
methods,8 all of which involve the motion of liquids on scales
where surface tension dominates.

Forcing of sessile drops can induce shape change or drive
fluid transport. Shape change occurs in experiments by driving
droplets using electrowetting,9 surface acoustic waves,10 air jets,11

mechanically vibrated substrates12,13 or pressure excitations.14

Bulk translational motion of driven droplets can be achieved
provided contact angle hysteresis can be overcome to mobilize
the contact line.15 Brunet et al.16 have demonstrated that a
mechanically-vibrated drop can be made to walk ‘uphill’ against
gravity in a ratchet-like motion.17 A description of the fluid
mechanical droplet response to the applied driving force is
crucial in understanding the aforementioned applications, as
well as guiding future studies led by prediction. In this paper, we
analyze the driven sessile drop by introducing external forcing
through the drop’s bulk pressure p = F0eiOt with O the applied
forcing frequency, as is the standard approach for Faraday
oscillations.18 Our focus is the wetting properties defined by
the static contact angle and the motion of the three-phase

contact-line, which obeys a constitutive law that relates the
contact-angle to the contact-line speed.

Lord Rayleigh19 showed that free drops exhibit a discrete
spectrum, which has come to be referred to as the Rayleigh–
Lamb (RL) spectrum.20 The RL spectrum has been verified
experimentally for free drops21,22 and is relevant in applications
where the drop may not be completely free.23,24 Typical exten-
sions for free drops include, but are not limited to, the effects
of (i) viscosity,25–28 (ii) large-amplitude perturbations29,30 or (iii)
constrained geometries.31–34 Recent experiments by Chang et al.13

have shown the inadequacy of the RL spectrum for partially-
wetting drops (a = 751) with pinned contact lines. The theory
developed by Bostwick and Steen,35 which accounts for wetting
and spreading across a solid substrate, compares favorably with
these experiments.

Forced drops exhibit a finite bandwidth of forcing frequencies
over which a particular mode may be excited, in contrast to the
discrete (delta-function) response for unforced drops. Chang et al.36

observed frequency bands in experiments on mechanically-excited
sessile water drops over a range of static contact angles. When
bulk viscosity is included in our model, the governing equations
can be recast in the form of a damped-driven oscillator with
dissipation encompassing bulk dissipation from viscosity and
contact-line dissipation related to the dynamic effects associated
with the contact-line speed law, as outlined in Bostwick and
Steen,37 Section 3.3, who have termed this Davis dissipation since
it can be traced back to the work of Davis38 on fluid rivulets.
Recent work has shown that energy can be generated for non-
monotonic contact-line speed laws (e.g. Benilov and Billingham,39

Appendix A). Note that we use a monotonic law in this
paper to report modal dependence on wetting and first order
effects of contact-line mobility, consistent with linear theory.
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More complicated behaviors, such as loops and hysteresis observed
in oscillatory contact-lines are outside the scope of this paper.40,41

Davis dissipation occurs for drops with finite contact-line
mobility and leads to attenuated droplet response and increased
bandwidth, even for inviscid fluids.42,43 However, the scaling of
Davis dissipation differs from that for bulk viscous effects. For
reference, the decay rate g from viscous dissipation for a free drop
scales with the viscosity n as g = n/R2(k� 1)(2k + 1).20 We compute
the critical mobility and forcing frequency to generate the largest
Davis dissipation in order to guide future experiments. With
regard to comparison against the Chang et al.36 experiments, we
use the contact-line mobility as a fit parameter to account for the
observed frequency envelopes.

Bulk dissipation from viscosity is approximated with the
irrotational flow field. Viscosity tends to decrease the droplet
amplitude response and increase the bandwidth for a given
mode. Our bandwidth predictions compare favorably against
experiment over a range of contact angles.44 In addition, we
compute the critical viscosity above which the oscillations for a
particular mode become overdamped. This represents a bound
above which a given mode cannot be harmonically excited.

Bosstwick and Steen35 have shown that spectral ordering for
the sessile drop can become broken and spectral lines mix for a
range of contact angles. For the forced problem with finite
bandwidth, we show that two distinct modes may be simulta-
neously excited by a single forcing frequency and map these
regions of modal coexistence in parameter space for a number
of modal pairs. Modal coexistence has been observed in oscillating
liquid puddles and where it has been seen as a precursor to chaotic
dynamics.45 Identifying these regions is important for 3D
printing,1 mixing46 and drop atomization47 applications. The
contact-line mobility strongly affects the size of the coexistence
regions. Chang et al.36 have shown that mode selection in
experiment can be hysteretic in the coexistence regimes. Then
the dominant mode depends upon the direction of the frequency
sweep. Some modes also superpose linearly and exhibit no
hysteresis. Here we focus on generating ‘operating windows’
for particular droplet behavior.

2 Mathematical formulation

Our derivation follows the boundary integral approach of Bostwick
and Steen,48 Section 1 in which normal modes are invoked and the
flow problem (interior domain) is mapped onto the undisturbed
interface.

Consider an incompressible, viscous fluid subject to a time-
dependent pressure field p(t) = P0eiOt, occupying a domain D
bounded by a spherical-cap interface @Df held by a constant
surface tension s and a support surface @Ds, as shown in Fig. 1.
The equilibrium surface G is defined parametrically,

Xðs;j; aÞ ¼ sinðsÞ
sinðaÞ cosðjÞ;Yðs;j; aÞ ¼ sinðsÞ

sinðaÞ sinðjÞ;

Zðs; aÞ ¼ cosðsÞ � cosðaÞ
sinðaÞ ;

(1)

using arclength-like s A [0,a] and azimuthal angle j A [0,2p] as
surface coordinates, with a the static contact-angle. The interface
is given a small perturbation Z(s,j,t). No domain perturbation is
needed for small deformations, thus the droplet domain D is
bounded by a free surface @Df(�G) of constant surface tension s,
and a planar surface-of-support @Ds.

2.1 Governing hydrodynamic equations

We assume the velocity field v = �rC can be expressed using
the velocity potential C,49 noting that this form of the velocity
field cannot satisfy the no-slip condition on the solid support,
but we can evaluate the bulk dissipation from the irrotational
field. The velocity potential C satisfies the following boundary
value problem,

r2C ¼ 0½D�; rC � ẑ ¼ 0 @Ds½ �; @C
@n
¼ �@Z

@t
@Df
� �

: (2)

The pressure field p is given by the linearized Bernoulli
equation

p ¼ r
@C
@t
þ P0e

iOt½D�; (3)

where r is the fluid density. Finally, disturbances to the equilibrium
surface G generate pressure gradients, and thereby flows, according
to the Young–Laplace equation

p � mn̂�(r#rC)�n̂ = �s(DGZ + (k1
2 + k2

2)Z)[@Df], (4)

where # is the tensor product and m the fluid viscosity. The
Laplace–Beltrami operator DG is defined on the equilibrium
surface G and operates on functions Z,

DGZ �
1ffiffiffi
g
p

@

@um
ffiffiffi
g
p

gmn
@Z
@un

� �
(5)

with the surface metric given by

gmn ¼
csc2ðaÞ 0

0 cscðaÞ sinðsÞð Þ2
� �

; g ¼ det gmn
� �

; (6)

and m, n = 1, 2, using notation standard to differential geometry,
e.g. Kreyszig.50

The governing eqn (2)–(4) are augmented with a boundary
condition on the three-phase contact-line to yield a well-posed
system of partial differential equations, a condition which we
discuss later.

Fig. 1 Definition sketch: spherical-cap droplet of volume V and free surface
G with contact angle a and liquid/gas slg, solid/gas ssg and liquid/solid sls

surface tensions, driven by an applied pressure field p = F0eiOt of amplitude F0

and frequency O.
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2.2 Normal mode reduction

We assume normal modes for the interface disturbance Z and
velocity potential C,

Z(s,j,t) = y(s)ei‘jeiOt, C(x,t) = f(r,y)ei‘jeiOt, (7)

with ‘ the azimuthal wavenumber and O the forcing frequency.
Here (r,y) are spherical coordinates. The normal stress balance
at the interface (4) can be written as

@f
@n

� � 0 0
þ cotðsÞ @f

@n

� � 0
þ 2� ‘2

sin2ðsÞ

 !
@f
@n

� �

¼ csc2ðaÞ l2f� ilen̂ � r � rfð Þ � n̂þ lF0

� �
;

(8)

where e � m=
ffiffiffiffiffiffiffiffiffi
rRs
p

is the Ohnesorge number, l � O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rR3=s

p
the scaled forcing frequency, F0 = P0R2/s the scaled forcing
amplitude and 0 = d/ds. The contact-line dynamics obey the
general contact-line law relating the linearized deviation in contact-
angle from its static value Da to the contact-line speed uCL,
Da = LuCL (cf. Fig. 2);

@

@s

@f
@n

� �
þ cosðaÞ @f

@n

� �
¼ ilL

@f
@n

� �
; (9)

where L is the contact-line mobility.38,51 Note that L = 0
corresponds to the free and L = N to the pinned contact-line
disturbance, respectively. The velocity potential additionally
satisfies the following auxiliary conditions,

r2f� ‘2

r2 sin2 y
f ¼ 0½D�; @f

@n
¼ 0 @Ds½ �;

@f
@n
¼ �ily @Df

� �
;

ð
G

@f
@n

dG ¼ 0;

(10)

with the Laplacian r2 in (10) a function of (r,y).

2.3 Solution of governing equations

We write the solution to (8)–(10) as an integral equation

1� b2
� �@f

@n
ðxÞ ¼ � ile

ð1
b

Gðx; yÞ n̂ � ðr�rfÞ � n̂ð Þdy

þ l2
ð1
b

Gðx; yÞfðyÞdyþ F0l
ð1
b

Gðx; yÞdy;

(11)

using the Green’s function G defined in the Appendix. Here x �
cos(s), b� cos(a). Note that the Green’s function is parameterized
by azimuthal wavenumber ‘, forcing frequency l and contact-line
mobility L.

A solution series

f ¼
XN
j¼1

ajfj ; (12)

is applied to (11) and inner products are taken to generate a set of
algebraic equations

XN
j¼1

mij þ ieltij � l2kij
� �

aj ¼ F0lgi; (13)

with

mij � 1� b2
� �ð1

b

@fi

@n
fjdx;

kij �
ð1
b

ð1
b

Gðx; tÞfiðtÞfjðxÞdxdt

tij �
ð1
b

ð1
b

Gðx; tÞ n̂ � r �rfið Þ � n̂ð ÞfjðxÞdxdt;

gi �
ð1
b

ð1
b

Gðx; tÞfiðxÞdxdt:

(14)

The auxiliary conditions (10) are satisfied through proper selection
of the basis functions fj, as discussed in Bostwick and Steen,35

Section 4.2. For zonal (‘ = 0) modes,

fj (r,y) = r2jP2j(cos y), (15)

while for non-zonal (‘ a 0) modes,

f(‘)
j (r,y) = r jP(‘)

j (cos y) (16)

with j + ‘ = even.

3 Results

For fixed l, e, a, ‘, we compute the solution vector aj to the matrix
eqn (13). The associated fluid response f, @f/@n is then obtained
by applying aj to (12). Modal identities are distinguished by the
wavenumber pair [k,‘] that follow the spherical harmonic classi-
fication scheme; zonal [k,0], sectoral [k,k] and tesseral [k,‘ a k]
shapes, as shown in Fig. 3. An alternate identification uses layers
and sectors.36 The focus here is the droplet response aj, which
is linear in the applied pressure amplitude F0. Henceforth, we

Fig. 2 Dynamic contact-line condition relates the contact angle to the
contact-line speed uCL with hysteresis (solid) and without (dashed). Here,
aa and ar are the advancing and receding static contact angles (uCL - 0),
respectively. Limiting cases of the continuousı̈ contact-line law (dashed)
include the fixed contact-angle L = 0 and pinned contact-line L = N

conditions.
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report the complex response as the vector cj � aj/F0, which
admits a phase shift

d ¼ arctan
Im½c�
Re½c�

				
				: (17)

For d = 01 and d = 901, the droplet response is in-phase and out-
of-phase with the applied pressure oscillations, respectively,
with d = 901 corresponding to a state of maximal dissipation.
Note the damped-driven oscillator structure of (13) with corres-
ponding features. In what follows, we show how the response
diagram changes with contact-line mobility L and viscosity e,
comprehensively explore the parameter space, and compare
against relevant experiments when appropriate.

3.1 CL mobility K

We examine the role of contact-line mobility by plotting the
response diagram and phase shift for the zonal ‘ = 0 modes for
an inviscid e = 0 drop with a = 751 in Fig. 4 for various values of L.
We set e = 0 to eliminate the effects of bulk viscous dissipation.
For fully-mobile L = 0 and pinned L = N disturbances, the
respective resonance peaks are infinite and the droplet oscillates
in phase d = 01 with the forcing frequency. However, for finite
values of L the resonance peak becomes finite and the oscillations
become out-of-phase with the driving field, indicating that finite
contact-line mobility L leads to an effective dissipation.

At the mobility Lm, the resonance peak will be smallest and
the droplet response is minimal. We call Lm the critical mobility
and lm the critical frequency that generates the largest Davis
dissipation. Fig. 5 plots Lm, lm against contact-angle a for the
k = 1–4 modes. The forcing frequency lm monotonically decreases
with increasing contact angle, while the mobility Lm is more
complex. For example, the zonal modes [2,0], [4,0] can have the
smallest or largest critical mobility, for fixed polar wavenumber k,
depending upon the contact angle. An important aspect of this
study is the damping of oscillations for inviscid (e = 0) fluids.
Fig. 5 may be interpreted as a guide in selecting substrates for
experiments that generate the largest Davis dissipation.

The response diagrams of Fig. 4 and 7, show that modes can
be excited over a range of forcing frequencies. This has been
observed in recent experiments for a number of modes and over
a range of contact angles.36 In that study, predicted frequency
envelopes for pinned (L = N) disturbances with e = 0.0024

compared favorably to experiment for a large number of modes,
with the exception of the [5,5], [7,7], [9,9] sectoral modes. By
using the contact-line mobility as a fit parameter L = 0.1, we
find frequency envelopes that match the experiments for those
remaining modes, suggesting that the contact-line dynamics
may be crucial in understanding the forced oscillations problem
(cf. Fig. 6).

3.2 Viscosity e

Fig. 7 plots the droplet response and phase shift for the zonal
modes for a sub-hemispherical drop (a = 751) with L = 0, as they
depend upon the bulk viscosity e. For an inviscid fluid e = 0, the
oscillations are completely in phase d = 01 with the applied field
and the response diagram exhibits three infinite peaks that
correspond to the [2,0], [4,0] and [6,0] modes, respectively. Note
that modes appear over a range of frequencies that define a
bandwidth, a prominent feature of the forced oscillation problem
that is also observed in experiment.36 For small viscosity e = 0.01,
the resonance peaks are dramatically lowered and the droplet
response is out of phase d a 01 with the driving frequency. The
relative decrease in response amplitude |c| for increasing wave-
number is consistent with bulk viscous effects e a 0 from
traditional viscous dissipation.20 For finite viscosity e a 0 and
contact-line mobility L a 0, N, the response can be non-
monotonic because of competition between bulk and Davis
dissipation. No systematic trend is observed in these regimes.

Fig. 3 Modal classification by wavenumber pair [k,‘] into zonal [k,0],
sectoral [k,k] and tesseral [k,‘ak] shapes. Experimental images are reproduced
from Chang et al.36

Fig. 4 Response |c| (top) and phase shift d (bottom) against frequency
l for the zonal ‘ = 0 modes of an inviscid e = 0 drop with a = 751, as it
depends upon the mobility L. The first peak corresponds to the [2,0]
mode, the second to [4,0] and the third to [6,0]. Note that the response is
strictly real with phase shift d = 01 for the free L = 0 and pinned L = N

disturbances (superposed lines on l axis). For finite mobility L, the drop
response is out-of-phase d = 901 at the resonant peak.
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Resonance peaks may disappear completely for large values
of viscosity, as shown in Fig. 7 for the [4,0] and [6,0] modes with
e = 0.5. For a given mode [k,‘], one can define a critical
Ohnesorge number ec where the resonance peak disappears
and above which (e 4 ec) it is not possible to excite that mode.
Stated differently, beyond ec the oscillations are over-damped.
Fig. 8 plots ec against contact angle for the pinned L = N

modes. Note that for a fixed azimuthal wavenumber ‘, ec

decreases with increasing polar wavenumber k irrespective of
contact-angle, as could be expected from the increased surface
distortion for the high wavenumber modes (Chang et al.,36

Fig. 7). However, the non-monotonic behavior with contact
angle a could not have been predicted a priori and presumably
results from the interactions between adjacent modes and the
applied pressure field.

A typical measure of the damping of oscillations in forced
systems is the bandwidth of a resonance peak, which can easily
be extracted from the response diagram (e.g. Fig. 7). In particular,
the full width at half max (FWHM) bandwidth also coincides with
the decay rate of oscillations.44 Fig. 9(a) plots the dimensionless
FWHM Dl against e and a for the [1,1] pinned mode. Note the
non-monotonic dependence of the dissipation (FWHM) with
respect to contact angle, reflecting the increased presence of
the solid substrate for these wetting conditions. We compare our

FWHM bandwidth predictions DO for the [1,1] pinned mode to
the experiments by Sharp44 over a wide range of contact angles in
Fig. 9(b). The agreement is reasonable over a large range of drop
volumes, as measured by the drop mass m.

3.3 Modal coexistence

An important prediction from Bostwick and Steen35 was that two
modes with different wavenumber pair [k,‘] may share the same
natural frequency and that the classical ordering of frequencies
by increasing polar wavenumber could become broken and
unordered for certain contact angles. This was confirmed in the
experiments by Chang et al.36

A primary difference between natural and forced oscillations
is that the resonance frequency takes a discrete value for the
former and a range of values for the latter. Hence, two modes
may coexist over a range of frequencies for the forced problem
considered here. Fig. 10(a) plots the frequency envelopes for the
pinned [6,0] zonal and [5,5] sectoral modes against contact angle
a for the Ohnesorge number e = 0.0024 used in the Chang et al.36

experiments. Modal coexistence is predicted in the region shown
in Fig. 10(b). In general, the domains of coexistence for a pair of

Fig. 5 Critical mobility Lm and critical frequency lm that generates the
largest Davis dissipation for fixed polar wavenumber k, as it depends upon
the contact-angle a and azimuthal wavenumber ‘. Viscous effects are
negligible e = 0. Note the different vertical scales between sub-figures.

Fig. 6 Comparison with Chang et al.36 experiments: frequency envelopes
against contact-angle a for sectoral modes [5,5], [7,7], [9,9] with contact-line
mobility L = 0.1 (fit to experiment) and e = 0.0024 (measured in experiment).
Experiments given by symbols.
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modes will depend upon both the contact-line mobility L and the
Ohnesorge number e. Fig. 11 plots the domains of coexistence for
a given zonal mode with the sectoral modes, comparing pinned
L = N disturbances to those with finite mobility L = 0.1. As
shown, decreasing L tends to increase the number of modes
that coexist with a given target mode. For reference, we include
additional figures that predict domains of coexistence for
different target modes in the ESI.†

Fig. 7 Response |c| (top) and phase shift d (bottom) against frequency
l for a drop with a = 751, L = 0 (fully-mobile disturbance) and ‘ = 0, as it
depends upon the Ohnesorge number e. The first peak corresponds to the
[2,0] mode, the second to [4,0] and the third to [6,0]. Note for inviscid
fluids e = 0, the phase shift d = 01 for all a.

Fig. 8 Critical Ohnesorge number ec against contact-angle a for pinned
disturbances L = N. Mode [k,‘] can be excited below the corresponding
curve. Note the different vertical scales between sub-figures.

Fig. 9 Full width at half max (FWHM) for the [1,1] pinned mode: (a)
dimensionless frequency Dl against Ohnesorge number e and contact-angle
a and (b) dimensional frequency DO against 1/m2/3 for 10 w% glycerol
droplets comparing to Sharp44 (symbols).

Fig. 10 Modal coexistence: (a) frequency l envelopes for the pinned
(L = N) [6,0] and [5,5] modes against contact-angle a predicts (b) domains
of coexistence for a drop with e = 0.0024.
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4 Concluding remarks

We have studied the forced oscillations of a partially-wetting
sessile drop, whose three-phase contact line obeys a constitutive
law relating the contact angle to the contact line speed, some-
times called the Hocking condition. Response diagrams and
phase shifts are reported, as they depend upon viscosity e and
contact line mobility L. Modes are distinguished by the wave-
number pair [k,‘] and can be excited over a range of frequencies
that define a bandwidth. Our predictions compare well against
relevant experiments on vibrated sessile drops (cf. Fig. 6
and 9(b)).

Our focus is on defining regimes or ‘operating windows’
where certain droplet behavior may be observed experimentally
or our model developed further. For example, we compute the
critical viscosity ec (Ohnesorge number) above which it is not
possible to observe a specified mode over a range of contact
angles, thereby aiding the practitioner in selecting appropriate
fluids and droplet volumes (cf. Fig. 8). We then show how finite
contact line mobility L leads to Davis dissipation, even in inviscid
fluids, and compute the critical mobility Lm and forcing fre-
quency lm that generate the largest dissipation (cf. Fig. 5). Finally,
we show that two distinct modes may be simultaneously excited
by a single forcing frequency and map these regions of modal
coexistence in parameter space for a number of modal pairs in
Fig. 11. Modal coexistence may be of importance in mixing
applications that rely upon capillary oscillations46,52,53 and drop
atomization12,47 for spray cooling. With regard to modeling, a
thorough study of the internal resonances and nonlinear modal
interactions54,55 in the coexistence domains would help identify
the mechanism behind mode selection in related experiments.36

Extensions to this study could include modeling (i) an asymmetric
applied pressure field that could potentially lead to a translational

droplet motion along the substrate39,56 and (ii) a fully non-linear
theory with associated contact-line law for oscillatory flows that
exhibits effects such as hysteresis and loops.40,41

Appendix A

Green’s function

The Green’s function is defined as

G ¼
xð‘Þy1ðy; ‘Þ t2

t1
y1ðx; ‘Þ � y2ðx; ‘Þ


 �
bo xo yo 1

xð‘Þy1ðx; ‘Þ t2
t1
y1ðy; ‘Þ � y2ðy; ‘Þ


 �
bo yoxo 1;

8>>>><
>>>>:

(18)

where x� cos(s), b� cos(a). The functions y1 and y2 belong to the
kernel of the curvature operator and are given by

y1ðx; 0Þ ¼ P1ðxÞ; y2ðx; 0Þ ¼ Q1ðxÞ; y1ðx; 1Þ ¼ P
ð1Þ
1 ðxÞ;

y2ðx; 1Þ ¼ Q
ð1Þ
1 ðxÞ; y1ðx; ‘ � 2Þ ¼ ðxþ ‘Þ 1� x

1þ x

� �‘=2
;

y2ðx; ‘ � 2Þ ¼ ðxþ ‘Þ
2‘ ‘2 � 1ð Þ

1þ x

1� x

� �‘=2
; (19)

where P1, Q1 and P(1)
1 , Q(1)

1 are the order 0 and 1 Legendre
functions of index 1, respectively.57 Similarly, the scale factor
is given by

x ð‘Þ �
1=2 ‘ ¼ 1

1 ‘a1;

(
(20)

Fig. 11 Domains of coexistence for the zonal modes [k,0] mixed with the sectoral modes [k,k] for pinned L = N and finite contact-line mobility L = 0.1
disturbances with e = 0.0024. Note the different frequency scales between sub-figures.
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while

t1 ¼ y1
0 ðb; ‘Þ þ bffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
p � ilL
� �

y1ðb; ‘Þ;

t2 ¼ y2
0 ðb; ‘Þ þ bffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
p � ilL
� �

y2ðb; ‘Þ:
(21)
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