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High-speed images of driven sessile water drops recorded under frequency scans
are analysed for resonance peaks, resonance bands and hysteresis of characteristic
modes. Visual mode recognition using back-lit surface distortion enables modes to
be associated with frequencies, aided by the identifications in Part 1 (Bostwick &
Steen, J. Fluid Mech., vol. 760, 2014, pp. 5–38). Part 1 is a linear stability analysis
that predicts how inviscid drop spectra depend on base state geometry. Theoretically,
the base states are spherical caps characterized by their ‘flatness’ or fraction of the
full sphere. Experimentally, quiescent shapes are controlled by pinning the drop at a
circular contact line on the flat substrate and varying the drop volume. The response
frequencies of the resonating drop are compared with Part 1 predictions. Agreement
with theory is generally good but does deteriorate for flatter drops and higher modes.
The measured frequency bands agree better with an extended model, introduced here,
that accounts for forcing and weak viscous effects using viscous potential flow. As
the flatness varies, regions are predicted where modal frequencies cross and where the
spectra crowd. Frequency crossings and spectral crowding favour interaction of modes.
Modal interactions of two kinds are documented, called ‘mixing’ and ‘competing’.
Mixed modes are two pure modes superposed with little evidence of hysteresis.
In contrast, modal competition involves hysteresis whereby one or the other mode
disappears depending on the scan direction. Perhaps surprisingly, a linear inviscid
irrotational theory provides a useful framework for understanding observations of
forced sessile drop oscillations.
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1. Introduction
Manipulation of drops facilitates numerous applications, including inkjet printing

(Castrejon-Pita et al. 2013), atomization (Qi et al. 2010), enhanced heat conduction
(Daniel, Chaudhury & Chen 2001), particle patterning (Wright & Saylor 2003;
Whitehill et al. 2010) and mixing within droplets (Shilton et al. 2008). Manipulation
may occur by means of acoustic fields (Marston & Apfel 1980), electric fields
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(Trinh, Holt & Thiessen 1996), magnetic fields (Hill & Eaves 2012) or by means of
mechanically induced pressure fields (e.g. by piezoelectric constriction, Basaran 2002)
or accelerations (e.g. by shaking, Rodot, Bisch & Lasek 1979). In regimes where
inertia and surface tension compete, drop manipulation often involves drop oscillations.
An understanding of drop resonance is important for developing applications, either
to maximize droplet motions by forcing or to avoid undesired oscillations.

This paper primarily reports experimental tests of the theoretical predictions of
Bostwick & Steen (2014) (Part 1). In Part 1, the resonant behaviour of a drop sitting
on a solid substrate was solved for. The context is a linear stability analysis of
spherical-cap base states parameterized by contact angle (CA) α. In the analysis, the
contact line (CL) may be pinned, mobile or some combination thereof. The case
relevant to the experiments reported below is a pinned CL, in which case α serves
as a proxy for the drop volume. Henceforth, all theory results refer to the pinned CL
case unless otherwise noted. For a given α, the mode shapes and natural frequencies
are predicted by the stability analysis and the countably infinite set of frequencies
constitutes the spectrum for that α. The α family of spectra can be related to breaking
the symmetry of the classical Rayleigh–Lamb (RL) spectrum for free drops (Lamb
1932; Rayleigh 1879). Varying α splits the classical RL spectrum and shifts the
frequencies upward or downward.

Mode shapes also vary with α and hence are deformed from the RL version of
the mode shapes. The RL terminology [k, l], originating from a spherical harmonics
description, can be carried over to the deformed shapes: ‘zonal’ for axisymmetric
modes (longitudinal wavenumbers l= 0), ‘sectoral’ for star-shaped modes (k= l) and
‘tesseral’ for all other modes (k > l > 0). This is because analogous wavenumbers
arise from the separation of variables that applies for the solution of the underlying
Laplace equation for shapes periodic in the longitudinal direction (l). In short,
our problem reduces to a Sturm–Liouville-like boundary-value problem in the
co-latitudinal direction with solution having characteristic k and depending on l
through the separation constant ((3.1), Part 1). It should be noted that the restriction
k + l = even arises to ensure no penetration at the base of the spherical cap (cf.
Part 1).

Steady symmetry breaking of a spherical drop can be induced by means other than
introducing a solid support. Busse (1984) considers drop rotation and reports that
frequency splitting generated by centrifugal and Coriolis effects can shift frequencies
of zonal modes either upward or downward, depending on whether the steady
distortion is to an oblate or prolate spheroid respectively. Feng & Beard (1991)
consider a charged drop exposed to an external electric field and report a downward
shift for zonal modes and an upward shift for sectoral modes. Shi & Apfel (1995)
consider an acoustically levitated drop and report how the accompanying steady
deformation shifts the frequency of oscillations initiated by a sound pulse.

Experimental studies to compare with these theoretical/computational predictions
are rare because Earthbound experiments require drop levitation that typically couples
to the frequency response. Levitation is easier in low gravity but experimental
opportunities there are limited (Shen, Xie & Wei 2010). Sessile drop vibrations offer
an easily controlled symmetry breaking from the RL spectrum that is uncoupled from
the shaker-table forcing and thus provides a relatively simple Earthbound context to
study frequency shifts.

The literature on drop oscillations is vast. We offer a brief overview only. The first
observation of RL modes is reported for Leidenfrost drops by Holter & Glasscock
(1952). The RL frequency predictions are tested experimentally for immiscible drops
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by Trinh, Zwern & Wang (1982), drops in microgravity by Wang, Anilkumar &
Lee (1996) and levitated drops by Trinh et al. (1996), Perez et al. (1999) and Shen
et al. (2010). Rodot et al. (1979) reports similar mode shapes for sessile drops.
Rayleigh’s prediction for the oscillating free drop still sees widespread use even in
situations where the drop is not completely free, as for a drop levitated (Hill & Eaves
2010; Brunet & Snoeijer 2011) or in contact with a solid (Daniel, Chaudhury & de
Gennes 2005; Dong, Chaudhury & Chaudhury 2006; Noblin, Kofman & Celestini
2009; Chebel, Risso & Masbernat 2011) or with another liquid (Dorbolo et al. 2008).
Modifications, ad hoc or otherwise, to RL theory are often invoked to account for the
influence of the substrate on the drop frequency (Yoshiyasu, Matsuda & Takaki 1996;
Perez et al. 1999; Sharp, Farmer & Kelly 2011). Our previous experiments (Chang
et al. 2013) document the limitations of the RL frequencies for non-RL situations,
especially for the higher modes of sessile drops.

The experiments reported in Chang et al. (2013) have limited experimental control
over the tested shapes: for those experiments, α∼ 70◦. This paper has a broader scope.
We introduce a surface preparation technique that pins the CL to a circular footprint.
This enables us to experimentally vary the shape by varying the volume: here, 35◦ 6
α6 135◦. The actual placed volume of the drop can be measured by its α from a side
view of the static drop. Or, because of the good pinning, a volume measurement can
replace the α measurement using the explicit trigonometrical relationship, (1.2), Part 1.
The CA is also chosen in Part 1 as the preferred parameterization. For consistency
with Part 1, we continue to use α as the preferred parameterization. It should be kept
in mind that dynamical shapes have dynamical contact angles that differ from α.

A first result of this paper is the comparison of measured to predicted frequency
shifts with α, over the range of CAs. A second result introduces forcing and viscosity
using a viscous potential flow (VPF) extension to the theoretical model in order to
account for discrepancies between experiment and theory, observed for higher modes
and flatter drops. As a third result, we report on modal interactions which arise
because of overlap between resonant frequency bands. Whether frequencies are
related harmonically or subharmonically and whether their resonance bands overlap is
important to the nature of the interaction. Two kinds of interactions are documented:
one that appears to be a linear superposition which we call ‘mode mixing’ and
another that exhibits hysteresis where one mode dominates which we call ‘mode
competition’. As an extension of the single α probed in our previous paper (Chang
et al. 2013), the first topic is new. The second results are completely new. The third
topic is made possible by the range of α probed and, hence, is also new, even though
mixing is mentioned in Chang et al. (2013).

In Part 1, disturbances to the base state are assumed to be normal modes yeiωt. This
assumption leads to a linear eigenvalue problem for the reduced disturbance shape y,

−ω2M[y] +K[y] = 0, (1.1)

where M is a positive definite operator representing the drop’s inertia (mass) and
K is an operator representing its capillarity (spring constant). These correspond
to (3.2) in Part 1. Part 1 solves (1.1) for eigenvalues ωk,l and corresponding
eigenmodes yk,l. Schematically, ω2

k,l = 〈yk,l, K[yk,l]〉/〈yk,l, M[yk,l]〉 > 0 if the operator
K is positive definite. The corresponding motion is oscillatory with frequency
ωk,l =±√〈yk,l,K[yk,l]〉/〈yk,l,M[yk,l]〉, which is the case for drops with pinned CLs.

Pinning of drops is achieved by chemical means and/or by substrate roughening.
Drops are driven by plane-normal substrate motion at frequencies f and amplitudes
A experiencing acceleration a, where a ≡ (2πf )2A (cf. figure 1). Droplet response
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FIGURE 1. (Colour online) A sessile drop with density ρ, dynamic viscosity µ and surface
tension σ is subject to substrate oscillation of frequency f , amplitude A and acceleration
a= (2πf )2A.

(a) Physical parameters
Frequency (f ) Amplitude (A) Acceleration (a)

30–1100 Hz 1–430 µm 0.1–100g

(b) Dimensionless parameters
Frequency Ohnesorge Reynolds, forcing Bond, forcing

λ≡ 2πf (ρr3/σ)1/2 ε ≡µ/√ρrσ Re≡ ar/f ν Boa ≡ ρar2/σ

2.5–100 0.0024 75–2000 0.075–80

TABLE 1. Parameters of response and forcing by plane-normal displacement A sin(2πft)
where the amplitude A = a/(2πf )2. The inverse Ohnesorge number, ε−1, is a response
Reynolds number. For water, ρ = 1000 kg m−3, σ = 72 mN m−1, µ = 10−3 Pa s and
ν ≡µ/ρ.

is observed by high-speed imaging. Resonance peaks are detected using frequency
scans at fixed a using various protocols. Frequencies are extracted by image analysis
and depend on visual mode recognition. For non-axisymmetric modes (non-zonals),
mode identification must be by top view. Identification is crucial for frequency band
measurement. For this reason, we include § 4.2 on mode discovery and identification,
which complements § 6 of Part 1, and which reproduces some material of Chang et al.
(2013), for completeness.

Water is used as the droplet liquid because of its relatively high surface tension
σ and low dynamic viscosity µ. Drop size is chosen small enough that undisturbed
shapes are nearly spherical but large enough for reasonable image resolution. That is,
r 6 (σ/ρg)1/2, where r is the pinned footprint radius and ρg is the droplet weight per
volume. This leads to our water droplets having 5 mm (α < 105◦) and 2.5 mm (α >
105◦) footprint diameters. The image resolution of our optical set-up is approximately
10 µm pixel−1. Scale bars throughout are set by the 50 µm linewidth of the physical
grid pattern. Lengths are scaled with the footprint radius r and times with the capillary
time scale (ρr3/σ)1/2. It should be noted that for all the results reported here, both
the driving and the response Reynolds numbers are �1, consistent with a dominant
inviscid behaviour (table 1).

Even for water, however, viscous effects are not negligible as estimated by the
Ohnesorge number ε≡µ/(ρrσ)1/2. Viscosity is incorporated into the theory of Part 1
using the VPF approximation (Joseph 2003, 2006; Padrino, Funada & Joseph 2007).
This leads to a modified operator equation,

−γ 2M[y] + iγ εC[y] +K[y] = 0, (1.2)

where ω of (1.1) has been replaced by γ ≡ ω + iβ and C is a dissipation operator.
Under- and over-damped oscillations familiar from mass–spring–damper dynamical
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FIGURE 2. (Colour online) Influence of forcing and viscosity on the resonance peaks. As
for a single-degree-of-freedom mechanical oscillator (see, for example, p. 51 of Hartog
(1956)), the resonance peaks are lowered by damping. This particular plot represents a
result of the theory of § 5 below. The amplitude |c| is plotted against the forcing frequency
λ for the zonal [2, 0], [4, 0] and [6, 0] modes, left to right, as it depends upon the
Ohnesorge number ε, with α= 70◦. For the experiments reported in this paper, ε6 0.003.

systems may be anticipated. A similar approach has been adopted in Bouwhuis et al.
(2013) to illustrate the resonance of levitated drops.

Forcing by the moving substrate requires an additional extension. When the moving
boundary is explicitly included in the formulation (Bauer 1992), assumptions about the
drop’s response must be made to proceed with the analysis. We follow the approach
for Faraday oscillations (Benjamin & Ursell 1954) and model the forcing as occurring
through the drop’s bulk pressure, as F0eiλt. This reduces the time-dependent problem
to the forced–damped extension of the reduced harmonic oscillator operator (1.1),

−λ2M[y] + iλεC[y] +K[y] = F0. (1.3)

Another way of thinking about this approximation is that we purposefully circumvent
modelling the interaction between the drop and the forcing agent, which could be a
plate vibrating plane-normal or plane-tangent, an ultrasonic pulse, an air pulse or even
a voltage trigger. By ignoring the nature of the forcing agent, we lose any information
about the phase lag or subharmonic/supraharmonic nature of the response relative to
the driving signal. However, what is lost in fidelity to experiment may be gained in
generality of results. For the experiments reported here, zonal modes (l= 0) oscillate
at the forcing frequency and hence are harmonics, whereas non-zonals (l 6= 0) oscillate
at half the forcing frequency and thus are subharmonics, as discussed in Chang et al.
(2013). Predictions of the forced VPF theory (1.3) are illustrated in figure 2, where
drop response is plotted as a function of frequency for the first three zonal modes,
[k, l] = [2, 0], [4, 0] and [6, 0]. The three resonant peaks exhibit infinite amplitude for
ε = 0, but are dramatically lowered even for viscosity as weak as ε = 0.03.

Figure 2 is a paradigm for how forcing broadens spectral lines to resonance bands
and how viscosity lowers the otherwise infinite resonance peak. This is like what
occurs for the discrete mass–spring–damper system of elementary mechanics. In
addition to being paradigmatic, figure 2 represents a result from the VPF theory
below and will be mentioned later in § 5.

We mention here another useful paradigm in anticipation of our later discussion of
resonance band protocols (§ 3): the amplitude response for the Mathieu equation as it
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depends on forcing frequency (Benjamin & Ursell 1954; Arscott, Sneddon & Ulam
2014). This plot identifies ‘resonance tongues’, where growth of the parametrically
driven oscillator occurs. Outside such tongues, the response does not grow.

Two kinds of modal interactions are reported at the end of this paper: mixing
and competing. Mode mixtures can be interpreted as the superposition of inviscid
modes. On the other hand, competition is detected while probing frequency crossing
of half-frequency subharmonic modes. This phenomenon is hysteretic and depends on
the history of the forcing frequency. Both mixing and competing occur because of
frequency band overlap and spectral crowding. Experiments and theory consistently
suggest that both phenomena depend sensitively on α. Their main difference is that
mixing can be understood as linear superposition of modes. In contrast, competition
is hysteretic and hence nonlinear.

A similar mixing phenomenon has been suggested by Vukasinovic, Smith & Glezer
(2007). They report that, when the forcing amplitude is increased, an axisymmetric
mode shape first emerges and then persists to mix with a lattice mode. Numerous
works report similar phenomena for Faraday waves. For example, Batson, Zoueshtiagh
& Narayanan (2013) report stable co-dimension 2 points on the spectrum where two
mixing modes may or may not be of the same harmonic type. In experiments
with viscous liquids, Rajchenbach, Clamond & Leroux (2013) observed mixing of
star-shaped patterns whose behaviours are independent of the container’s shape.

In what follows, we first introduce our experimental set-up in § 2, including both
the hardware set-up and the surface treatments. Frequency measurement protocols are
reported in § 3. In § 4, we present the 37 modes observed to date and the technique for
discovering these pure modes. Then we compare inviscid predictions with experiments
regarding frequency crossing. The inviscid predictions are extended by the VPF theory
developed in § 5. We compare experimentally observed frequency bands with VPF
predictions in § 6. Mode mixing and mode competition are discussed in § 7. Finally,
a brief conclusion is provided in § 8.

2. Experimental hardware
2.1. Opto-mechanical imaging platform

The mechanical oscillation platform and observation apparatus are shown in figure 3.
The sessile drop motion is driven by a single-frequency sine wave (VTS-100
mechanical vibrator, by Vibration Testing Systems, Aurora, OH, USA). Mirrors
are installed to visualize the motion using one high-speed camera (RedLake HG-XL,
by Integrated Design Tools, Inc., Tallahassee, FL, USA). A woven metal mesh is
sandwiched under the solid substrate that holds the drop. Light is projected directly
from underneath the mesh. The drop surface refracts the light according to how the
surface deforms and the thus-deformed mesh is viewed from the top. The optical
train can also be rotated to view from the side. The optics provides spatial resolutions
of 10 µm pixel−1 at 5000 f.p.s. and 15 µm pixel−1 at 10 470 f.p.s. Features down
to 40 µm can be clearly resolved on the platform. Further detail may be found in
Chang et al. (2013).

2.2. Substrates
Two different substrates with circular pinning (P) sites are prepared. One substrate
is glass (gl), Pgl, and the other polycarbonate (PC), PPC. The substrates Pgl and PPC

constrain drops over different ranges of α (table 2). Fixing the footprint of a drop has
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FIGURE 3. (Colour online) Schematic of the imaging platform. Shown in the red
(rightmost) box are the key components: the mesh pattern and the LED light source
under the drop. Light rays from the LEDs are refracted by the drop’s deforming surface,
reflected into the high-speed camera by mirrors A, B and C, and convey a deformed mesh
pattern to the computer, thereby visualizing the deformation of the drop’s surface. A signal
generator (not shown) oscillates the surface sinusoidally in the direction perpendicular to
the plane of the surface.

Substrate Pgl PPC Hgl

Base Glass Polycarbonate (PC) Glass
Site radius, 2r (mm) 5 2.5 None
Pin site interior Smooth bare glass Smooth fluorinated PC Smooth aminated glass
Pin site exterior Smooth fluorinated glass Rough fluorinated PC Smooth aminated glass
Contact angle (deg.) 35–105 105–135 60–80
Drop volume (µl) 10–46 10–28 20

TABLE 2. Substrate characteristics.

the advantage of volume control, as mentioned above. We prescribe α by fixing the
base radius r and controlling the volume V . For spherical caps, the volume V relates
to α as V/r3 = (π/3)(2–3 cos α + cos3 α)/ sin3 α. In our experiments, the volume
is controllable to ±1 µl. Additionally, fixing the footprint has the advantage of not
having to track the droplets across the substrate. Circular pinning sites are created
by establishing a hydrophobic surface exterior to the circular hydrophilic interior.
Substrate Pgl starts by homogeneously fluorinating a glass slide to make the entire
surface hydrophobic. Afterwards, the coating is removed within a circle of desired
size by masking the exterior region and plasma treating the interior, as depicted in
figure 4. Alternatively, substrate PPC starts with a PC base surface, masks a circular
footprint, roughens the exterior region by solvent-induced recrystallization (Cui et al.
2012) and homogeneously fluorinates the entire surface. More details can be found
in appendix A. Most of the experiments reported here use the two pinning substrates.

A third substrate is prepared on glass without pinning sites, Hgl. It was used
previously by Chang et al. (2013) and is retained for overlap with those experiments.
Substrate Hgl is prepared by homogeneously (H) aminating a glass slide to yield
α∼ 70◦ for water over the entire surface. The idea behind Hgl was to have a surface
that gave a consistent α. It turns out that Hgl exhibits sufficient stick–slip that the
CL acts as if it is pinned over the time scale of a shaker experiment. However, the
α can vary from 60◦ to approximately 80◦, depending on how and where the drop is
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FIGURE 4. Schematic of making pinning sites on glass slides with
partial plasma treatment.
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FIGURE 5. Protocols for finding (a) resonance, (b) frequency bands and (c) mode
competition by varying the forcing frequency f and acceleration a. The curves of the
same colour form a resonance tongue. All protocols start by increasing a up to a0 while
fixing f (s→ b). Then a0 is held fixed. (a) For zonal modes, the frequency scan (b→
c→ d) iteratively locates the resonance frequency fr. (b) The lower and upper limits of a
non-zonal mode’s band are probed by a downward (s→b→ c) and an upward (s→b→d)
scan. (c) For mode competition, the automatic scan proceeds from a starting frequency
(fs) to an ending frequency (fe), points b→ x. Frequencies and mode shapes at points c,
d and e are recorded. The dashed curve segments represent the mode’s hidden band limit
due to hysteretic competition of modes.

deposited. Therefore, the static α of each drop on Hgl has to be measured at the start
and end of each forcing experiment. The good pinning ability of the P substrates
eliminates this complication.

3. Measurement protocols
Three different protocols are adopted to measure frequencies. The first protocol is

used for resonance frequencies of zonal modes, the second for frequency bands of
non-zonal modes and the third for hysteretic mode competition. As sketched in the
resonance tongue diagram, figure 5, all three protocols start by fixing the frequency
f and ramping up the forcing to a target acceleration a= a0. This corresponds to leg
s→b in all plots of figure 5. Then a frequency scan at fixed a0 follows. The choice of
a0 and other details of the frequency scan depend on how modes can be triggered and
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how their deflections can be observed. These details will be described below where
the protocols are used. In subsequent sections, dimensionless frequencies ω normalize
the forcing frequency f with the capillary time scale

ω= f

√
ρr3

σ
2πh, (3.1)

where h = 1 for zonal modes and h = 1/2 for non-zonal modes, since they are
harmonic and half-frequency subharmonic modes respectively (Chang et al. 2013).

3.1. Resonance frequencies of zonal modes
The deflection of a zonal mode is directly measurable from the side view because
of the axisymmetry. This allows identification of the resonance frequency fr at which
the deflection is maximized. Besides, zonal modes can be triggered at relatively small
accelerations compared with the non-zonals. Therefore, in experiments, fr is sought by
the iterative frequency scan b→ c→ d in figure 5(a). Experiments with zonal modes
are conducted on Pgl.

3.2. Frequency bands of non-zonal modes
Unlike zonal modes, non-zonal deflections cannot be measured by a side view.
Top-view snapshots clearly visualize the mode shapes, but it remains difficult to
measure the deflection in real time and identify the resonance frequency by a
maximum deflection. Besides, non-zonal modes require greater forcing acceleration
to trigger, and they hysteretically compete with one another when their bands overlap
(‘tongues’ in figure 5b). In experiments, the forcing is first ramped up to and held
fixed at an acceleration a0 sufficient to trigger and sustain a target mode. Instead
of probing fr, two separate frequency scans b→ c and b→ d respectively seek the
minimum fm and maximum fM frequencies between which the target mode persists.
The range [ fm, fM] is regarded as the band of the target mode. Experiments with
non-zonal modes use Pgl and PPC.

3.3. Hysteretic mode competition
As will be discussed in § 7.2, non-zonal modes compete due to band overlapping and
spectral crowding. The phenomenon is probed by upward and downward frequency
scans, as illustrated in figure 5(c). A sufficient forcing acceleration a0, a starting
frequency fs and an ending frequency fe are prescribed first. At f = fs and a = a0,
the scan is triggered and proceeds at 1 Hz s−1 (b→ x). The forcing frequency is
monitored with an oscilloscope. The top view of the oscillating drop is monitored by
visually inspecting the real-time video stream. Upon observing any pattern variation
(at c, d and e), the shape change and the corresponding frequency measured by the
oscilloscope are documented. Due to hysteresis, an excited mode tends to persist.
In fact, pattern selection is observed to depend exclusively upon which mode is
generated first, which in turn depends on the direction (i.e. upward or downward)
of the frequency scan. In experiments on mode competition, all frequency scans
are monotonic and results from upward (fs < fe) and downward (fs > fe) scans are
reported separately. The protocol is designed to capture the hysteretic nature of mode
competition. These experiments utilize Pgl.
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FIGURE 6. Top-view snapshots of the [10,4] mode, which was missing from the catalogue
in Chang et al. (2013). The two images differ by half a cycle of oscillation. The drop
(16 µl) is confined by a 5 mm diameter pinning site on Pgl.

4. Comparison with inviscid theory
4.1. Overview of comparison

Here, we compare the observed mode shapes, resonance frequencies and frequency
crossings with predictions. The inviscid theory of Part 1 predicts the shapes and
frequencies of eigenmodes. The frequencies are predicted to vary sensitively with α.
For zonal modes, flatter drops show greater spectral-line separation (figure 6a in
Part 1). Frequency crossing and spectral crowding occur at approximately α ∼ 90◦
for modes [k, l] with the same k (figures 10 and 11 in Part 1). Although the inviscid
theory can account for contact-line mobility, the comparisons below are restricted to
pinned drops on Pgl and PPC.

4.2. Mode discovery and identification
Laboratory discovery of a target mode is favoured by avoiding spectral crowding. The
first substrate we used was Hgl, which has α∼ 70◦ for water. This was fortuitous since
α∼ 70◦ reasonably separates spectral lines for most target modes (Chang et al. 2013).

Target modes are not always easy to discover. Namely, the [k, l] = [10, 4] mode is
missing in the photo gallery of the first 36 modes in Chang et al. (2013, figure 5). The
[10, 2] and [10, 6] modes had been observed but the [10, 4] mode was elusive, despite
considerable efforts to find it. The difficulty in finding the [10, 4] mode was probably
due to the overlap of its band with those of other modes for α ∼ 70◦. Competition
between resonance modes of free surface waves is not uncommon (Ciliberto & Gollub
1985). Substrate Hgl was the only choice at the time. Since then, substrate Pgl has
become available and discovery of the [10, 4] mode readily followed. The pinning
sites of Pgl (and PPC) provide more effective control over the drop’s α. This precision
mitigates spectral crowding. The [10, 4] mode is exhibited in figure 6, where the two
images differ by half a cycle of oscillation.

The same protocol generates the other pure target modes in figure 5(b) of Part 1.
We start with a preliminary frequency–acceleration sweep to locate a mode’s band.
The sweep proceeds as a random walk in the frequency–acceleration parameter space
until a target mode is observed. If the mode mixes with another mode, a drop with
a different α, say greater, is tested using the same procedure. In the worst case when
both trials produce mixing modes, a third trial is attempted with a drop of a smaller
α. A pure mode is typically isolated from mixed modes within three trials, provided
that the target mode has appeared in a prior trial as part of a mixture.
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Mode identification is aided by ‘reading’ the layers and sectors from the image, as
introduced in Chang et al. (2013) (also § 6, Part 1). By lighting from below, hills and
troughs in the deformed drop spread and focus the mesh grid respectively. The hills
are particularly easy to read. For example, the [10, 4] mode in figure 6 shows four
sets of four hills. The hills of each set are 90◦ rotationally symmetric. Each set is
arranged in a concentric ring with a 45◦ rotational shift from the adjacent ring. The
four sets give n = 4 layers, and four hills in each set give l = 4 sectors. Therefore,
the [10, 4] mode has (n, l) = (4, 4). Here, we adopt the convention of parentheses
for the layer–sector and square brackets for spherical–harmonic classification. Layers
and sectors are most recognizable in side and top views respectively, as illustrated for
four examples in the lower right triangular region in figure 7. Zonal modes consist
of n > 2 axisymmetric layers. Axisymmetry means l = 0 sectors. For example, the
illustrated (4, 0) mode has four layers and no longitudinal variation. Sectoral modes
have n= 1 layer with l sectors. The (1, 6) mode exhibits n= 1 layer with l= 6 sectors.
Tesseral modes possess some (l> 0) longitudinal variation in multiple (n> 1) layers.
The (3, 2) mode possesses n= 3 layers from the side view and l= 2 sectors from the
top view. Likewise, n= 2 and l= 4 can be deduced from the side and top views of
the (2, 4) mode. It should be noted that the (1, 0) photo is the top view of a static
drop, for reference.

In figure 8, we compare selected modes from figure 7 with predictions. The
correspondence between observed and predicted shapes is evident: the (4, 0) both
exhibit two rings of troughs, the (1, 5) both exhibit a five-vertex star, the (2, 4) both
exhibit a cross in a square and the (3, 5) both exhibit a five-vertex star confined
by two pentagons. A more exacting comparison shows subtle differences between
observed and predicted shapes for the (1, 5), (1, 6), (3, 5) and (3, 6) modes. Namely,
the observed unequal magnification around the drop’s centre for these modes suggests
some mixing with certain zonal modes. Mode mixing is discussed in § 7.1.

The layer–sector (n, l) and spherical–harmonic [k, l] (MacRobert 1967) classifications
are useful for different purposes. The one-to-one correspondence is given by the
relationship (n, l)= ((k− l)/2+ 1, l). The (n, l) classification helps one to intuitively
identify mode shapes because n gives the plane-normal and l the longitudinal
wavenumber. Hence, in figure 7, the up-to-date catalogue of the first 37 modes
is organized by the (n, l) classification. In contrast, the [k, l] classification naturally
arises in the theory and therefore is used in our subsequent frequency comparison
and discussion of frequency crossings.

4.3. Frequency comparison against inviscid theory
For zonal modes, resonance frequencies are obtained using the protocol outlined in
§ 3.1. Experimental results (symbols) are plotted with inviscid predictions (lines) in
figure 9(a). The predictions are reproduced from figure 6(a) of Part 1. The agreement
is reasonable for 60◦ 6 α 6 100◦, but inviscid theory overpredicts the frequency for
flatter (α < 60◦) drops. Moreover, the overprediction worsens for higher modes.

For non-zonal modes, the average (fm + fM)/2 of the lower and upper band limits
[fm, fM] is reported as the resonance frequency, measured using the protocol outlined
in § 3.2. Experimental results (symbols) are plotted with inviscid predictions (lines) in
figure 9(b–d). The inviscid predictions are reproduced from figure 11(d,f ) of Part 1 for
k= 5, 7 respectively, and by similar calculations for the k= 9 non-zonals. Much like
the zonal comparison, the agreement is reasonable for 70◦6α6100◦. For flatter drops
and higher wavenumbers, inviscid theory again overpredicts frequencies. In order to
test whether the viscosity accounts for the overprediction, we extend the theory using
VPF in § 5.
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FIGURE 7. Layer–sector (n, l) identification schematic (triangular region, at right) and
catalogue of top-view snapshots of the 37 modes discovered to date (triangular region,
at left). For reference, (n, l) = (1, 0) is the top view of a static drop. Modes l = 0 are
zonal, n= 1 are sectoral, while all others are tesseral. This updates the catalogue of Chang
et al. (2013) (figure 5) and should be compared with the predicted shapes in figure 5(b)
of Part 1. Drops are on Hgl or Pgl with 60◦ <α < 80◦.

4.4. Frequency crossings against inviscid theory

The inviscid theory predicts a frequency order that switches between sub- and
superhemispherical drops. The switching occurs slightly below α = 90◦ and depends
on k (figure 11, Part 1). According to the measurements shown in figure 9(b–d),
when α < 110◦, the modes order from low to high frequencies as [5, 5] → [5, 3],
[7, 7]→ [7, 5] and [9, 9]→ [9, 7]→ [9, 5], whereas for α > 110◦, the order reverses:
[5, 3] → [5, 5], [7, 5] → [7, 7] and [9, 5] → [9, 7] → [9, 9]. Careful inspection of
figure 9 suggests that crossings are predicted around α = 90◦ but are not observed
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FIGURE 8. Comparison of observed (snapshots) and predicted (rendered) shapes for
selected modes. Identification (n, l) by layers n and sectors l is immediate. Predictions
are based on pinned CL and α = 75◦.
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FIGURE 9. Frequency comparisons. Inviscid theory (lines) and observation (symbols) for
(a) zonal modes, (b) k= 5 non-zonals, (c) k= 7 non-zonals and (d) k= 9 non-zonals. Note
the predicted re-ordering of non-zonal modes across α ≈ 90◦.
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until α ≈ 105◦. This may be because modes compete at approximately α ≈ 90◦–100◦

where there is spectral crowding. Since sectoral modes typically dominate other
modes, the predicted mode crossing may occur but be masked due to the scavenging
by sectoral or tesseral modes.

5. Theory of forced oscillations

The idea of the VPF approximation (Joseph 2003) is to insert the irrotational
solution into a dissipation functional to obtain a viscous correction. The oldest
such scheme goes back to Lamb (1932). We adopt a recent variation that starts
by assuming that the velocity field v = −∇Ψ can be expressed using the velocity
potential Ψ and proceeds to evaluate the dissipation from the irrotational field (?),
noting that the velocity field cannot satisfy the no-slip condition on the solid support.
The particular dissipation functional we evaluate is derived elsewhere (Bostwick &
Steen 2013, (1.9)). For brevity, we record here the equations for a forced sessile
drop.

The setting is an incompressible viscous fluid subjected to a time-dependent
pressure field p(t) = F0eiΩt, occupying a domain D bounded by a spherical-cap
interface ∂Df ≡ Γ held by a constant surface tension σ and supported below by
a surface ∂Ds ((2.2)–(2.4), Part 1). We assume normal modes for the interface
disturbance η and velocity potential Ψ ,

η(s, ϕ, t)= y(s)eilϕeiΩt, Ψ (x, t)= φ(ρ, θ)eilϕeiΩt, (5.1a,b)

with s the arclength of the spherical cap in the co-latitudinal direction, y(s) the
disturbance on Γ in the radial direction, l the longitudinal wavenumber and Ω = 2πf
the forcing frequency (in rad s−1). The normal stress balance at the interface can be
written as

sin2(α)

((
∂φ

∂n

)′′
+ cot(s)

(
∂φ

∂n

)′
+
(

2− l2

sin2(s)

)(
∂φ

∂n

))
= λ2φ − iλεn · (∇⊗∇φ) · n+ λF0, (5.2)

where ⊗ is the tensor product, ε is the Ohnesorge number and λ is the scaled forcing
frequency defined in table 1. The velocity potential additionally satisfies the following
auxiliary conditions ((2.13), Part 1):

∇2φ = 0 [D], ∂φ

∂n
= 0 [∂Ds], ∂φ

∂n
=−iλy [∂Df ],

∫
Γ

∂φ

∂n
dΓ = 0. (5.3a−d)

We use the Green’s function ((4.2), Part 1)

G (x, y; l, λ, Λ)=


ξ(l)y1(y; l)

[
y2(b; l)
y1(b; l)y1(x; l)− y2(x; l)

]
, b< x< y< 1,

ξ(l)y1(x; l)
[

y2(b; l)
y1(b; l)y1(y; l)− y2(y; l)

]
, b< y< x< 1,

(5.4)
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where

y1(x; 0)= P1(x), y2(x; 0)=Q1(x), y1(x; 1)= P(1)1 (x), y2(x; 1)=Q(1)
1 (x),

y1(x; l > 2)= (x+ l)
(

1− x
1+ x

)l/2

, y2(x; l > 2)= (x+ l)
2l
(
l2 − 1

) (1+ x
1− x

)l/2

,

 (5.5)

with x= cos(s), b= cos(α) and

ξ(l)≡
{

1/2, l= 1,
1, l 6= 1,

(5.6)

to write the solution to (5.2) as(
1− b2

) ∂φ
∂n
(x) = −iλε

∫ 1

b
G(x, y)(n · (∇⊗∇φ) · n)dy

+ λ2
∫ 1

b
G(x, y)φ(y)dy+ F0λ

∫ 1

b
G(x, y)dy, (5.7)

which is recognized as an integral equation for the velocity potential φ.
A solution series of the orthogonal basis functions φj,

φ =
N∑

j=1

ajφj, (5.8)

is applied to (5.7) and inner products are taken to generate a set of algebraic equations

N∑
j=1

(
mij + iελτij − λ2κij

)
aj = F0λγi, (5.9)

with

mij ≡
(
1− b2

) ∫ 1

b

(
∂φi

∂n

)
φjdx, τij ≡

∫ 1

b

∫ 1

b
G(x, t) (n · (∇⊗∇φi) · n) φj(x)dxdt,

κij ≡
∫ 1

b

∫ 1

b
G(x, t)φi(t)φj(x)dxdt, γi ≡

∫ 1

b

∫ 1

b
G(x, t)φi(x)dxdt.


(5.10)

The auxiliary conditions (5.3) are satisfied through proper selection of the basis
functions φj, as discussed in §4.2, Part 1. For zonal modes,

φj(ρ, θ)= ρ2jP2j (cos θ) , (5.11)

while for non-zonal modes,

φ
(l)
j (ρ, θ)= ρ jP(l)j (cos θ) . (5.12)

It should be noted that the damped–driven oscillator structure (5.9) can be put into
the form of (1.3) using ∂φ/∂n=−iλy. For a fixed λ, ε, α, l, we compute the response
aj, φj, ∂φj/∂n of the fluid. Here, we note that the response is linear in the amplitude
of the applied pressure F0. Henceforth, we report the response as cj≡ aj/F0. A typical
response for the zonal modes is shown in figure 2. Traversing the graph from left to
right, the first peak corresponds to the [2, 0] mode, while the second and third peaks
are the [4, 0] and [6, 0] modes respectively.
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6. Frequency comparison against VPF theory

We now compare the observed resonance bands with VPF predictions. The damped–
driven correction to the inviscid theory, (1.3), predicts a response curve for the modes
of each longitudinal wavenumber l. Figure 2 presents the prediction for the three
lowest zonal modes. These resonance bands are interpreted as follows. For any mode,
its resonance peak gives the resonance frequency. The peak is surrounded by two
valleys and these frequencies define the lower and upper resonance band limits. For
the lowest mode of a given l (i.e. [2, 2] for l= 2), for which there is no neighbouring
peak, the lower limit of its band is defined as the frequency at 2 % peak amplitude.
In figure 10, predicted bands are plotted as greyscale and compared with the same
observations in figure 9. It should be noted that the seven non-zonal frequencies are
given their own plots in figure 9(b–h). The curve in each greyscale band is the inviscid
resonant peak prediction. The protocols in §§ 3.1 and 3.2 are used to measure the
frequencies of zonal and non-zonal modes respectively. A glance at figure 10 suggests
that the VPF band, in contrast to the inviscid curve, adequately captures the lower
frequencies for flatter drops and higher wavenumbers. We now further discuss non-
zonal results, focusing on the range of α reported for each mode.

The frequencies for the k= 5 and k= 7 modes are presented in figure 10(b–h). In
these experiments, the sectoral modes [5, 5] and [7, 7] disappear for flat drops with
α < 50◦. Any attempt to generate the modes by increasing the forcing acceleration
ends up ejecting satellite droplets without disturbing the drop’s circular footprint. It
should be noted that hills of sectoral modes reside along the CL. Therefore, the
disappearance of the [5, 5] and [7, 7] modes is suspected to result from the enhanced
influence of a pinned CL on the deflection of the free surface of flatter drops. For
90◦ 6 α 6 100◦, multiple modes mix and/or compete, amongst which sectoral modes
typically dominate. This explains the significantly reduced bandwidths of the tesseral
modes [5, 1], [5, 3], [7, 1], [7, 3] and [7, 5] over this range. Further increasing α

separates the spectra of these modes. For superhemispherical drops, the patterns of
[5, 3], [5, 5], [7, 5] and [7, 7] remain recognizable. In contrast, identification of the
[5, 1] and [7, 1] modes becomes difficult, because from the top view only the topmost
peak is clearly observable yet that peak resembles that of a zonal mode. Features
below a drop’s equator cannot be identified from the top view, hence the absence of
the [5, 1] and [7, 1] modes for α > 110◦. For [7, 3], it is suspected that the mode
either requires a much higher acceleration to excite, or it simply gets scavenged by
other modes. For all experiments seeking the k= 7 modes of drops on PPC, no clear
triangular pattern is ever observed at any α. From the frequencies in figure 10, VPF
theory adequately predicts the bands for the k= 5 and k= 7 modes. In particular, it
should be noticed that a reasonable agreement is achieved even for α < 60◦. Similar
results for the k= 9 non-zonal modes are presented in appendix B.

A certain subjectivity in the protocol must be acknowledged. The frequency at
which each mode appears and disappears depends on the driving acceleration a.
Increasing acceleration is observed to broaden bands (cf. figure 5). For each mode,
we choose the smallest acceleration consistent with unambiguous recognition of the
appearance/disappearance of that mode shape. Lower modes typically require lower
a0. For the seven non-zonals just discussed, a range of 20–25g is suitable. That is, the
bands predicted by the VPF theory adequately approximate the observed resonance
of drops excited by a0 = 20–25g. For the higher modes discussed in § 7.2, the range
of a0 must be widened to a0 = 20–35g.
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FIGURE 10. Frequency comparisons: VPF theory (shaded bands), inviscid theory (solid
lines) and observation (symbols) for (a) zonal modes and (b–h) non-zonal modes [k, l]
for k= 5, 7 and l 6 k (k+ l= even). For each mode, fM and fm are the observed upper
and lower limits of the band.
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FIGURE 11. Schematics of band interactions: response amplitude against forcing frequency
illustrating (a) complete overlap, (b) partial overlap and (c) no overlap of bands.

7. Mode interactions
In experiments, forcing causes finite bandwidths of response, and the extent of band

overlap correlates with modal interactions. Figure 10 clearly shows the finite bands. As
schematically illustrated in figure 11, the bands of any two modes can (a) completely
overlap, (b) partially overlap or (c) completely disjoin. In cases (a–b), modes can
either compete when α∼90◦ or mix as mentioned in § 6. The signature of competition
is hysteresis, whereas the signature of mixing is coexistence by superposition. To
illustrate mode mixing, we provide four examples. In each, an observed mixture can
be decomposed into two pure modes. To illustrate mode competition, we document
the evolution of band overlap between modes that hysteretically compete when their
bands cross one another.

7.1. Mode mixing
Mode mixing is frequently observed. Here, we describe the mixing of a harmonic
zonal mode with a half-frequency subharmonic non-zonal mode. Such mixtures are
typical observations (>90%), although mixtures of two non-zonal modes have been
seen.

Examples of mixed and pure mode shapes are presented in figure 12. For the zonal
mode of each mixing pair, the superscript ‘−’ or ‘+’ indicates concavity or convexity
of the drop’s centre in the image respectively. This is a reference for the phase of the
oscillation. For the (5, 0) mode to be added to mixture A, for example, the magnified
mesh at the drop’s centre suggests local convexity, and hence (5,0)+. Because mixture
A shows a concave centre, adding (5, 0)+ to the mixture recovers the pure shape of
the (2, 3) mode. Similarly, as mixture D exhibits a convex centre, recovery of a pure
(2, 7) mode from mixture D requires the addition of (8, 0)− to the mixture.

7.2. Mode competition
Clear signs of nonlinearity are revealed in experiments with subhemispherical drops.
Frequency crossings near α = 90◦ are discussed in § 4.3. Crossings at lower CAs
are also predicted by the inviscid theory. For drops with 60◦ 6 α 6 80◦, modes with
k = {5, 6, 7} and {7, 8, 9} are predicted to cross. However, only crossings for k =
{7, 8, 9} have been observed. The reason for the undetected {5, 6, 7} is not known.
The observed frequency crossings also reveal hysteretic mode competitions, as now
discussed.

Crossings of modes (i) [7, 3] and [8, 8] and (ii) [8, 2], [8, 4] and [9, 9] are
investigated. These two sets are predicted and repeatedly observed, probably because
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FIGURE 12. Mixed and pure modes: snapshots (top row) and rendered shapes (bottom
row) for four examples A–D (panels). Mixtures A–D are superposed with a pure mode of
appropriate phase shift to yield a different pure mode. The superscript ‘−’ or ‘+’ indicates
concavity or convexity respectively of the drop’s centre in the image.
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FIGURE 13. (Colour online) Bands (hatched) of modes [8, 8] and [7, 3] for upward (a)
and downward (b) scans, from fs to fe. Differences between (a) and (b) represent hysteresis.
Based on (a), frequencies cross at α ≈ 60◦–70◦. In (b), there is a gap in the observation
of the [7, 3] mode. The [8, 8] mode hysteretically scavenges the [7, 3] mode across the
gap, from α ≈ 62◦ to α ≈ 70◦. The lines are inviscid predictions for reference.

the ranges of CAs where these bands cross are separated from other crossings. The
protocol in § 3.3 is used. For (i), upward and downward scan results are shown in
figure 13(a,b) respectively. The hatched bands are the observations. As a guide to
the eye, we include the inviscid predictions (curves). (The VPF theory predicts bands
that cross over the same range of CAs but, for clarity of presentation, we omit these.)
In the upward scan, [8, 8] is observed to cross [7, 3] at α ≈ 65◦, figure 13(a). In
the downward scan at α ≈ 65◦, the [7, 3] mode is missing and the crossing must
be inferred from the scans near α ∼ 60◦ and α > 70◦, where the [7, 3] reappears.



Dynamics of sessile drops. Part 2. Experiment 461

 330

 360

 390

 420

 450

 480

60 65 70 75 80

 330

 360

 390

 420

 450

 480

60 65 70 75 80

(a) (b)
[8, 4]
[8, 2]
[9, 9]

FIGURE 14. (Colour online) Bands (hatched) of modes [9, 9], [8, 2] and [8, 4] by upward
(a) and downward (b) scans. Differences between (a) and (b) represent hysteresis. Based
on (a), the frequencies of [9, 9] and [8, 4] cross at α ≈ 60◦–70◦ and those of [9, 9] and
[8, 2] at α ≈ 65◦–75◦. In (b), the gaps in the observed [8, 4] for α > 60◦ and [8, 2] for
α > 70◦ suggest a hysteretic scavenging of both missing modes by the [9, 9] mode. The
lines are inviscid predictions for reference.

Crossing correlates with spectral crowding, which is necessary for mode competition.
Competition is observed here where the [7, 3] band disappears from figure 13(b).
Differences between figures 13(a) and 13(b) represent hysteresis. In particular, the
presence and absence of [7, 3] in figures 13(a) and 13(b) reveal hysteretic mode
competition. One sees that the sectoral [8, 8] mode hysteretically scavenges the [7, 3]
mode in the downward scan where their bands cross, 60◦ 6 α 6 70◦. The hysteresis
clearly indicates nonlinearity in the resonating sessile drop’s pattern selection.

Results of [9, 9] crossing [8, 2] and [8, 4] are shown in figure 14. Similar features
are observed. From figure 14(a) starting at α ≈ 60◦, [9, 9] is excited at the lowest
frequency. As α increases, [9, 9] is observed to hysteretically annex the band of [8, 2]
first at approximately α = 65◦ and then that of [8, 4] at α = 70◦. According to the
upward scans, the crossing between [9, 9] and [8, 4] occurs approximately for 60◦ 6
α6 70◦. Similarly, [8, 2] crosses [9, 9] for 65◦6α6 75◦. Further increase of α finally
allows the [9, 9] mode to separate from the other two modes completely. The [8, 2]
and [8, 4] are observed to mix for α > 75◦.

The downward scan in figure 14(b) reveals mode competition (disappearing bands)
similar to that of figure 13(b). Only [9,9] appears for α>70◦; the [9,9] has scavenged
the [8, 2] and [8, 4] modes. Another side of this hysteresis is seen in a separate test
that varies the forcing acceleration. For α > 70◦, if one triggers the [9, 9] mode first
and then reduces the forcing acceleration sufficiently, the [9, 9] mode disappears. At
the same forcing frequency, either [8, 2] or [8, 4] or their mixture replaces [9, 9]
when the acceleration is ramped back up to its original level. Hence, we observed
a bistability where drops of the same volume subject to the same forcing select a
mode according to which one emerges first. This observation is in contrast to the
work of Ciliberto & Gollub (1985), where higher frequency modes are reported as
the dominant modes when Faraday waves compete.

8. Conclusion

The resonant behaviours of sessile water drops are studied in the regime where
motions are primarily inviscid. Drops are mechanically excited using substrate-normal
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oscillations produced by a shaker table. Contact lines are pinned using prepared
substrates and CAs are controlled by the volume deposited. The observed behaviour
is first compared with the predicted eigenfrequencies and eigenmode shapes for the
natural oscillations of the inviscid drop of Part 1. Then, to better account for forcing
and weak viscous effects, the spectral problem solved in Part 1 is extended using a
VPF approximation.

The theory of Part 1 neglects vorticity and the no-slip condition, which naturally
brings the relevance of the theory into question. Furthermore, the experiments are
conducted in the high-Reynolds-parameter regime where the nonlinearity of the
Navier–Stokes equation may play a role. Perhaps surprisingly then, experiment shows
a broad relevance of the inviscid linear theory: (i) the first 37 predicted eigenmode
shapes are discovered; (ii) the predicted eigenfrequency trends with contact angle
are observed; (iii) a linear superposition of eigenmodes to yield mixed modes is
documented; (iv) in CA regimes where modal frequencies cross, modes that mix
linearly and compete hysteretically are exhibited. On the other hand, the observed
resonance frequencies for flatter drops, of higher modes especially, are overpredicted
by the inviscid theory. These observations are accommodated by including forcing and
weak viscosity through a VPF extension of the theory which yields finite resonant
peaks and variable bandwidths.

The experiments demonstrate the relevance of inviscid linear predictions. Modes
with isolated resonance bands tend to behave linearly, while those with overlapping
bands may behave linearly (mix) or hysteretically (compete). Spectral crowding, as
predicted by Part 1 and understood as a symmetry breaking of the Rayleigh–Lamb
spectrum, provides a guide to the parameter regimes with the richest modal
interactions. As a rule of thumb, modes from different families (e.g. harmonic
and subharmonic) tend to mix, while modes from the same family (e.g. subharmonic)
tend to compete. In the broad context of the Navier–Stokes equations, the inviscid
irrotational theory of Part 1 provides an outer problem that does surprisingly well in
describing the droplet responses, even while the existence of rotational motions and
boundary layers near the support surface and contact line must be acknowledged. An
open question remains: What is the regime of validity for the outer solution? This
paper begins to address this question from the experimental viewpoint.
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Appendix A. Substrate preparation details
The substrates Pgl and PPC are implemented to conduct experiments with sub- and

superhemispherical drops respectively. Here, the Pgl substrates are prepared purely
based on manipulation of surface chemistry and incorporate no physical microstructure.
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FIGURE 15. (Colour online) Acetone treatment of PC: (a) specification of the PDMS
stamp used in acetone treatment of PC, (b) a PC stripe masked by a PDMS mask and
soaked in acetone.

Such substrates are covered by hydrophobic coating except within pinning sites. The
implementation starts with sonicating glass slides (VWR VistaVision, catalogue
No. 16004-430, 3′′ × 1′′ × 1 mm, by VWR International LLC, Radnor, PA, USA)
for 20 min in deionized (DI) water (purified by ELGA ULTRA SC MK2) to
remove residual solid particles. The sonicated slides are subsequently soaked for
20 min in piranha solution (70 % sulphuric acid by volume, BDH3068-500MLP
by VWR International LLC, Radnor, PA, USA, and 30 % hydrogen peroxide by
volume, 516813-500ML by Sigma-Aldrich, St Louis, MO, USA). Upon completion,
the glass slides are rinsed with DI water for at least 10 min and dried by
high-purity nitrogen (Airgas, Salem, NH, USA) for subsequent coating. The
coating is conducted by first preparing silane mixture consisting of 2 µl of
(heptadecafluoro-1,1,2,2-tetrahydrodecyl)trichlorosilane (product code SIH5841.0, by
Gelest, Morrisville, PA, USA) in 2 g of light mineral oil (Fisher Scientific, Pittsburgh,
PA, USA) and then degassing for 20 min to remove gaseous impurities. The silane is
coated onto the cleaned and dried glass slides by chemical vapour deposition (CVD)
for at least 5 h. The slides are then heated at 85 ◦C for 15 min to further secure
the coating. To create a pinning site, a coated slide is covered by a soft polymer
membrane (made of Sylgard 184 PDMS, by Dow Corning, Midland, MI, USA) with
a prescribed circular opening of 5 mm diameter and subsequently treated by oxygen
plasma (Harrick Plasma, Ithaca, NY, USA) for 1 min. By the plasma treatment, the
coated silane molecules are removed by the plasma within the uncovered circular
region, as shown in figure 4. The maximal static contact angle for water drops on
a fluoro-silane-coated surface is approximately 105◦, which is also the upper limit
below which a drop stays pinned on the pinning site.

For experiments with superhemispherical drops, PPC substrates are implemented
based on the presence and absence of physical structures. Conceptually, hierarchical
physical structures are developed everywhere on PPC except within pinning sites,
and hydrophobic coating homogeneously covers the entire surface. The physical
structures on PPC are implemented based on solvent-induced recrystallization of PC,
as presented in Cui et al. (2012). A soft polymer stamp made of Sylgard 184 PDMS
(Dow Corning, Midland, MI, USA) with circular pillars is prepared first, as shown in
figure 15(a). The implementation starts with preparing 3′′ × 1′′ stripes of PC sheets
(Makrolon GP-V, by Bayer MaterialScience LLC, Sheffield, MA, USA) and removing
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the middle 1′′ × 1′′ of protective film. Very gently, the polymer stamp and the PC
stripe are clamped together, with the circular pillars contacting the 1′′ × 1′′ exposed
PC surface to shield circular regions in subsequent acetone treatment, as shown in
figure 15(b). The stripe and the stamp are soaked together in acetone (99.5 % min, by
Avantor Performance Materials, Center Valley, PA, USA) for 6 min. Upon completion
of acetone treatment, the stamp is removed from the stripe, which is then dried with
compressed air thoroughly. Except within the shielded circular regions, patterns of
recrystallization should render the acetone-treated PC stripe translucent. The treated
PC is then cleaned with ozone plasma (Basic Plasma Cleaner PDC-32G, by Harrick
Plasma, Ithaca, NY, USA; oxygen by Airgas, Berwyn, PA, USA) at 600 mTorr
(regulated by PlasmaFlo Gas Flow Mixer PDC-FMG, by Harrick Plasma, Ithaca,
NY, USA) for 1 min. The same chemical coating is subsequently applied to the
plasma-cleaned PC with the same procedure as for Pgl, except that at least 40 h must
be allowed for CVD. It should be noted that chemical coating is neither applied
nor suggested in Cui et al. (2012), and sufficiently recrystallized PC surfaces are
indeed completely non-wetting for small quasi-statically deposited sessile drops. In
the presence of external excitation reaching 30g or higher, however, the coating is
necessary for preventing sessile drops from spreading on the surface and penetrating
into the physical structure of the recrystallized PC. The maximal static contact angle
for DI water drops on the silane-coated recrystallized PC surface is approximately
149◦. In contrast to the pinning sites on Pgl, which are completely transparent, and
hence the areas of contrasting surface energies cannot be distinguished without
depositing drops, those on PPC are the visually smooth and transparent regions as
opposed to its translucent portions elsewhere. Because the pinning sites of PPC are
also coated by the fluoro silane, the minimal contact angle of DI water drops is
approximately 105◦. Therefore, for DI water, the PPC substrates are exclusively used
for superhemispherical drops. It should be noticed that for all PPC substrates, the
pinning sites are larger than the pillars in the polymer stamps and the sites cannot
be precisely controlled. To accommodate the bias, a stamp with pillars of a diameter
(≈2.5 mm) smaller than the target size of the footprints (3 mm) is used, and the
actual footprint diameter of the pinning site is measured from images after completion
of substrate preparation.

The Hgl substrates for exploring mode mixing are homogeneously coated with 3-
aminopropyltriethoxysilane (APTES, product code SIA0127.0, by Gelest, Morrisville,
PA, USA) to achieve a contact angle of DI water drops in the range of 45◦–80◦. The
detailed fabrication procedure can be found in Chang et al. (2013).

Appendix B. Comparison of experiment with the inviscid and VPF theories for
k= 9 modes

Results for modes with k = 9 are presented in figure 16. The influence of contact
angle on mode emergence remains the same: flatter (α < 50◦) drops do not exhibit [9,
9] and [9, 7] modes, and only [9, 5], [9, 7] and [9, 9] are observed for α > 110◦. The
absence of [9, 1] and [9, 3] is speculated to result from similar causes as for [7, 1]
and [7, 3]. Again, 60◦ 6 α 6 80◦ is where the inviscid theory and experiments best
agree, and the predicted bands by the VPF theory capture all observed bands. Here,
we emphasize that the observations of the [9, 5], [9, 7] and [9, 9] modes not only
serve to test the theories, but also demonstrate the complete reversal of the order of
their spectra, as discussed in § 4.
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FIGURE 16. Frequency comparisons for k= 9 modes, [9, l]: VPF theory (shaded bands),
inviscid theory (solid lines) and observation (symbols) for (a) l= 1, (b) l= 3, (c) l= 5,
(d) l= 7 and (e) l= 9. For each mode, fM and fm are the observed upper and lower limits
of the band.
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