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An axisymmetric drop spreads on a radially heated, partially wetting solid substrate in
a rotating geometry. The lubrication approximation is applied to the field equations for
this thin viscous drop to yield an evolution equation that captures the dependence
of viscosity, surface tension, gravity, centrifugal forces and thermocapillarity. We
study the quasi-static spreading regime, whereby droplet motion is controlled by
a constitutive law that relates the contact angle to the contact-line speed. Non-
uniform heating of the substrate can generate both vertical and radial temperature
gradients along the drop interface, which produce distinct thermocapillary forces and
equivalently flows that affect the spreading process. For the non-rotating system,
competition between surface chemistry (wetting) and thermocapillary flows induced
by the thermal gradients gives rise to bistability in certain regions of parameter space
in which the droplets converge to an equilibrium shape. The centrifugal forces that
develop in a rotating geometry enlarge the bistability regions. Parameter regimes in
which the droplet spreads indefinitely are identified and spreading laws are computed
to compare with experimental results from the literature.
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1. Introduction
Manipulation of droplets on the micro-scale is of fundamental interest in industrial

applications, primarily because of the advent of microfluidic devices (Stone, Stroock
& Ajdari 2004), which often require the interaction between competing physical
effects to operate. Surface stresses are particularly useful to drive internal flows in
such devices, because of large surface-to-volume ratios (Darhuber & Troian 2005).
With regard to droplet spreading, external forces can greatly affect the dynamics:
gravitational (Ehrhard & Davis 1991) and centrifugal (Spaid & Homsy 1996) body
forces generate pressure gradients in the bulk that drive flow; surface stresses from
thermal (Davis 1987) or surfactant concentration (Matar & Craster 2009) gradients
induce shear flows; and wettability gradients (Daniel, Chadhury & Chen 2001)
generate contact forces and thus contact-line motions. The review article by Oron,
Davis & Bankoff (1997) summarizes some of the theoretical work on thin-film flows.

We consider the spreading of an axisymmetric droplet on a differentially heated,
partially wetting solid substrate, set in a slowly rotating geometry. Differential heating
generates radial thermal gradients in the droplet that, in turn, produce thermocapillary
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flows that alter the contact angle and consequently the spreading dynamics. If
conductive heat transfer is allowed at the liquid/gas interface, then vertical thermal
gradients and their associated thermocapillary flows also develop within the drop. We
show that the flow induced by this complex thermal field can compete with the surface
chemistry (wetting) giving rise to bistability, whereby there exist two distinct stable
equilibrium configurations for one set of system parameters. Bistability is pervasive in
fluid mechanics and has been observed in Rayleigh–Bénard convection of an inclined
fluid layer (Daniels et al. 2008), turbulent rotating spherical Couette flow (Zimmerman,
Triana & Lathrop 2011), and the capillary switch (Vogel, Ehrhard & Steen 2005),
which is utilized in technologies such as the liquid lens (Lopez & Hirsa 2008) and
the switchable capillary adhesion device (Vogel & Steen 2010). With regard to the
spreading drop, we identify regions of bistability in a four-dimensional parameter
space that characterizes the thermal field, rotation rate and wetting properties. In
these regions, the droplet may evolve through a number of intermediate states before
reaching its final equilibrium radius. The approach to equilibrium is governed by a
dynamic contact-line law relating the contact angle to the contact-line speed.

A droplet of liquid will spread on a solid substrate until it reaches its equilibrium
radius, where the balances represented by the Young–Laplace and Young–Dupré
equations apply. The former relates the jump in capillary pressure across the fluid
interface to the hydrostatic pressure within the drop, whereas the latter constitutes the
balance of wetting forces at the contact line or tri-junction between the liquid/gas/solid.
During spreading, the fluid motion is largely controlled by the motion of the contact
lines. Accordingly, modelling the dynamics of the contact line is of paramount
importance, and has been the subject of the large volume of work summarized in
the reviews by Dussan V. (1979), de Gennes (1985) and Bonn et al. (2009). One
prominent feature of the moving contact line is the well-known shear-stress singularity
in the flow field that is associated with enforcement of the no-slip condition (Huh &
Scriven 1971; Dussan V. 1976). To relieve the stress singularity, one generally allows
the fluid to ‘slip’ at the contact line, with the slip modelled according to a variety of
proposed functional forms (Huh & Scriven 1971; Dussan V. & Davis 1974; Dussan V.
1976; Ehrhard & Davis 1991; Benintendi & Smith 1999). In addition, one needs to
specify a functional form for the contact angle versus contact-line speed relationship,
which will be discussed in a subsequent paragraph.

Isothermal spreading of liquid drops has been the subject of a number of studies
on moving contact lines. These studies are distinguished by how they treat the
dynamics of the contact line. Greenspan (1978) uses the lubrication approximation
to derive an evolution equation for a droplet spreading under viscous and capillary
forces. Here the evolution equation is coupled to a proposed contact-line law that
assumes the contact angle is linearly related to the contact-line speed. Tanner (1979)
conducted spreading experiments for planar and axisymmetric silicone oil drops in
the capillary-dominated limit to verify a set of proposed spreading laws, which were
experimentally confirmed by Chen (1988) for axisymmetric droplets. Ehrhard & Davis
(1991) generalize the analysis of Greenspan (1978) to include gravity; their dynamic
contact-line model includes a mobility exponent and they report spreading laws in
various regimes. As an alternative to the dynamic contact-angle model, Hocking (1983)
assumes the instantaneous contact angle is always equal to its static value and is
able to reproduce the aforementioned spreading laws from an asymptotic analysis.
The choice of the appropriate contact-line model has been a source of dispute in the
literature. So much so that Hocking (1992) compared static and dynamic contact-line
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models, demonstrating that both models can explain related experiments and arguing
that one should apply the simpler static model.

Temperature gradients along fluid interfaces can drive flows via thermocapillarity,
whereby surface-tension gradients induce shear stresses, and equivalently flows. The
review article by Davis (1987) illustrates the various ways in which an imposed
temperature gradient can drive flows, depending upon the orientation of the gradient
to the fluid interface. For example, normal gradients can lead to steady Marangoni
convection (Pearson 1958) in one-layer systems, whereas tangential gradients can
drive steady shear flows and their associated instabilities (Smith & Davis 1983a,b).
In general, the imposed temperature gradient will involve some combination of both
normal and tangential gradients if the interface is curved, as is true for droplets.

Ehrhard & Davis (1991) consider the spreading of two-dimensional and
axisymmetric drops on uniformly heated (cooled) substrate. Under such heating
(cooling), a vertical temperature gradient is established within the drop if the fluid
is non-thermally simple or can conduct heat across the interface. For reference, a
thermally simple fluid is characterized by a uniform temperature field within the
fluid domain and the absence of heat transfer. The thermocapillary flow induced
by this heating consists of a recirculation cell that alters the contact angle in a
manner that inhibits (assists) spreading, if the substrate is uniformly heated (cooled).
Ehrhard (1993) verifies these results experimentally, while Ehrhard (1994) extends the
analysis to include pendant drops. In a similar study, Dunn et al. (2009) derive an
implicit solution to the quasi-static evolution equation for a two-dimensional ridge on
a uniformly heated (cooled) substrate showing that there may exist up to three unique
stable equilibrium configurations, depending upon the heating.

Darhuber, Troian & Wagner (2002) demonstrate that high-resolution substrate
temperature distributions can be achieved via embedded microheaters, which can, in
turn, generate horizontal temperature gradients in thin films and droplets. With regard
to droplets, the asymmetric Marangoni stresses induced by these thermal gradients
can lead to droplet migration, provided that ‘pinning’ effects from contact-angle
hysteresis can be overcome (Chen et al. 2005). Ford & Nadim (1994) were able
to derive an expression for the migration speed of a two-dimensional ridge that
depends upon the interface shape, contact-angle hysteresis interval and Navier slip
coefficient. Smith (1995) utilizes the lubrication approximation to study the response
of a two-dimensional droplet subject to a linear substrate temperature distribution,
while also allowing for conductive heat transfer across the droplet interface. The
resulting temperature profile produces a thermocapillary recirculation cell that affects
the contact-line dynamics leading to steady-state droplet migration at a constant speed.
The vast majority of work on the thermal actuation of droplets, as summarized in the
review article by Darhuber & Troian (2005), is concerned with liquids on partially
wetting (hydrophillic) substrates so that the lubrication approximation is applicable.
More recently, Nguyen & Chen (2010b) have studied thermocapillary migration of
two-dimensional drops using the finite-element method to show that the migration
speed of droplets is larger on hydrophobic substrates than on hydrophillic ones. If
these droplets are large enough, buoyancy-driven convection becomes important and
can significantly slow the speed of droplet migration (Nguyen & Chen 2010a).

In contrast to the differential heating described above, Mukhopadhyay & Behringer
(2009) study droplet spreading using an experimental apparatus that can generate non-
uniform radial temperature gradients on a partially wetting solid substrate in a rotating
geometry. Their apparatus is novel in the sense that non-uniform thermal gradients
can be generated that are also symmetric about the axis-of-rotation. Mukhopadhyay
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FIGURE 1. Definition sketch of the spreading droplet.

& Behringer (2009) demonstrate that a droplet on a completely wetting substrate can
be made to retract to a smaller equilibrium radius under a strong thermal gradient.
Our results confirm this observation and yield a prediction that relates the equilibrium
radius to the magnitude of the thermal gradient. They measure the time-dependent
contact angle throughout the retraction process and report power-law behaviour with
an uncharacteristic spreading exponent. We recover this power-law behaviour from our
analysis in the appropriate limit. The apparatus used in these experiments can generate
a number of mechanisms that cause the droplet to either spread or retract, such
as pressure gradients from gravitational and centrifugal (body) forces, shear stresses
via thermocapillarity (surface) or wetting (contact) forces. A goal of this work is to
analyse the interactions amongst these various spreading mechanisms and how this
coupling alters the spreading process.

In the sections that follow, the governing equations are formulated and the
lubrication approximation is applied to yield an evolution equation for the droplet
shape. For small spreading rates, the droplet shape is steady and evolves according
to a dynamic contact-line condition that describes the motion of the contact line and
therefore the bulk droplet motion. An asymptotic solution is constructed for small
heating and two external heating conditions. Our results focus on equilibrium states
and their stability, the approach to equilibrium via the dynamic contact-line law and
the flows induced by the thermal field. The parameter space is mapped to identify
regions of bistability and indefinite spreading. Finally, some concluding remarks are
offered.

2. Mathematical formulation
Consider a liquid droplet on a smooth, non-uniformly heated, horizontal substrate

that is rotating at a constant angular velocity ω about the vertical axis in axisymmetric
cylindrical coordinates (r, z), as shown in figure 1. The droplet of an incompressible
Newtonian fluid with density ρ, dynamic viscosity µ, specific heat cp and thermal
conductivity k, is immersed in a passive gas of temperature T∞ that conductively
heats or cools the droplet. The liquid and gas phases are separated by an interface
z= h (r, t) that is defined on the domain between the axis-of-symmetry (r = 0) and the
three-phase moving contact line r = a(t).

2.1. Field equations
To describe the motion of the fluid, we introduce the velocity v = (u,w), pressure p
and temperature T fields. The velocity field satisfies the continuity equation,

∇ ·v= 0, (2.1)
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as required by incompressibility. A balance of linear momentum on a material volume
results in the Navier–Stokes equation,

ρ

(
∂v
∂t
+ v ·∇v

)
= µ∇2v−∇p− ρgẑ+ ρω2rr̂, (2.2)

where g is magnitude of the gravitational acceleration, r̂ = (1, 0) is the radial unit
vector and ẑ = (0, 1) is the vertical unit vector. Similarly, the balance of thermal
energy gives

ρcp

(
∂T

∂t
+ v ·∇T

)
= k∇2T. (2.3)

2.2. Boundary conditions
The fluid is bounded from below by a rigid, flat, perfectly conducting substrate z = 0,
where the no-penetration, Navier-slip and time-independent temperature distribution
conditions are enforced, respectively:

w= 0, v = β ′ ∂v
∂z
, T = Ts (r)≡ T0 + Tn(r). (2.4)

Here the slip coefficient β ′ is a small number that is introduced to relieve the shear-
stress singularity at the contact line (Dussan V. & Davis 1974). In addition, it will be
assumed that the applied temperature distribution Ts(r) can be decomposed as the sum
of a constant reference temperature T0 and a radially dependent temperature Tn(r) that
generates a monotonic temperature gradient.

Similarly, the free surface z = h(r, t) (liquid/gas interface) bounds the fluid from
above and one applies the requisite kinematic condition, balance of normal and shear
stresses, and a mixed thermal boundary condition there:

ht + vhr = w, n̂ · T · n̂=−σ (2H) , t̂ · T · n̂= t̂ ·∇σ, k∇T · n̂=−hg (T − T∞) .
(2.5)

Here T is the stress tensor, σ is the liquid–gas surface tension, hg is the heat transfer
coefficient and subscripts on the free-surface shape h(r, t) denote partial differentiation
with respect to the variables r and t. The mixed thermal boundary condition is used to
allow for the possibility of conduction-dominated heat transfer across the free surface.
The unit vectors normal n̂ and tangent t̂ to the free surface h(r, t) are defined as

n̂= (−hr, 1) /
√

1+ h2
r , t̂ = (1, hr) /

√
1+ h2

r , (2.6)

while the curvature of that surface is given by

2H =−
(

hrr + 1
r

hr

)
. (2.7)

The thermocapillary effect is modelled by assuming an equation of state for the
surface tension σ = σ(T) that depends linearly upon the temperature

σ = σ0 − γ (T − T0) , (2.8)

where γ = −dσ/dT > 0 is the rate of change of surface tension with respect to
temperature, T0 is the previously mentioned reference temperature and σ0 is the surface
tension at that reference temperature.
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The contact line r = a (t) is located at the intersection of the solid substrate and free
surface, or the tri-junction of the solid/liquid/gas phases (cf. figure 1). Here

h(a(t), t)= 0, (2.9)

and the contact angle θ(t) is defined by the geometric relationship,

∂h

∂r
(a(t), t)=− tan θ(t). (2.10)

At the contact line, kinematics requires the fluid velocity to equal the contact-line
velocity uCL ≡ v(a(t), t) = da/dt, which is modelled using a constitutive relationship
that relates the contact-line speed to the contact angle (cf. Ehrhard & Davis 1991),

da

dt
= κ(θ − θA)

m, (2.11)

where κ > 0 is an empirical constant, θA > 0 is the advancing (static) contact angle,
and m is a spreading exponent that is typically 1 (Greenspan 1978) or 3 (Tanner
1979).

To ensure the drop shape remains axisymmetric throughout the spreading process,
the following conditions are imposed on the axis-of-symmetry (r = 0):

hr|r=0 = 0, hrrr|r=0 = 0. (2.12)

Finally, we enforce conservation of the droplet volume V0,

2π
∫ a(t)

0
rh(r, t) dr = V0. (2.13)

2.3. Scalings
The following dimensionless variables are introduced:

r̃ = r

a0
, z̃= z

a0θ0
, t̃ = σ0

a0θ0µ
t, w̃= µ

σ0
w, ṽ = µ

σ0θ0
v,

p̃= a0

σ0θ0
p, T̃ = T − T∞

T0 − T∞
, θ̃ = θ

θ0
, V = V0

a3
0θ0
.

 (2.14)

Here the initial droplet shape is used to scale the spatial variables (r, z). We use
a viscous velocity scale and scale the pressure with the capillary pressure. The
temperature is scaled with respect to the difference between the reference and ambient
temperatures, T0 − T∞.

The scalings (2.14) are applied to the governing equations (2.1)–(2.13) which can
then be expanded in terms of the initial contact angle θ0, taken to be a small parameter.
The leading-order expansion (lubrication approximation) gives a reduced set of field
equations,

1
r
(rv)r + wz = 0, −pr + wzz +Ω2r = 0, −pz − G= 0, Tzz = 0, (2.15)

where subscripts denote differentiation and the tildes have been dropped for simplicity.
The relevant boundary conditions on the substrate z= 0 are given by

v = βvz, w= 0, T = 1− NTn(r), (2.16)

where N is a dimensionless parameter used to measure the strength of the applied
temperature distribution. Similarly, the reduced free-surface boundary conditions
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on z= h(r, t) are written as

ht + vhr = w, −p= hrr + 1
r

hr, 1Cvz =− (Tr + hrTz) , Tz + BT = 0. (2.17)

The dynamic contact-line condition is given by

da

dt
=K (θ − θA)

m. (2.18)

The dimensionless groups that result from this choice of scaling are given by

G= ρga2
0

σ0
, Ω2 = ρω

2a3
0

σ0θ0
, β = β ′

a0θ0
, 1C = σ0

γ (T0 − T∞) θ 2
0

,

B= hga0θ0

k
, K = κθ

m+1
0 µ

σ
,

 (2.19)

which are the Bond number G, centrifugal number Ω2, slip number β, thermocapillary
number 1C and Biot number B. The parameter K is a measure of the contact-line
(wettability) velocity, and the dimensionless radial temperature gradient N is set by the
applied temperature field, to be given subsequently.

2.4. Derivation of evolution equation

To derive the evolution equation, one begins by constructing a solution to the
governing equations (2.15)–(2.17) that depends implicitly on the free-surface shape
h. Then, the evolution equation is generated from a depth-averaged continuity equation

ht + (1/r) (rq)r = 0, (2.20)

where q is the net radial flux in the droplet, computed by integrating the radial velocity
over the liquid layer.

The temperature field inside the droplet satisfies the reduced energy equation (2.15),
subject to boundary conditions on the substrate (2.16) and free surface (2.17),

T = (1− N Tn (r))

(
1+ B (h− z)

1+ Bh

)
. (2.21)

Similarly, the pressure is computed from the vertical component of the Navier–Stokes
equations (2.15) and normal stress balance on the free surface (2.17),

p= G (h− z)−
(

hrr + 1
r

hr

)
. (2.22)

The radial velocity field is calculated from the radial component of the Navier–Stokes
equations (2.15), Navier-slip condition (2.16) and tangential stress balance (2.17),

v = (pr −Ω2r
) (

1
2 z2 − (z+ β) h

)+ S (z+ β) (2.23)

where the pressure is given by (2.22) and

S≡− 1
1C

(Tr + hrTz)= 1
1C

(
N
(Tn)r

1+ Bh
+ B

hr (1− N Tn)

(1+ Bh)2

)
. (2.24)



Spreading and bistability of droplets on differentially heated substrates 573

Here, the temperature is defined in (2.21). Finally, one uses the reduced continuity
equation (2.15) and no-penetration condition (2.16) to compute the vertical velocity,

w=−
(

prr + 1
r

pr − 2Ω2

)(
1
6

z3 − h

(
1
2

z2 + βz

))
−
(

Sr + S

r

)(
1
2

z2 + βz

)
, (2.25)

with p and S defined in (2.22) and (2.24), respectively.
The flow generated by the fields defined in (2.21)–(2.25) are applied to the depth-

averaged continuity equation (2.20) to generate the evolution equation,

ht + 1
r

(
r

((
hrr + 1

r
hr − Gh

)
r

+Ω2r

)(
1
3

h3 + βh2

)
+ r

(
N

1C

(Tn)r

1+ Bh
+ B

1C

hr (1− N Tn)

(1+ Bh)2

)(
1
2

h2 + βh

))
r

= 0. (2.26)

The droplet shape and its motion along the solid substrate are governed by the
evolution equation (2.26), the dimensionless form of the contact-line conditions
(2.9)–(2.11) and conservation of volume constraint (2.13). Once the free-surface shape
h is known, the temperature, pressure and velocity fields are then computed from
(2.21)–(2.25).

2.5. Quasi-static spreading
A number of assumptions are implemented to facilitate a solution of the evolution
equation (2.26) that focus on qualitative aspects of the various physical mechanisms
that govern the spreading process. For purposes of clarity each assumption will be
motivated and the modelling implications will be expounded upon.

Spreading rates can be of the order of microns per second, which is typically
much slower than the velocity scale obtained by balancing viscosity with surface
tension. Under such conditions, ht = 0 and the evolution equation (2.26) describes a
steady droplet shape that is parameterized by the contact-line radius, which evolves
according to the dynamic contact-line condition (2.18). More precisely, the free-surface
shape evolves implicitly through the time-dependent contact-line radius. This motion
is deemed quasi-static and has been analysed in a similar context by a number of
authors (e.g. Rosenblat & Davis 1985; Ehrhard & Davis 1991; Smith 1995). As noted
in these studies, the leading-order problem consists of a steady droplet shape with no
contact-line motion. Accordingly, the shear-stress singularity associated with a moving
contact line is absent and, therefore, we set the slip number β = 0.

Two final assumptions are made with respect to the thermal properties of the fluid
and the applied thermal gradient. First, the Biot number is assumed to be small B� 1,
which is plausible for small droplets and/or thermally simple fluids. Recall that a
thermally simple fluid cannot conduct heat across its interface. Second, the magnitude
of the applied thermal gradient is small, NTn� 1. Although they appear independent,
Smith (1995) noted that the latter assumption is redundant with respect to the former
if the temperature gradient applied to the solid substrate is also applied to the gas
above the droplet. Note that this restriction is on the temperature gradient, so that
the respective temperature profiles can vary by a constant temperature. Under these
heating conditions, there is no restriction on the applied thermal gradient.

The assumptions are applied to the evolution equation (2.26), which is then
integrated to yield an equation governing the steady droplet shape,(

hrr + 1
r

hr − Gh

)
r

+Ω2r + 3
2

1
h
(N̂ (Tn)r+M̂hr)= 0. (2.27)
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The integration constant is set to zero by conservation of mass and the thermal
Marangoni numbers are defined as

N̂ ≡ N

1C
, M̂ ≡ B

1C
. (2.28)

Here N̂ is representative of the radial gradient that develops within the fluid because of
the applied temperature distribution on the solid substrate, whereas M̂ characterizes the
vertical gradient that results from heat transfer across the free surface (cf. (2.21)).

3. Solution method

The parameter space for this problem is large (M̂, N̂,Ω2,G, θA,m) and the applied
temperature distribution Tn can take an infinity of forms. Therefore, we consider a
smaller subset of parameters to more tightly focus the scope of the results presented
here. To that end, we suppress the role of gravity by setting G = 0, and consider both
linear and logarithmic applied temperature distributions (Mukhopadhyay & Behringer
2009). An asymptotic solution for the droplet shape is constructed from (2.27) using
a regular perturbation expansion for small Ω2, M̂ and N̂ to illustrate how the
interface shape changes locally near the contact line with the system parameters.
The assumption of small Marangoni numbers M̂, N̂ is reasonable, while the centrifugal
number Ω2 need not be small in practice, but is taken to be small to clarify some of
the qualitative aspects of this study. Finally, the asymptotic solution is then mapped to
the contact-line condition

da

dt
=K (−hr(a)− θA)

m, (3.1)

which governs the rate of spreading.

3.1. Linear temperature distribution
The first temperature distribution we consider has a linear profile

Tn = r, N = ba0

T0 − T∞
. (3.2)

Here one should recall that a constant temperature has been absorbed into the
definition of the applied thermal distribution so that the radial gradient is generated
solely by Tn and the convention is that the gradient is directed from the axis-of-
symmetry (hot) to the contact line (cold) for N̂ > 0. We compute the asymptotic
solution from (2.27),

h(r)= 2
πa4

(
a2 − r2

)+ Ω2

32

(
a2 − r2

) (
r2 − a2/3

)
+ M̂

(
9
16

(
r2 − a2

)+ π2a2

16
+ 3

8

(
a2 − r2

)
ln
(
1− (r/a)2)− 3

8
Li2

(
(r/a)2

))
+ N̂

(
πa3

64

(
a2
(
28− 3π2

)− 36ar + 8r2 + 12
(
a2 − r2

)
tanh−1 (r/a)

+ 6a2
(
4Li2 (r/a)− Li2

(
(r/a)2

)))
0
)
, (3.3)
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where Li2 is the dilogarithm function. Finally, we apply the asymptotic solution to the
dynamic contact-line condition (3.1) to yield

da

dt
=K

(
4
πa3
− M̂

(
3
8

)
a+Ω2

(
1

24

)
a3 + N̂

(
π

8

)
a4 − θA

)m

. (3.4)

3.2. Logarithmic temperature distribution
The experimental apparatus used by Mukhopadhyay & Behringer (2009) to
differentially heat their solid substrate can be idealized as an annulus with small
aspect ratio, subject to prescribed temperatures on the inner and outer surfaces. The
temperature distribution for this type of heating is governed by Laplace’s equation
in axisymmetric cylindrical coordinates with Dirichlet boundary conditions and has a
well-known logarithmic profile,

Tn = ln r, N = b

T0 − T∞
. (3.5)

We compute the asymptotic solution from (2.27),

h(r)= 2
πa4

(
a2 − r2

)+ Ω2

32

(
a2 − r2

) (
r2 − a2/3

)
+ M̂

(
9
16

(
r2 − a2

)+ π2a2

16
+ 3

8

(
a2 − r2

)
ln
(
1− (r/a)2)− 3

8
Li2

(
(r/a)2

))
+ N̂

(
1

64

(−π3a4 + 6πa2 (2 ln a− 1)
(
r2 − a2

)+ 6πa2
(
a2 ln a− r2 ln r

)
+ (r2 − a2

)
ln
(
1− (r/a)2)+ 6πa4Li2

(
(r/a)2

)))
, (3.6)

which is then substituted into the dynamic contact-line condition (3.1) resulting in

da

dt
=K

(
4
πa3
− M̂

(
3
8

)
a+ CN̂Ωa3 − θA

)m

. (3.7)

The parameter CN̂Ω combines the effect of radial thermal gradients and centrifugal
forces,

CN̂Ω ≡
Ω2

24
+ N̂

(
3π
16

)
. (3.8)

4. Results
The results presented here will focus on equilibrium states and their stability and

the approach to equilibrium via the dynamic contact-line condition. We begin by
describing the thermocapillary flows induced by the vertical (M̂ 6= 0, N̂ = 0) and
radial (N̂ 6= 0, M̂ = 0) thermal gradients. For the more general heating condition
M̂ 6= 0, N̂ 6= 0, the flow induced by the thermal field can compete with the
surface chemistry (wetting) giving rise to bistability, whereby two stable equilibrium
configurations exist for one set of system parameters. The parameter regimes where
bistability occurs are identified for two typical heating conditions, as well as regions
where the droplet spreads indefinitely.
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FIGURE 2. Streamlines for a droplet spreading by a strictly (a) vertical (M̂ = 0.1, N̂ = 0) and
(b) radial (M̂ = 0, N̂ = 0.1) thermal gradient showing stagnation points and curves of zero
radial (dashed) and vertical (dotted) velocity.

4.1. Thermocapillary flows

We compare the thermocapillary flows induced by the vertical and radial thermal
gradient and their effect on the spreading process. For clarity, we set the rotation
rate Ω2 = 0 and consider the linear applied temperature distribution (3.2). Here one
should recall the convention is that a positive radial Marangoni number N̂ > 0 denotes
a radial temperature gradient directed from the axis-of-symmetry (hot) to the contact
line (cold), whereas the vertical Marangoni number M̂ > 0 is positive if the reference
temperature of the substrate (hot) is larger than the ambient temperature (cold).

Ehrhard & Davis (1991) studied the case of uniform heating or cooling of the
solid substrate (M̂ 6= 0, N̂ = 0). They show that heating the substrate, M̂ > 0, generates
a temperature profile that decreases along the drop interface from the contact line
to the axis-of-symmetry which, in turn, produces a thermocapillary recirculation
cell, as shown in figure 2(a). The counterclockwise-rotating recirculation cell is a
consequence of mass conservation, whereby the flow generated along the interface
from the surface-tension gradient is redirected back along the solid substrate. This flow
inhibits spreading by decreasing the contact angle and therefore the contact-line speed
via (3.1). The converse is true for a cooling substrate, M̂ < 0. For a radial thermal
gradient oriented in the positive sense, N̂ > 0, there is a surface flow from the axis-of-
symmetry (hot) to the contact line (cold), which is then redirected back along the solid
substrate towards the axis-of-symmetry generating a clockwise-rotating recirculation
cell, as shown in figure 2(b). This type of flow assists spreading. In contrast, reversing
the orientation of the radial gradient, N̂ < 0, tends to inhibit spreading. Smith (1995)
has reported a recirculation cell of the latter type for two-dimensional drops that aids
droplet migration. The assumption of axisymmetry precludes this type of motion and
both types of recirculation cell exist in symmetric pairs that can either assist or inhibit
spreading.
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FIGURE 3. Streamlines for a droplet spreading under a thermal gradient characterized by
Marangoni numbers (a) M̂ = −0.25, N̂ = −0.1, (b) M̂ = −0.25, N̂ = 0.1, (c) M̂ = 0.25, N̂ =
0.1 and (d) M̂ = 0.25, N̂ = 0.1, showing stagnation points and curves of zero radial (dashed)
and vertical (dotted) velocity.

4.2. Bistability
For general heating conditions, the drop will attain a complex temperature profile that
generates both vertical and radial gradients along the drop interface. The flows induced
by these thermocapillary forces can either work in concert or competition to alter the
contact angle and therefore the spreading process through the contact-line dynamics.
Figure 3 shows prototypical flows for the various sub-cases. If the thermocapillary
forces act in concert, the two effects combine to form a single recirculation cell
rotating in the direction consistent with assisted (clockwise) or inhibited (counter-
clockwise) spreading (cf. figure 3b,c). On the contrary, a set of localized recirculation
cells exist when the corresponding thermocapillary forces are in competition (cf.
figure 3a,d). These localized recirculation cells evolve and interact throughout the
spreading process.

Thermocapillary flows can alter the contact angle and therefore the balance of
forces at the contact line (3.4), which is an ordinary differential equation of the
form da/dt = f (a). We compute the equilibrium radius a∞ by setting the contact-line
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FIGURE 4. Bifurcation diagram: equilibrium radius a∞ against (a,b) vertical Marangoni
number M̂, for fixed (a) N̂ = 0.005 and (b) N̂ = −0.005, and (c,d) radial Marangoni number
N̂, for fixed (c) M̂ = 0.25 and (d) M̂ =−0.25, showing contours of static-contact angle θA for
Ω2 = 0.

velocity to zero, da/dt = 0, and solving f (a∞) = 0. Figure 4 plots the equilibrium
radius a∞ as it depends upon the Marangoni numbers M̂, N̂ for the non-rotating
Ω2 = 0 geometry. Here figures 4(a), 4(c) and 4(d) are qualitatively similar in that
there are regions of parameter space with zero, one or two equilibria, depending upon
the wetting conditions θA. However, figure 4(b) exhibits regions of three equilibria
and is thus qualitatively dissimilar from the other sub-cases. Figure 5 traverses
the parameter space (figure 4b) in the direction of decreasing vertical Marangoni
number M̂, while holding all other parameters fixed, to illustrate the change in both
number and type of equilibria. As the bifurcation diagram is traversed, the number of
equilibria changes from one (figure 5a) to three (figure 5c) at the bifurcation point
(BP) shown in figure 5(b) and back again from three (figure 5c) to one (figure 5e)
at the second bifurcation point (figure 5d). The region of parameter space that lies
between the two bifurcation points is a region of bistability, whereby there are two
stable equilibria for one set of parameters.
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FIGURE 5. Traversing the bifurcation diagram for a fixed radial gradient N̂ = −0.0041 and
static contact angle θA = 0.6, while changing the vertical Marangoni number M̂ to show
bifurcation points (BP) in (b,d) and bistability in (c). Here points S and U denote stable and
unstable equilibria, respectively.

Stability of the equilibria mentioned above is deduced by using standard techniques
in one-dimensional bifurcation theory that can be applied to (3.4), such as plotting
the vector field f (a) to determine the direction of contact-line motion and hence the
stability of an equilibrium a∞. In addition, one can define a Lyapunov function E,
−dE/da = f (a), for the vector field f (a) to visualize the energy landscape around the
respective equilibria. Figure 6 plots the bifurcation diagram, vector field and Lyapunov
function in the bistability region of figure 5(c). Here one uses the vector field to
deduce if the equilibrium is stable (S) or unstable (U), as shown in figure 6(b). The
characteristic feature of the bistability region is the Lyapunov function with a double-
well potential (cf. figure 6c). Figure 7 plots the equilibrium interface shapes, which are
computed numerically from (2.27), in the bistability region shown in figure 6.

The approach to equilibrium in the bistability region of figure 6(a) is governed by
the dynamic contact-line condition (3.4). Typically, no characteristic power law can be
identified for general heating conditions (cf. figure 8a). In addition, figure 8(b) shows
the case where the thermal gradients induce thermocapillary flows which act together.
Here two unique retraction rates are visible; the first regime, t ∈ [0.01, 1], is more
film-like and dominated by the radial gradient, while the second regime, t ∈ [1, 10] is
drop-like with a faster retraction rate controlled by the vertical gradient induced by
large changes in height along the drop interface.

4.3. Parameter space for linear heating
The results mentioned above illustrate various aspects of the problem considered here,
such as spreading power laws, bistability and the approach to equilibrium. Some of
these properties are generic and exist for a wide range of system parameters, such as
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regions of bistability or indefinite spreading, which we define as regions of parameter
space without an equilibrium solution. For many coating processes, it is particularly
useful to identify parameter regimes where indefinite spreading occurs. The most
efficient way to describe the equilibrium states and their dependence on parameters is
to take ‘slices’ of the large parameter space (M̂, N̂,Ω2, θA).

Descartes’ rule of signs can be used as a guide in identifying the parameter regimes
where bistability may or may not occur. The rule states that the number of positive
roots of a real-valued polynomial, in order of descending exponents, is either equal to
the number of sign changes between consecutive non-zero coefficients or less than it
by a multiple of two. For linear heating, the equilibrium equation is given by

N̂
(
π

8

)
a4 +Ω2

(
1
24

)
a3 − M̂

(
3
8

)
a− θA + 4

πa3
= 0, (4.1)
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where the static contact angle is a positive constant θA > 0 and the Marangoni numbers
M̂, N̂ can take either positive or negative values. For no rotation, Ω2 = 0, a necessary
condition for bistability is that the applied radial gradient be directed inward, N̂ < 0,
while the substrate is uniformly cooled, M̂ < 0. Here one should note that the converse,
N̂ > 0, M̂ > 0, does not yield bistability despite producing competing thermocapillary
flows from the respective thermal gradients.

Figure 9 plots regions of indefinite spreading and bistability in the non-rotating
Ω2 = 0 subspace, as they depend upon M̂, N̂ and θA. Figure 9(a) informs one how
to choose the appropriate substrate (θA) and liquid/reference substrate temperature (M̂)
to achieve bistability for a given radial thermal gradient (N̂). Figure 9(b) takes a
different ‘slice’ of the non-rotating parameter space, where the static contact angle θA

is fixed and one chooses the appropriate heating conditions (M̂, N̂) to attain bistability
or completely coat the substrate (indefinite spreading).

Centrifugal forces tend to increase the size of the regions of bistability. For example,
figure 10(a) exhibits regions of bistability for a completely wetting, θA = 0, heated
substrate, M̂ > 0, as it depends upon centrifugal number Ω2. Likewise, figure 10(b)
illustrates that bistability can be achieved without heat transfer, M̂ = 0, if the substrate
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is partially wetting θA 6= 0. Figure 11 shows the N̂ and Ω2 parameter space for (a)
thermally simple fluids M̂ = 0 and (b) completely wetting substrates θA = 0.

4.4. Logarithmic heating
In this section, we analyse the applied temperature distribution with logarithmic profile
(3.5). To avoid redundancy, results that are qualitatively similar to those of the
previous section on linear heating will not be reproduced, such as bifurcation diagrams,
flow fields, droplet shapes and the approach to equilibrium. Instead, we focus on the
qualitative differences in the spreading regimes between linear and logarithmic heating
conditions. The equilibrium contact-line radius a∞ for logarithmic heating satisfies

CN̂Ωa3 − M̂

(
3
8

)
a+ 4
πa3
− θA = 0. (4.2)

The biggest difference between linear (4.1) and logarithmic (4.2) heating is the lumped
parameter CN̂Ω that represents the combined effect of a radial thermal gradient N̂ and
centrifugal forces Ω2, which results in a reduction of independent system parameters
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M̂, respectively, to illustrate regions of bistability and indefinite spreading.

from four (linear) to three (logarithmic). This reduction results in a number of
stronger restrictions on the system parameters to achieve bistability. In contrast to
linear heating, conductive heat transfer (M̂ < 0) is a necessary condition to produce
bistability for logarithmic heating (cf. figure 12). Figure 12 can be used as a guide
in selecting spreading regimes to achieve a desired outcome, either bistability or
indefinite spreading.

4.5. Comparison to experiments
In this section, we show that our results are qualitatively consistent with experiments
by Mukhopadhyay & Behringer (2009). In particular Mukhopadhyay & Behringer
(2009) show that a droplet on a completely wetting substrate (θA = 0) can be made
to retract to a smaller equilibrium radius by applying a radial temperature gradient
directed from the contact line to the axis-of-symmetry (N̂ < 0). Recall that a drop
spreading isothermally on a completely wetting substrate does not have an equilibrium
radius and will spread indefinitely, as can be seen by setting N̂ = M̂ =Ω2 = θA = 0 in
(4.1). Our results demonstrate that there is an equilibrium configuration for N̂ 6= 0. For
linear heating, we set M̂ =Ω2 = θA = 0 in (4.1) and show that the equilibrium radius
satisfies the following relationship:

N̂a7 =−32
π2
. (4.3)

Note that the contact-line radius a> 0, so that there are only real equilibrium solutions
for N̂ < 0, consistent with the experimental observation that a drop on a completely
wetting substrate can be made to retract to a smaller equilibrium radius. We can derive
a similar relationship for logarithmic heating by setting M̂ = Ω2 = θA = 0 in (4.2)
yielding

N̂a6 =− 64
3π2

. (4.4)

Once again, there are only real equilibrium solutions a > 0 when the radial thermal
gradient is directed from the contact line to the axis-of-symmetry N̂ < 0.

The second observation made by Mukhopadhyay & Behringer (2009) is that the
dynamics of the retraction process obey a characteristic power law. They use an
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interferometric technique to measure the time-dependent contact angle throughout the
retraction process. A least-squares fit of their data reveals that the contact angle
behaves like a power law of the form θ ∼ t−3/2. Our results recover this specific
power law from the dynamic contact-line law (3.7) for logarithmic heating in the
large-contact-line-radius limit a� 1. We set M̂ = Ω2 = θA = 0,K = 1,m = 1 and
show that da/dt ∼ N̂a3 for a� 1. When the thermal gradient is directed inwards
N̂ < 0, a ∼ t−1/2 and θ ≈ a3 ∼ t−3/2. We compare our asymptotic solution to the
numerical solution of (3.7) in figure 13, which plots the time-dependent contact-line
radius and contact angle for a droplet retracting on a completely wetting substrate. As
shown, both the asymptotic and numerical solution yield a power law that matches
experimental observations.

5. Concluding remarks
The spreading of an axisymmetric liquid drop on a smooth, non-uniformly heated

solid substrate that is rotating at a constant angular velocity has been considered here.
The lubrication approximation is applied to the field equations for this thin viscous
fluid to generate an evolution equation for the interface shape, which is coupled to
a dynamic contact-line condition that relates the contact angle to the contact-line
speed. For small spreading rates, the droplet shape is steady and evolves implicitly
through the time-dependent contact-line radius, which is governed by the dynamic
contact-line law. In the absence of thermocapillary and centrifugal effects, droplet
motion is driven by the imbalance of capillary (interfacial) and wetting (substrate)
effects, and spreading proceeds until these effects are balanced. The manner in which
thermocapillarity and centrifugal forces alter this balance is the focus of the present
study.

We study the thermocapillary flows that result from the applied temperature
distribution (radial gradient) and vertical heat transfer (vertical gradient). When the
two thermocapillary effects interact, they can do so constructively or destructively. If
the interaction is constructive, the thermocapillary flows can either assist or inhibit
spreading and the droplet will spread indefinitely or converge to an equilibrium
shape, which is uniquely determined by the thermal Marangoni numbers and wetting
conditions on the solid substrate. If the thermocapillary flows interact destructively,
bistability is possible. We show that in the absence of rotation Ω2 = 0, a droplet on
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a partially wetting substrate (θA 6= 0) exhibits bistability only when the applied radial
gradient is directed inwards from the contact line to the axis-of-symmetry (N̂ < 0)
while the drop is uniformly cooled, so that heat transfer is directed into the drop
(M̂ < 0) (cf. figures 9 and 12). For the rotating geometry, we show that centrifugal
forces enlarge the regions of bistability and relax the aforementioned restrictions on
the heating conditions.

We have shown that our results for the logarithmic temperature profile are consistent
with experimental observations made by Mukhopadhyay & Behringer (2009). Namely,
we show that a drop on a completely wetting substrate can be made to retract to a
smaller equilibrium radius by an applied thermal gradient and derive an expression
relating the equilibrium radius to the magnitude of the thermal gradient. In addition,
we use both an asymptotic and numerical solution to our governing equation to show
that the dynamics of the retraction process obey a characteristic power law consistent
with experimental observations.

Lastly, the majority of assumptions utilized here are reasonable when compared
to typical experimental conditions and have been rationalized when first introduced.
One exception is the assumption of small centrifugal number Ω2, which is meant to
help clarify the results by illustrating the role centrifugal forces have in the spreading
process. For example, one could argue that, in practice, centrifugal forces can be
more easily controlled than conductive heat transfer across the drop interface. This
suggests one should search for bistability in regions of parameter space where there
is more control over experimental conditions. To extend this analysis to larger rotation
rates, which are known to dewet (rupture) the centre of the droplet, one would need
to include either a second contact line to model rupture or a disjoining pressure to
prevent rupture. We also assume gravitational effects are negligible (G = 0), although
they can become significant for large droplets on completely wetting surfaces. Finally,
Mukhopadhyay et al. (2011) also report substrate temperature distributions localized
near the contact line. Our model would need to be adapted to directly compare with
such heating.
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