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eformations on partially-wetting
substrates: rival contact-line models†

Joshua B. Bostwick,*a Michael Shearerb and Karen E. Danielsc

A partially-wetting liquid can deform the underlying elastic substrate upon which it rests. This situation

requires the development of theoretical models to describe the wetting forces imparted by the drop

onto the solid substrate, particularly those at the contact-line. We construct a general solution using a

displacement potential function for the elastic deformations within a finite elastic substrate associated

with these wetting forces, and compare the results for several different contact-line models. Our work

incorporates internal contributions to the surface stress from both liquid/solid Sls and Ssg solid/gas solid

surface tensions (surface stress), which results in a non-standard boundary-value problem that we solve

using a dual integral equation. We compare our results to relevant experiments and conclude that the

generalization of solid surface tension Sls s Ssg is an essential feature in any model of partial-wetting.

The comparisons also allow us to systematically eliminate some proposed contact-line models.
1 Introduction

The deformation induced by a drop of liquid resting on an
elastic substrate has been studied for some time.1–3 Describing
such deformations has led to the development of the eld of
elastocapillarity, in which elastic stresses are coupled to surface
tension (capillary forces). Among the many biological, medical
and industrial applications that involve the interaction of so
substrates with uid interfaces4 are enhanced condensation on
so substrates5 and adhesion by liquid bridges.6 Despite much
progress motivated by specic applications, a fundamental
characterization of how a liquid wets a so elastic solid remains
elusive.

In problems coupling elasticity to capillarity, the wetting
properties of the substrate strongly control the material
response. For a liquid on a hard substrate, these wetting prop-
erties are dened by the Young–Dupré equation,7,8

ssg � sls ¼ s cos a, (1)

which relates the liquid/gas s, liquid/solid sls and solid/gas ssg
surface tensions to the static contact-angle a. Fig. 1 illustrates
the interpretation of the Young–Dupré relationship as a hori-
zontal force balance. Note that this formulation leads to an
imbalance of forces normal to the solid substrate with
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magnitude FCLt ¼ s sin a. The classical model of wetting of so
substrates includes this normal contact-line force applied as a
point load at the contact-line, as well as the capillary pressure
p ¼ 2s sin a/R uniformly distributed along the liquid/solid
surface area, as shown in Fig. 2. More recently, alternative
models of wetting have been proposed to properly account for
intrinsic surface stresses in the elastic substrate and to distin-
guish surface stress from surface energy.9,10 For these models,
thermodynamics dictates that the surface stress S is related to
the surface energy s by the Shuttleworth equation, SAB ¼ sAB +
vsAB/v3 with 3 the bulk strain parallel to the interface, reecting
an energetic penalty for deformation.11 Here A, B represent the
phases on either side of the interface. For substrates with an
incompressible surface layer, the surface stress S is equal to the
surface energy s and both can be referred to as surface tension
(Weijs et al.10). Herein, we refer to sAB as the surface tension and
SAB as the solid surface tension. The result of the newmodels is
to augment the classical model with a contact-line force
FCLk parallel to the solid and directed into the liquid phase.

In this paper we formulate a general model that describes
the deformations of an elastic substrate by a partially-wetting
liquid drop. The general model, formulated in terms of a
displacement potential function, accommodates three rival
Fig. 1 The Young–Dupré eqn (1) schematically as a horizontal force
balance.
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Fig. 2 Definition sketch: a liquid droplet with contact-line radius R
wetting an elastic substrate of height h, elastic modulus E and Poisson
ratio n and the associated wetting forces included in the model; the
capillary pressure p and contact-line force FCL.
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contact-line models. By introducing both liquid/solid Sls and
solid/gas Ssg solid surface tensions, we generalize the work of
Style and Dufresne12 on neutrally-wetting substrates (a¼ 90�) to
partially-wetting substrates (a s 90�). This leads to a force
boundary condition at the substrate surface that varies along
the problem domain. We construct a solution to this non-
standard problem by setting up a dual integral equation that
results from extending the boundary condition into the
complementary interval. We compare computed displacement
elds from the general model to experimental results. The
markedly different displacement elds predicted by the
different models eliminates one model, and suggests suitable
experiments to further resolve which of the others are most
plausible.

Elastocapillary phenomena generally become important
when the liquid surface tension s and the elastic resistance of
the solid substrate have similar magnitude, as measured by the
elastocapillary number Y ¼ s/EL. Here E is the elastic modulus
of the substrate and L is a characteristic length scale. For most
liquids of interest s ¼ 10–100 mN m�1, and to adjust Y it is
typically easier to change L or E. Experiments on the wrinkling
of elastic sheets13–16 and capillary origami17 use small L. Using
silicone gel,18,19 gelatin20,21 or agar gel22 as a solid substrate
allows E to be controllably tuned over several orders of magni-
tude. In systems without an intrinsic length scale, the elasto-
capillary length ‘ ¼ s/E sets the size of the elastic deformation.
For reference, water (s¼ 72 mNm�1) on a silicone gel substrate
(E ¼ 3 kPa) yields deformations of order ‘ � 10�6 m. This is
distinct from thin solids, such as those utilized in capillary
origami experiments, where an alternative elastocapillary

length
ffiffiffiffiffiffiffiffi
B=s

p
can be dened using the bending modulus B as a

measure of the elastic resistance.
Many of the relevant experimental studies mentioned above

involve neutrally-wetting (a ¼ 90�) substrates.13,18 Studies of
partial-wetting generally involve adding surfactant to the liquid
to adjust the liquid/gas surface tension. Schroll et al.16 study
7362 | Soft Matter, 2014, 10, 7361–7369
how the wrinkling of ultra-thin elastic sheets due to a droplet is
affected by the presence of a liquid bath covered in a pre-
determined surfactant concentration. They derive near-
threshold and far-from-threshold limits that recover experi-
mental observations. Daniels et al.22 have shown that a droplet
of surfactant-laden liquid placed on an agar gel can fracture the
substrate in a starburst pattern. The number of arms in a given
starburst is controlled by the surface tension contrast ssg � s,
an alternative measure of the degree to which a liquid partially
wets a so solid. Bostwick and Daniels23 developed a model to
predict the number of arms for this situation, and have shown
that the location of the contact-line, which depends upon a and
the droplet volume V, is the critical parameter in wavenumber
selection, in agreement with experiments. Lastly, Style et al.24

study the contact mechanics of glass particles pressed into so
materials. These results show that a obeys a generalized Young–
Dupré equation when the indenting particle size is on the order
of the elastocapillary length ‘.

Theory of the spreading of liquids over compliant
substrates naturally relies upon an appropriate characteriza-
tion of the physics of wetting, in much the same way that
traditional dynamic spreading laws for liquids on rigid
solids25–27 build upon the static Young–Dupré equation. For a
liquid spreading on a so viscoelastic substrate, Kajiya et al.28

show that the liquid can move continuously or with stick-slip
motion depending upon the ratio of the loss to storage
modulus.29 The motion of a liquid on a so substrate expe-
riences viscoelastic braking from the wetting ridge at the
contact-line.30–32

Hence, a description of the deformation eld is needed to
study the dynamics of spreading. Most of the existing theoret-
ical models are only valid for neutrally-wetting (a ¼ 90�)
substrates12,18 or straight 2D contact-lines.33 Alternative
methods employ computational approaches such as density
functional theory (DFT)34 and molecular dynamic (MD) simu-
lations35 to gain a more thorough understanding of the wetting
forces acting at the contact-line. The thrust of our work lies in
the modeling of partially-wetting systems.

We begin by formulating a mathematical model (Section 2)
for the deformation of an elastic substrate due to a partially-
wetting liquid droplet. The effects of partial-wetting appear in
(i) the contact-line force boundary conditions and (ii) the solid
surface tensions Ssg s Sls. Three rival contact-line models are
introduced and the governing equations are recast using a
displacement potential. We then construct a general solution
of the dual integral equation that results from the disconti-
nuity in solid surface tension S along the surface of the
substrate. The discontinuity occurs where the interface
changes from liquid/solid to solid/gas. Our numerical results
are presented in Section 3, where we contrast measures of the
elastic displacement eld for the different models as they
depend upon the model parameters. Comparisons between
the predicted elds and relevant experiments allow us to
systematically eliminate some proposed contact-line models.
In addition, we show that the generalization of solid surface
tension is an important feature for modeling wetting on so
substrates. We conclude with some remarks in Section 4 on
This journal is © The Royal Society of Chemistry 2014



Table 1 Horizontal contact-line force FCLr for the classic description of
wetting (I), used by Jerison et al.,18 Style and Dufresne,12 and updated
Models II and III, proposed by Das et al.34 andWeijs et al.,10 respectively.
Here s is the surface tension, n the Poisson ratio, and a the contact
angle given by eqn (1)

Model FCLr

I 0
II �s(1 + cos a)
III �sð1þ cos aÞ

�
1� 2n

1� n

�

Paper Soft Matter
future studies that could help resolve the issue of which model
of wetting is most realistic.

2 Mathematical formulation

A partially-wetting droplet resting on a solid substrate is held by
liquid–gas surface tension s at its free surface. For negligible
gravitational forces, the equilibrium shape is a spherical-cap
with contact-line radius R, static contact-angle a and volume

V

R3
¼ p

3

ð2� 3 cos aþ cos3 aÞ
sin3

a
: (2)

Note that for xed volume drops, R and a are not indepen-
dent parameters. The linear elastic substrate has thickness h
and is characterized by an elastic modulus E and Poisson ratio
n, as shown in Fig. 2. The liquid interacts with the solid through
both the capillary pressure p ¼ 2s sin a/R uniformly distributed
over the liquid/solid contact area and the unbalanced contact-
line force FCL applied at the contact-line radius R (cf. Fig. 2). We
compute the elastic response in the substrate due to these
wetting forces.

2.1 Field equations

We begin by introducing the axisymmetric displacement eld u,

u ¼ ur(r, z)êr + uz(r, z)êz, (3)

in cylindrical coordinates (r, z), which satises the governing
elastostatic Navier equations,

(1 � 2n)V2u + V(V$u) ¼ 0. (4)

The strain eld 3 is dened as

3 ¼ 1

2

�
Vuþ ðVuÞt�; (5)

while the stress eld sij for this linear elastic solid is given by

sij ¼ E

1þ n

�
3ij þ n

1� 2n
3kk

�
: (6)

2.2 Boundary conditions

We assume the elastic substrate is pinned to a rigid support at z
¼ 0 by enforcing a zero displacement boundary condition there,

u(r, 0) ¼ 0. (7)

On the free surface z ¼ h, we specify the surface tractions

srzðr; hÞ ¼ FrðrÞ; 0 # r#N;

szzðr; hÞ � SlsVk
2uzðr; hÞ ¼ FzðrÞ; 0 # r#R;

szzðr; hÞ � SsgVk
2uzðr; hÞ ¼ FzðrÞ; R\r#N:

(8)

here Vk
2 is the surface Laplacian and Fz(r) and Fr(r) are the

applied vertical and horizontal forces associated with the
liquid/solid interactions. These forces are model-dependent,
and their particular choice will be discussed in Section 2.3. As
This journal is © The Royal Society of Chemistry 2014
discussed by Style and Dufresne,12 Jerison et al.,18 introducing
the S solid surface tension (i) allows for the modeling of
neutrally-wetting substrates Ssg ¼ Sls(a ¼ 90�) and (ii) regular-
izes the singularity associated with applying a d-function force
to the medium's surface. Here, we extend this technique to
allow us to model partially-wetting substrates with Ssg s Sls

corresponding to a s 90�.
2.3 Wetting forces

We now develop a model for the forces Fz, Fr associated with the
wetting of a liquid droplet on a so elastic substrate. For a
liquid droplet held by uniform surface tension s, the vertical
wetting forces are given by

FzðrÞ ¼ s sin a

�
dðr� RÞ � 2

R
HðR� rÞ

�
: (9)

here the capillary pressure p ¼ 2s sin a/R (second term) is
uniformly distributed over the liquid/solid surface area by the
Heaviside function H(R � r), whereas the unbalanced vertical
contact-line force FCLz ¼ s sin a (rst term) is applied as a point
load using a delta function d(r � R) at the contact-line r ¼ R.
Note the orientation of the applied forces; the capillary pressure
p compresses the substrate, while the contact-line force FCLz
tends to pull the substrate upwards. In fact, the upward contact-
line force precisely balances the net downward force from the
pressure. Eqn (9) is the standard, or classic, description of
wetting of so substrates.

More recent models of wetting have introduced an uncom-
pensated parallel contact-line force Fr(r), in addition to the
vertical wetting forces (9) described above.10,34 Here we would
like to construct a general solution for the models of wetting
discussed below in order to contrast the resulting elastic elds.
Each model for the uncompensated parallel contact-line force
can be written as

Fr(r) ¼ FCL
r d(r � R) (10)

with the coefficient FCLr for the respective model shown in
Table 1.
2.4 Summary of wetting models

Model I corresponds to the classic picture of wetting in which
the contact line exerts no horizontal force on the substrate. In
contrast, Models II and III take the same form with respect to a,
Soft Matter, 2014, 10, 7361–7369 | 7363



Soft Matter Paper
but have different dependence on the Poisson ratio n of the
substrate. Note that for the unusual case of n ¼ 0, Model III
reduces to Model II; however, ordinary materials do not typi-
cally reach this limit.36 The more interesting case is that of
incompressible substrates, for which n ¼ 1/2 and Model III
reduces to Model I. Many so materials are known to be highly
incompressible37 and modern measurement techniques38 are
making it possible to obtain precise values of the deviation from
1/2. In particular, the experiments of Style et al.24 report n ¼
0.495 for the silicone gel to which we compare model results
below. Even if Model III were the correct model, the closeness to
n ¼ 1/2 would explain why Model I has been so successful in
predicting the elastic deformations on so substrates.
2.5 Displacement potential—Love function

The Navier eqn (4) are simplied by introducing the Galerkin
vector G,39 dened such that

u ¼ 1þ n

E

�
2ð1� nÞV2G � VðV$GÞ� (11)

with

G ¼ x(r, z)êz. (12)

Sometimes the potential x is referred to as the Love function
from classical linear elasticity. We substitute (11) into the
coupled system of differential eqn (4) to show that x satises the
biharmonic equation

V4x ¼ 0. (13)

The displacement (7) and traction (8) boundary conditions
can similarly be written in terms of the potential function x.
2.6 Hankel transform

We seek solutions to (13) for the potential function using the
Hankel transform pair,

x̂ðs; zÞ ¼
ðN
0

rxðr; zÞJ0ðsrÞdr; (14a)

xðr; zÞ ¼
ðN
0

sx̂ðs; zÞJ0ðsrÞds; (14b)

where J0 is the Bessel function of the rst kind and s is the radial
wavenumber.
2.7 Reduced equations

We introduce the following dimensionless variables;

uh ~u
s

E
; rh ~rh; zh ~zh; sh

~s

h
; Rh ~Rh: (15)

here lengths are scaled by the thickness of the elastic substrate
h and elastic deformations by the elastocapillary length ‘h s/E.
Herein we drop the tildes for notational simplicity. Substituting
the Hankel expansion (14a) into (13) gives a reduced equation
for x̂,
7364 | Soft Matter, 2014, 10, 7361–7369
V4x̂ ¼
�
d2

dz2
� s2

�2

x̂ ¼ 0; (16)

combined with the no-displacement condition on the rigid
support z ¼ 0,

dx̂

dz
¼ 0; ð1� 2nÞd

2
x̂

dz2
� 2ð1� nÞs2x̂ ¼ 0: (17)

The general solution of (16) and (17) is given by

x̂ ¼ C

�
coshðszÞ þ sz sinhðszÞ

2ð1� 2nÞ
�
þDðsz coshðszÞ � sinhðszÞÞ;

(18)

with the constants C, D to be determined from the traction
boundary conditions (8). Here we note that the form of (8) is not
amenable to standard analysis because the vertical boundary
conditions szz change along the problem domain r ˛ [0, N]. We
address this issue in the following section by constructing a
solution to this non-standard problem using a dual integral
formulation. Given the solution x̂, we compute x in real space by
evaluating the inverse Hankel transform (14b). Once the
potential function x is known, the displacement u, strain 3 and
stress s elds are obtained via substitution into (11), (5) and (6),
respectively.
2.8 Dimensionless groups

The following dimensionless groups arise naturally from the
choice of scaling (15),

Yh
s

Eh
; Ysg h

Ssg

Eh
; Yls h

Sls

Eh
; Lh

R

h
: (19)

Here Y, Ysg and Yls are the liquid/gas, solid/gas and liquid/solid
elastocapillary numbers and L is the aspect ratio or dimen-
sionless contact-line radius. We also dene the solid surface
tension contrast DY h Ysg � Yls, which can be viewed as a
measure of partial wetting.
2.9 Dual integral equation

The vertical component szz of the traction boundary condi-
tions (8) changes along the problem domain depending upon
whether the solid substrate interacts with the liquid droplet
(r ˛ [0, R]) or the passive gas (r ˛ [R, N]). To specify the
constants C, D in our general solution (18), we recast the
traction boundary conditions (8) in a form amenable to a dual
integral solution,

srz ¼ Fr(r), 0 # r # N (20a)

szz � SsgVk
2uz � Fz(r) ¼ (Sls � Ssg)Vk

2uz, 0 # r # R (20b)

szz � SsgVk
2uz � Fz(r) ¼ 0, R < r # N (20c)

The vertical force balance (20b) and (20c) is then written asðN
0

AðsÞJ0ðsrÞds ¼
	
GðrÞ 0# r#R

0 R\r#N
(21)
This journal is © The Royal Society of Chemistry 2014



Fig. 3 Comparison with Style et al.,19 Fig. 1. Surface displacement uz
on a h ¼ 50 mm thick substrate against r from Model I, III, as it depends
upon the contact-line radius R for n¼ 0.5, Ysg ¼ 0.207, DY¼�0.033, E
¼ 3 kPa, s ¼ 46 mN m�1 and a ¼ 95�. Lengths are reported in mm.
Experimental results are shown with open symbols. Material properties
are taken to be those reported in the experiments.19
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with

AðsÞ ¼ s ŝzz þ Ssgs
2ûz � F̂ z

� �
;GðrÞ ¼ DS

ðN
0

s3ûzJ0ðsrÞds; (22)

and DS h Ssg � Sls. Eqn (21) is recognized as a dual integral
equation with a standard solution,40,41

AðsÞ ¼ 2

p

ðR
0

cos st

ðR
t

rGðrÞffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2

p drdt: (23)

Note that the solution is valid over the full domain r ˛ [0,N].
Substituting ((18) and (22)) into (23) yields

s(t̂zz + Ssgs
2ûz � F̂ z) ¼ CA1(s) + DA2(s), (24)

where

AkðsÞ ¼ DS
2

p

ðR
0

cos st

ðR
0

rffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2

p
ðN
0

q3vkðqÞJ0ðqrÞdqdrdt; (25)

and

v1ðqÞ ¼ � q3sinh q

2ð1� 2nÞ ; (26a)

v2ðqÞ ¼ q2
2ð3� 10nþ 8n2Þsinh q� 2qð1� 2nÞcosh q

2ð1� 2nÞ : (26b)

Eqn (24) and the Hankel-transformed horizontal force
balance (20a) are a linear system of equations for C, D, whose
solution is given in the Appendix.
Fig. 4 Comparisonwith Style et al.,19 Fig. 3. Contact-line displacement
uCLz computed from Model I, III against drop radius R, as it depends
upon the substrate height h for n ¼ 0.5, Ysg ¼ 0.207, DY ¼ �0.033, E ¼
3 kPa, s ¼ 46 mN m�1 and a ¼ 95�. Lengths are reported in mm.
Experimental results are shown with open symbols.
3 Results

Our goal is to contrast the three contact-line models and the
interpretation of solid surface tension for partial wetting, by
comparing theoretical displacement elds to relevant experi-
ments. Some of these comparisons can be directly evaluated
using data from the literature, while others identify tests which
would help design future experiments. We compute the elastic
elds by substituting the coefficients C, D into (12) and evalu-
ating (14b) for the displacement potential, from which the
displacements u, strains 3 and stresses s are readily obtained.
These solutions provide quantitative measures of how the
elastic eld, for instance the vertical contact-line displacement
uCLz (peak height), varies with the model parameters.

We begin by comparing our model to the experimental
results of Style et al.,19 who use confocal microscopy to measure
surface displacements on silicone gels from partially-wetting
droplets. Their focus is in how the displacement elds vary with
two length scales, the contact-line radius R and substrate height
h. Fig. 3 shows how the vertical surface displacement uz changes
across the substrate for Model I. Material parameters for our
computations are taken directly from the reported values.19

Note that n z 1/2 for silicone gels, which implies that contact-
line Models I and III are equivalent for these experiments. We
see that our model is able to adequately reproduce the experi-
mental results over a range of contact-line radii, which is
This journal is © The Royal Society of Chemistry 2014
achieved experimentally by varying the droplet volume while
holding the other parameters xed. The capillary pressure p ¼
2s sin a/R tends to compress the material beneath the drop and
is more pronounced for smaller drops, as would be expected.
For larger drops R ¼ 225.5 mm (solid line type), the contact-line
force dominates the elastic response and the compressive
troughs on either side of the contact-line peak become nearly
symmetrical, reecting a nearly two-dimensional solution.18

Despite the large variation in surface prole with droplet size,
the local geometry of the wetting ridge remains invariant; the
predicted microscopic contact angle 93.8� for both contact-line
Models I and II agrees well with that reported by Style et al.19 (cf.
ESI, Fig. S5†). We attribute this observation to the generaliza-
tion of solid surface tension.

The peak height uCLz directly at the contact-line can be used
as a measure of the elastic response of the underlying substrate.
In Fig. 4, we plot the peak height for Models I and III as a
function of the contact-line radius R for various substrate
heights h, and compare with experiments on silicone gel
substrates.19 For a xed substrate height h, the peak height
increases with increasing contact-line radius R, achieves a
Soft Matter, 2014, 10, 7361–7369 | 7365



Fig. 6 Comparison between Models I, III and II by plotting the surface
displacements uz, ur on an incompressible n ¼ 1/2 substrate, against r,
as it depends upon the contact-line radius L, for Yls ¼ 1, Ysg ¼ 1, a ¼
90+. Note the different scales for the radial displacement.

Soft Matter Paper
maximum and decreases thereaer. Smaller substrate heights
lead to uniformly smaller peak heights reecting the presence
of the underlying rigid support, where the zero displacement
condition (7) is enforced. In contrast, thicker substrates are less
affected by the underlying support since there is more material
to resist the applied surface tractions, resulting in larger peak
deformations. Fig. 4 demonstrates the non-monotonic depen-
dence on contact-line radius, consistent with experiments. We
attribute this behavior to the effects of partial wetting (a ¼ 95�)
that result from a non-trivial difference between the liquid/solid
and solid/gas solid surface tensions DY s 0.

For neutrally-wetting a ¼ 90� substrates (DY ¼ 0), the peak
height is a monotonic function of the contact-line radius L for
Models I, III, as shown in Fig. 5. That is, the peak height
increases with the contact-line radius and then plateaus. We
conclude that the generalization which differentiates between
the Sls and Ssg solid surface tensions is a feature of the model
that is required to reproduce the experimental data. In contrast,
Fig. 5 shows that for Model II with DY ¼ 0, the peak height is a
non-monotonic function of the contact-line radius that is also
consistent with experiments (cf. Fig. 4).

We proceed by contrasting contact-line Models I, III and II
on incompressible (n ¼ 1/2) substrates. Fig. 6 plots the surface
displacements uz, ur for Models I and II on a neutrally wetting
a¼ 90� substrate. The peak heights uCLz are supercially similar,
but the elds vary greatly away from the contact-line. Notice that
beneath the drop the eld is compressive for Model I and
tensile for Model II. Outside the drop, the compressive dimple
is much more pronounced for Model II. Fig. 7 compares surface
proles for uorinert drops with a ¼ 40� against experiment
demonstrating that Model I more accurately captures the
experimental observations. Additional comparisons to experi-
ment are given in the Supplementary Material. A more dramatic
difference between Model I and II is seen in the radial surface
Fig. 5 Contact-line displacement comparing Models I, III and II by
plotting the axial uCL

z and radial uCL
r displacement at the contact-

line (r ¼ L), as it depends upon the solid elastocapillary number
Y ¼ Ysg ¼ Yls and the contact-line radius L for n ¼ 1/2 and a ¼ 90�.

7366 | Soft Matter, 2014, 10, 7361–7369
displacement. For Model I, there is a peak on the droplet side
and a trough on the gas side of the contact-line that eventually
becomes symmetric as the contact-line radius increases. In
contrast, the radial displacement is directed into the drop (ur <
0) for Model II. In addition to the qualitative differences in the
radial displacement eld, note the radial displacement ur scale
changes by an order of magnitude betweenModels I and II. This
observation is robust and occurs over a large range of parame-
ters (cf. ESI†). Such a dramatic effect should clearly be visible in
experiment. However, Jerison et al.,18 Fig. 2 measure the radial
displacement eld on incompressible silicone gel substrates
showing a eld more similar to that of Model I than Model II.
We conclude that contact-line Model II does not accurately
capture the existing experimental data and, hence, rule it out as
a candidate contact-line law.

At this point, our candidate models have been reduced to
either Model I or Model III. We have demonstrated above that
the generalization of solid surface tensions (DY s 0) is an
essential feature of any model. Recall that Model III includes a
horizontal force that depends upon the Poisson ratio n, which
Fig. 7 Surface displacement uz for a fluorinert drop on a h ¼ 23 mm
thick substrate against r comparing Models I, III to Model II, for R ¼
196.59 mm, n ¼ 0.5, Ysg ¼ 0.349, DY ¼ 0.149, E ¼ 3 kPa, s¼ 17 mNm�1

and a ¼ 40�. Experimental results are shown with open symbols.
Lengths are reported in mm. Material properties are taken to be those
reported in the experiments.19

This journal is © The Royal Society of Chemistry 2014



Fig. 8 Compressibility effects from contact-line Model III with R ¼
74.5 mm and R ¼ 225.5 mm: axial uz and radial ur displacement field in
mm, as it depends upon the Poisson ratio n, for Ysg ¼ 0.207, DY ¼
�0.033, E ¼ 3 kPa, s ¼ 46 mN m�1 and a ¼ 95�. Open symbols in left
sub-figure are two experiments from Style and Dufresne.12 Fig. 10 Comparison of the axial uCLz sin a and radial uCLr sin a contact-

line displacement for Models I and III, as it depends upon DY and the
contact-line radius L for n ¼ 1/2 and Ysg ¼ 1.
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degenerates into Model I when n ¼ 1/2. Fig. 8 shows the
displacement elds for Model III, as they depend upon n for
nearly incompressible substrates. For the vertical displacement
uz, the peak height does not appreciably change with n, while
the largest difference occurs near the center of the drop r ¼ 0.
The most dramatic difference occurs for the radial displace-
ment ur, where the presence of the horizontal force dominates
the elastic response, even at n¼ 0.45 and more so as n decreases
from 1/2. With regards to validation of the models, most
experiments utilize nearly incompressible materials and, as we
have stated, one cannot differentiate between Models I and III
in this limit. Experimental measurements of the radial
displacement eld on compressible substrates should resolve
this issue once and for all.

A typical measure of the elastic response due to a partially-
wetting liquid is the contact-line displacement, which can
usually bemeasured without sophisticated diagnostics. Another
benet is that the contact-line displacement is a scalar measure
of the more complicated elastic eld. Fig. 9 shows how the
Fig. 9 Comparison of the axial uCLz and radial uCLr contact-line
displacement for Models I and III, as it depends upon the Poisson ratio
n and the contact-line radius L for Y h Ysg ¼ Yls ¼ 1 and a ¼ 90�.

This journal is © The Royal Society of Chemistry 2014
contact-line displacement for a neutrally-wetting (a ¼ 90�)
substrate varies with the Poisson ratio n and solid elastocapil-
lary number Y for Models I, III. The information shown here
could be used in future experiments to reconcile the appro-
priate contact-line law, either Model I or III.

Finally, we show how the contact-line displacement varies with
L andDY in Fig. 10. Note that for partially-wetting situations, both
a and DY change with the surface chemistry. Hence, we plot the
displacements u sin a. The contact-line displacement for Model II
is given in the Supplementary Material. We view Fig. 10 as a guide
for future studies on partially-wetting substrates.
4 Discussion

We have considered the elastic deformations of a so substrate
due to the presence of a partially-wetting liquid. We construct a
general solution for the displacement potential (Love function)
comparing three rival contact-line models for wetting forces
imparted by the liquid onto the solid. In addition, our model
generalizes the concept of solid surface tension to partially-
wetting substrates as 90�, where Slss Ssg. The result of which
is a non-standard boundary-value problem that we solve using a
dual integral equation. The thrust of this work is that our
general solution encompasses all current contact-line models,
as well as the interpretation of solid surface tension as a surface
stress S h Ssg ¼ Sls or surface energy Ssg s Sls.

We compare the computed elastic displacement elds to
relevant experiments,18,19 which allows us to identify the most
likely model of wetting of so substrates from the potential
candidate models. When comparing to experiment, we imme-
diately see that the surface energy interpretation DY s 0 is an
essential feature that should be included in any model of
partial-wetting. Contact-line Model II is ruled out as a candidate
based upon the dramatic differences between the computed
displacement eld and experimental observations. This leaves
contact-line Models I and III as possibilities. However, since the
relevant experiments involve incompressible substrates nz 1/2,
which also coincides with the degenerate limit between Models
I and III, we are unable to identify the appropriate wetting law at
this time. Instead, we use our solution to the general problem to
show how measures of the elastic response vary with the
Soft Matter, 2014, 10, 7361–7369 | 7367
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relevant system parameters. The strategy is to use the theory to
suggest experimental efforts to resolve this dispute, which is of
practical importance in moving the eld forward.
Appendix: Computation of the
constants C, D

The integrals Ak, dened in eqn (25), can be evaluated by
interchanging the order of integration with respect to drdt /
dtdr and making use of a Bessel function identity,

J0ðsrÞ ¼ 2

p

ðr
0

cos stffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2

p dt; (27)

which yields

A1ðsÞ ¼ DSR
s6 sinh s

�
J0ðsRÞ2 þ J1ðsRÞ2

�
4ð1� 2nÞ (28)

A2 sð Þ ¼ DS
1

2
Rs5

�
J0ðsRÞ2 þ J1ðsRÞ2

�

�ðs cosh sþ ð4n� 3Þsinh sÞ:
(29)

Finally, we apply scalings (15) and simultaneously solve
((20a) and (24)) to give

C � X(s)/(2(�1 + 2n)) ¼ 2F̂ z(s)(s cosh s + (�1 + 2n)sinh s)

+ F̂ r(s)(2s sinh s + 4(�1 + n)cosh s

+ Ysg(s
2(1 + n)cosh s

+ s(�3 + n + 4n2)sinh s)

� D YLs(1 + v)(s cosh s

+ (�3 + 4n)sinh s)(J0(sL)
2

+ J1(sL)
2)) (30)

D � X(s) ¼ F̂ z(s)(2s sinh s + 4(1 � n)cosh s)

+ F̂ r(s)(2s cosh s + (2 � 4n + s2Ysg(1 + n)

� DYLs2(1 + n)(J0(sL)
2

+ J1(sL)
2))sinh s) (31)

where

X(s) ¼ s3(5 + 2s2 + 4n(�3 + 2n) + (3 � 4n)cosh2 s

+ sYsg(�1 + v2)(2s + (�3 + 4v)sinh2 s)

� DYLs(�1 + n2)(J0(sL)
2 + J1(sL)

2)

� (2s + (�3 + 4n)sinh 2s)), (32)

and DY h Ysg � Yls. The applied forces F̂ are given by

F̂ zðsÞ ¼ sin a

�
LJ0ðsLÞ � 2

s
J1ðsLÞ

�
; F̂ rðsÞ ¼ FCL;rLJ1ðsLÞ;

(33)

with the coefficient FCL,r taken from themodels given in Table 1.
Acknowledgements

This work was supported by the National Science Foundation
under grant number DMS-0968258. The authors thank Robert
Style and Eric Dufresne for sharing their experimental data.
7368 | Soft Matter, 2014, 10, 7361–7369
References

1 G. Lester, J. Colloid Sci., 1961, 16, 315–326.
2 M. Shanahan and P.-G. De Gennes, C. R. Seances Acad. Sci.,
Ser. 2, 1986, 302, 517–521.

3 M. E. R. Shanahan, J. Phys. D: Appl. Phys., 1987, 20, 945.
4 B. Roman and J. Bico, J. Phys.: Condens. Matter, 2010, 22,
493101.

5 M. Sokuler, G. K. Auernhammer, M. Roth, C. Liu,
E. Bonacurrso and H.-J. Butt, Langmuir, 2009, 26, 1544–1547.

6 J. S. Wexler, T. M. Heard and H. A. Stone, Phys. Rev. Lett.,
2014, 112, 066102.

7 T. Young, Philos. Trans. R. Soc. London, 1805, 95, 65–87.
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