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A liquid stretched between two solid boundaries forms a liquid bridge. The static stability (‘shape
stability’) of the liquid bridge to disturbances whose contact-line is (i) pinned or (ii) moves with fixed
contact-angle is studied. The liquid/gas interface is idealized as a mathematical surface of constant surface
tension. Elementary results from the calculus-of-variations are utilized to derive a sufficient condition for
stability without explicitly solving the boundary value problem associated with the second variation. The
focus is generating ‘quick’ checks on stability. The utility of the method is illustrated by limiting cases
of the liquid bridge between parallel plates; the liquid cylinder and catenoid. Our stability criteria gives
sharp bounds in some cases, recovering previously reported results and yields new predictions for mobile
contact-line disturbances. We conclude with remarks concerning the effect of support geometry.
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1. Introduction

A volume of liquid that makes separate contact with two solid surfaces is referred to as a ‘liquid bridge’,
a ‘liquid bead’ or sometimes, if the curved solids are convex to one another, a ‘pendular ring’. To empha-
size that the liquid is held in place by surface tension the term ‘capillary bridge’ may be used. We adopt
the perspective of a liquid bridge surrounded by gas, rather than vice versa, for definiteness, although
the equilibrium shape and stability of a gas bridge surrounded by liquid are the same, provided body
forces such as gravity are negligible. The overall shape of the bridge is given by its entire boundary,
the union of the liquid/gas and the liquid/solid interfaces. However, for non-deformable solids, the liq-
uid/solid interface remains a fixed shape and any liquid/solid influence on the liquid/gas shape occurs
at the three-phase common line, or ‘contact line.’ Hence, shape instability refers to the shape changes
of the liquid/gas interface (or a liquid/liquid interface in the case of immiscible liquids) with a possible
displacement of the contact line. In summary, we are concerned with the stability of liquid bridges, a
classical subject but with a re-emerging relevance. We obtain energy stability bounds which yield suffi-
cient conditions for stability. The simplicity of the bounding technique gives flexibility—it can be used
to obtain quick estimates of stability windows or to perform checks on ‘exact’ windows from more
computationally intensive solutions.

c© The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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Capillary bridges are found in nature and in industry. For typical liquids, the capillary length scale
varies from many centimetres in a low gravity environment, as on board the International Space Station,
to a few millimetres in earth bound applications. Bridge shape instability has been widely studied as
relevant to space applications (Bauer, 1992; Langbein, 2002), enhanced oil recovery (Olbricht, 1996),
reversible capillary adhesion (Vogel & Steen, 2010), sintering of matter into porous structures (Carter,
1988), drug delivery (Elele et al., 2010) and gravure printing (Dodds et al., 2012).

Equilibria are shapes of constant mean curvature. That is, starting from an energy functional which
takes into account liquid/gas interfacial energy, one obtains the Euler–Lagrange equation for the sta-
tionary states, which is recognized as the Young–Laplace equation. For axisymmetric bridges, the con-
stant curvature states have been fully characterized by Delaunay (1841). They consist of unduloids and
nodoids, with the catenoids and spheres as limiting cases (Gillette & Dyson, 1971).

The static stability of any equilibrium shape is simple to determine, in principle. Disturb the shape
and calculate the energy rise or fall relative to the base state. A base state for which all non-trivial dis-
turbances give higher energies is ‘stable’. If one disturbance gives a lower energy, the state is ‘unstable’
whereas, if neither stable nor unstable, the state is called ‘neutral.’

The static formulation does not encompass growth rates associated with the hydrodynamic prob-
lem. However, static stability bounds are known to carry forward to the hydrodynamic description
(Davis, 1980; Bostwick & Steen, 2013). Stability determination can be subtle, in practice however.
This is because stability depends sensitively on the class of disturbances against which the base state
is tested, as outlined in the recent review by Bostwick & Steen (2015). For example, the same equilib-
rium state may be stable against volume-preserving disturbances but unstable against constant pressure
disturbances. Or the same equilibrium state may be stable against fixed contact-line disturbances but
unstable if the disturbed contact-line is allowed to move. When two or three-parameter families of dis-
turbances are considered, the determination can become complicated. Gillette & Dyson (1974) noted
that, in the case of determining the stability of the catenoid under constraint, even Maxwell (1898) got
it wrong.

Bridge stability is sensitive to contact-line boundary conditions. We consider disturbances whose
contact-line is (i) pinned or (ii) moves with fixed contact-angle α, which is defined by the Young–Dupré
equation (Young, 1805; Dupré, 1869),

σsg − σls = σ cos α. (1.1)

Here the liquid/gas σ , liquid/solid σls and solid/gas σsg interfacial tensions define the wetting properties
of the solid substrate through the static contact-angle α. One must also distinguish between disturbances
that (i) do or (ii) do not preserve the volume enclosed by the equilibrium surface. That is, for each
contact-line condition, we treat the constant volume and constant pressure disturbance as separate sub-
cases. We then classify the disturbances in terms of relative stability showing that pressure disturbances
with moving contact-lines are the most dangerous (most destabilizing), while volume disturbances with
pinned contact-lines are the least dangerous (least destabilizing).

A number of approaches can be used to determine stability. A classical approach, rooted in the
work of Weierstrass, addresses directly the second variation of the energy functional. To prove stability
one must show the second variation is positive by (i) satisfying Legendre’s condition and (ii) prov-
ing the absence of a conjugate point or negative eigenvalue of Jacobi’s equation (Bolsa, 1904; Young,
2000). With regard to capillary surfaces, the stability calculation may be complicated further by a vol-
ume conservation constraint, a necessary condition for incompressible fluids. Howe (1887) uses the
conjugate point criteria to generate stability results for the zero-gravity, axisymmetric capillary surface
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(Gillette & Dyson, 1971). Alternative solution methods rely on the observation that stability limits
occur at turning points of a preferred bifurcation diagram (Poincaré, 1885; Padday & Pitt, 1973; Vogel,
1989). Maddocks (1987) states and proves the relevant theorems on constrained variational principles
and embedding of bifurcation parameters, while the review by Michael (1981) illustrates the many ways
that bifurcation theory applies to meniscus stability. Lowry & Steen (1995) apply the aforementioned
Poincaré–Maddocks theorems to study the stability of the general liquid bridge with pinned contact
lines using continuation techniques. The method works well in circumstances where the critical dis-
turbance is axisymmetric (Gillette & Dyson, 1972), but breaks down when the critical disturbance is
non-axisymmetric (Russo & Steen, 1986).

In contrast to direct calculation, we work indirectly with the second variation using elementary
results from the calculus-of-variations to derive static stability bounds for the family of liquid bridges.
The goal is to produce quick stability results (checks) for the practitioner. Our analysis parallels that
of Davis (1980), who considered the stability of the static rivulet under a number of contact-line con-
ditions. Our approach relies upon bounding a quadratic form related to the second variation. It gives
sufficient conditions for stability. These represent bounds on the second-order energy difference. We
illustrate the utility of our method by comparing our results for the liquid cylinder to the classic Plateau
limit and to those reported by Erle et al. (1970) for the symmetric catenoid with pinned contact-
lines, both of which are limiting cases of the liquid bridge. In addition, we report stability limits for
the catenoid with a mobile contact-line at one or both solid supports. These results are new, as far
as we are aware. Finally, we also compare with the exact stability window for the symmetric fixed
contact-line bridge, a well-studied case, and extend our analysis to the cases for one or two mobile
contact-lines.

We begin this paper by defining the second variation of surface energy for the liquid bridge and the
relevant boundary conditions on the solid supports, which define the interface disturbance. The second
variation is then manipulated into a quadratic form, which we bound to generate a critical functional
from which we derive our stability criteria. We compare our bounding method with the classic stability
limits for the liquid cylinder and symmetric catenoid. Our bounding result is sharp in these cases. Next,
we extend our analysis to report new stability results for the asymmetric catenoid and most-general
symmetric liquid bridge between parallel plates with mobile contact-lines. We conclude with some
remarks on the relevance of our method.

2. Liquid bridge

A capillary surface x = r(u, v) with intrinsic surface coordinates u, v has an energy U proportional to its
surface area

U/σ = A =
∫

|ru × rv| du dv, (2.1)

with σ the liquid/gas surface tension. Equilibrium surfaces are extremals of the energy functional that
satisfy the first-order condition δU = 0. For capillary surfaces, the resulting Euler–Lagrange equation
for the energy functional (2.1) is more commonly referred to as the Young–Laplace equation (Young,
1805; Laplace, 1806),

p/σ = κ1 + κ2 ≡ 2H , (2.2)
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Fig. 1. Definition sketch of the liquid bridge in axisymmetric coordinates (r, z) with axial length L spanned between solid supports
with bounding radii R1, R2 and contact-angles α1, α2. The upper and lower support surfaces have normal curvatures k̄2 and k̄1 and
filling angles ϑ2 and ϑ1, respectively.

which relates the principal curvatures κ1, κ2 (equivalently, the mean curvature H) to the pressure p.
The liquid bridge is an equilibrium surface that can be described parametrically using pseudo-arclength
s ∈ [−1/2, 1/2] and azimuthal angle ϕ ∈ [0, 2π ] as surface coordinates. For axisymmetric shapes, the
functions (r, z) satisfy the following Young–Laplace equations:

r′′(s) = −z′(s)
(

p − z′(s)
r(s)

)
, z′′(s) = r′(s)

(
p − z′(s)

r(s)

)
,

r(−1/2) = R1, r(1/2) = R2, z(−1/2) = 0, z(1/2) = L,

(2.3)

where ′ = d/ds denotes differentiation with respect to pseudo-arclength (Myshkis et al., 1987). Here
lengths have been scaled with respect to the total arclength S = 1 so that the liquid bridge is described
by its axial length L, bounding radii R1, R2, filling angles ϑ1, ϑ2 and static contact-angles α1, α2,

cot(α1 − ϑ1) ≡ − dr/ds

dz/ds

∣∣∣∣
s=−1/2

, cot(α2 − ϑ2) ≡ dr/ds

dz/ds

∣∣∣∣
s=1/2

, (2.4)

as shown in Fig. 1. Note that the equilibrium shape {r(s), z(s)} can be idealized as having either a (i) fixed
base radius R1, R2 or (ii) fixed contact-angle α1, α2 at each solid support (Michael & Williams, 1997).
With regard to the calculus-of-variations, the latter are the ‘natural’ boundary conditions for the energy
functional (2.1). Orr et al. (1975) solve (2.3) and (2.4) to obtain pendular ring shapes parameterized by
the mean curvature, filling angles and stand-off length L. These closed form equilibrium solutions are
pieces of Delaunay surfaces, of course. Their stability is not considered.
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2.1 Second variation of surface energy

As the liquid bridge is an equilibrium surface, stability is determined by solving the eigenvalue problem
associated with the second variation (c.f. Blaschke, 1930, section 116, Myshkis et al., 1987).

− ΔΓ η(s, ϕ) − (κ2
1 + κ2

2 )η(s, ϕ) = λη(s, ϕ), (2.5)

where η(s, ϕ) is the linearized surface disturbance. The sign of the eigenvalue λ gives the stability
result; λ > 0 implies the equilibrium surface is a stable configuration, whereas λ < 0 corresponds to an
unstable configuration. Here the Laplace–Beltrami operator,

ΔΓ η = 1√
g

∂

∂uα

(√
ggαβ ∂η

∂uβ

)
, (2.6)

is defined on the equilibrium surface through the surface metric

gαβ = [gαβ]−1 ≡ xα · xβ =
(

r′2 + z′2 0

0 r2

)
, g = r2(r′2 + z′2). (2.7)

2.1.1 Derivation of the stability criteria Rather than explicitly constructing a solution to the bound-
ary value problem (2.5), we choose to work directly with the second variation. We begin by assuming,
from periodicity, that the surface disturbance can be expanded as

η(s, ϕ) = y(s)ei�ϕ , � = 0, 1, 2, . . . , (2.8)

where � is the polar wavenumber. Applying the surface metric (2.7) and the ansatz (2.8) to the integral
form of the second variation (2.5) results in the following functional equation

∫ 1/2

−1/2
(−y′′y − F(s)y′y − G(s; �)y2) ds = λ

∫ 1/2

−1/2
gssy

2 ds, (2.9)

where

F(s) ≡ (
√

gϕϕ/gss)
′√

gϕϕ/gss
, G(s; �) ≡ gss

(
κ2

1 + κ2
2 − �2

gϕϕ

)
. (2.10)

This is sometimes referred to as the disturbance energy. It is straightforward to show that the right-hand
side of (2.9) is positive definite. Hence, stability is uniquely determined by the sign of the functional

I(�) ≡ −
∫ 1/2

−1/2
(y′′ + F(s)y′ + G(s; �)y)y ds. (2.11)

We formulate a stability criteria by first integrating I by parts to yield

∫ 1/2

−1/2

(
y′2 −

(
G(s; �) − 1

2
F ′(s)

)
y2

)
ds − yy′|1/2

−1/2 − F(s)

2
y2

∣∣∣∣
1/2

−1/2

(2.12)
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which is a quadratic form that can be bounded using the extreme value theorem (Stewart, 1995). A lower
bound on the functional I is given by

Imin ≡
∫ 1/2

−1/2
(y′2 − My2) ds − yy′|1/2

−1/2 − F(s)

2
y2

∣∣∣∣
1/2

−1/2

, (2.13)

where the scalar M is defined as

M (�) ≡ max
s∈[−1/2,1/2]

(
G(s; �) − 1

2
F ′(s)

)
. (2.14)

It follows that the liquid bridge is stable to allowable disturbances when Imin > 0. The functional Imin is
dependent upon the boundary conditions at the contact-lines, which we analyse separately.

2.2 Contact-line boundary conditions

The second variation of interfacial energy (2.5) is augmented with boundary conditions at the contact-
lines s = ±1/2. We implement three different contact-line conditions that are all consistent with the vari-
ation of the boundary conditions associated with either a (i) fixed base radius or (ii) fixed contact-angle
at each solid support. The first disturbance (pin–pin) has pinned contact-lines at both solid supports,

y(−1/2) = y(1/2) = 0, (2.15)

while the second disturbance (pin-free) has a pinned contact-line at the lower support (s = −1/2) and a
mobile contact-line that preserves the static contact-angle α2 at the upper support (s = 1/2),

y(−1/2) = 0, y′(1/2) + (k(1/2) cot α2 − k̄2/ sin α2)y(1/2) = 0. (2.16)

Here k(s) is the normal curvature of the equilibrium surface. The third disturbance (free-free) has mobile
contact lines at both the upper and lower supports,

−y′(−1/2) + (k(−1/2) cot α1 − k̄1/ sin α1)y(−1/2) = 0,

y′(1/2) + (k(1/2) cot α2 − k̄2/ sin α2)y(1/2) = 0.
(2.17)

2.3 Volume conservation constraint

Lastly, we consider two types of stability that are distinguished by assumptions about our underlying
fluid and/or experimental conditions. In cases where the total volume enclosed by the disturbed surface
is held fixed, as with incompressible fluids, the function y must also satisfy the following condition for
� = 0, ∫ 1/2

−1/2
y(s) ds = 0. (2.18)

We refer to disturbances that preserve volume as constrained. In contrast, disturbances that do not con-
serve volume are referred to as unconstrained. Alternatively, constrained and unconstrained can be
referred to as constant volume and constant pressure disturbances, which hereafter we will call ‘volume
disturbances’ and ‘pressure disturbances’, respectively.
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Fig. 2. Schematic of pressure (top row) and volume (bottom row) disturbances for pin–pin (left column), pin–free (centre column)
and free–free (right column) boundaries on planar supports.

2.4 Stability criteria

We now derive a stability criteria for the specific disturbances shown in Fig. 2.

2.4.1 Pin–Pin We begin by applying the pinned contact-line conditions (2.15) to (2.13) to yield

Ipp =
∫ 1/2

−1/2
(y′2 − My2) ds. (2.19)

Next, we recall the following standard result from the calculus of variations, also known as the Poincaré
inequality (Joseph, 1976), ∫ 1/2

−1/2
y′2 ds � ξ 2

∫ 1/2

−1/2
y2 ds. (2.20)

which we apply to (2.19) to give

Ipp � (ξ 2 − M )

∫ 1/2

−1/2
y2 ds. (2.21)

Hence, the liquid bridge is stable to disturbances with pinned contact-lines if

ξ 2 > M . (2.22)

Here the positive number ξ 2 is the smallest eigenvalue calculated from the associated boundary value
problem

y′′ + ξ 2y = μ, y(−1/2) = y(1/2) = 0, (2.23)

 at N
orthw

estern U
niversity L

ibrary on June 18, 2015
http://im

am
at.oxfordjournals.org/

D
ow

nloaded from
 

http://imamat.oxfordjournals.org/


8 of 17 J. B. BOSTWICK AND P. H. STEEN

where μ is a Lagrange multiplier used to enforce volume conservation (2.18) for the constrained
problem. For the unconstrained problem, we set μ = 0 and show the smallest eigenvalue of (2.23)
is ξ = π , which yields the unconstrained stability criteria

π2 > M . (2.24)

For the constrained problem, we augment (2.23) with the volume conservation constraint (2.18) and
show the eigenvalues satisfy the characteristic equation (ξ sin ξ + 2 cos ξ − 2)/ξ 2 = 0. The smallest
eigenvalue ξ = 2π generates the constrained stability criteria

(2π)2 > M . (2.25)

Equations (2.24) and (2.25) provide quick checks on stability for all liquid bridges with pinned
contact-lines.

2.4.2 Pin–Free Applying the mixed boundary conditions (2.16) to (2.13) yields the reduced
functional

Ipf =
∫ 1/2

−1/2
(y′2 − My2) ds + Afy

2(1/2), (2.26)

where

Af ≡ (k(1/2) cot α2 − k̄2 sin α2) − 1
2 F(1/2). (2.27)

We utilize the following inequality,

∫ 1/2

−1/2
y′2 ds + Afy

2(1/2) � ζ

∫ 1/2

−1/2
y2 ds, (2.28)

which is obtained from a calculus-of-variations problem whose Euler–Lagrange equations are given by

y′′ + ζy = μ, y(−1/2) = 0, y′(1/2) + Afy(1/2) = 0. (2.29)

As before, μ is a Lagrange multiplier used to enforce volume conservation (2.18) for the constrained
problem. We compute the smallest eigenvalue ζ of (2.29) for the unconstrained and constrained cases

Ipf � (ζ − M )

∫ 1/2

−1/2
y2 ds. (2.30)

Stability is guaranteed provided that ζ satisfies

ζ − M > 0. (2.31)

Note that (2.29) is a standard boundary value problem.
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2.4.3 Free–Free Finally, we apply the mobile boundary conditions (2.17) to (2.13) to arrive at the
reduced functional

Iff =
∫ 1/2

−1/2
(y′2 − My2) ds + Afy

2(1/2) + Bfy
2(−1/2), (2.32)

where Af is defined in (2.27) and

Bf ≡ (k(−1/2) cot α1 − k̄1 sin α1) + 1
2 F(−1/2). (2.33)

We employ the following inequality,∫ 1/2

−1/2
y′2 ds + Afy

2(1/2) + Bfy
2(−1/2) � χ

∫ 1/2

−1/2
y2 ds, (2.34)

derived from a calculus-of-variations problem with Euler–Lagrange equations given by

y′′ + χy = μ, −y′(−1/2) + Bfy(−1/2) = 0, y′(1/2) + Afy(1/2) = 0. (2.35)

Here μ is a Lagrange multiplier used to enforce volume conservation (2.18) for the constrained problem
and χ is the smallest eigenvalue of the boundary value problem (2.35). Equation (2.34) is applied to
(2.26) to give

Iff � (χ − M )

∫ 1/2

−1/2
y2 ds, (2.36)

which implies that stability is assured provided

χ − M > 0. (2.37)

Critical disturbance The respective stability criteria are examined for the critical disturbance. Some-
times the character of the critical disturbance can be predicted a priori. For example, for volume distur-
bances with pin-pin end conditions, axisymmetric � = 0 disturbances are most dangerous to base states
that are single valued in radial coordinate (Steiner, 1882; Gillette & Dyson, 1972; Bostwick & Steen,
2010). Shapes with tangents to the endplates are the limiting shapes beyond which non-axisymmetric
disturbances are destabilizing (Russo & Steen, 1986; Slobozhanin et al., 1997). We call this the ‘Steiner
limit’ (SL). Elfring & Lauga (2012) have recently demonstrated that a squeezed droplet (liquid bridge)
with a mobile contact-line undergoes an asymmetric buckling instability at the SL, suggesting the rel-
evance of the limit to end conditions other than pin–pin. For liquid bridges between parallel plates
(below the SL, by necessity), the critical volume disturbance for free–free conditions is axisymmetric
� = 0 (Vogel, 1987, 1989; Langbein, 1992), as summarized in Langbein (2002, Section 6.1). In this
paper, we report results for liquid bridges that respect the Steiner limit.

An immediate consequence of our analysis is that axisymmetric � = 0 shapes are the most danger-
ous pressure disturbances, irrespective of end conditions. This can be seen by examining the critical
scalar M in (2.14), which is a strictly decreasing function of azimuthal wavenumber �. The assump-
tion about the axisymmetric character of the critical disturbance is not valid for all capillary systems
however. For example, for a beaded drop on a fibre (internal solid support), the system energy can be
lowered by shifting to the perimeter of the wire, thereby breaking axisymmetry and becoming more like
an isolated drop (Quéré, 1999; Langbein, 2002). Such a configuration cannot occur between parallel
supports. Moreover, instability predictions are outside the scope of this paper since our method reports
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Table 1 Stability limits for the liquid cylinder to pressure and
volume disturbances, as defined through the aspect ratio 1/R
for the pin–pin, pin–free and free–free boundary conditions

Pressure Volume

Pin–pin π 2π
Pin–free π/2 4.49341
Free–free 0 π

stable states. For volume disturbances with pin–free or free–free end conditions, no statement can be
made a priori and one must consider both axisymmetric � = 0 and azimuthal � |= 0 disturbances.

3. Results

For brevity, we focus our presentation on interfaces with planar surfaces-of-support k̄1 = k̄2 = 0,
although it would be straightforward to analyse the more general case of pendular rings (see Section 3.4).

3.1 Cylinder

We begin by computing the static stability limit for the Plateau instability of the liquid cylinder to
compare our bounding technique with this classic result (Plateau, 1863; Rayleigh, 1879). The cylindrical
interface is described parametrically as

r = R, z = s, gss = 1, gϕϕ = R2. (3.1)

Here lengths are scaled with the axial length L = 1 so that the family of cylinders are uniquely described
by their radius R (alternatively, aspect ratio or ‘slenderness’ 1/R). The cylinder interface has normal
curvature k = 1/R, principal curvatures κ1 = 1/R, κ2 = 0 and contact-angles α1 = α2 = π/2. One then
uses the equilibrium surface properties to show that F(s) = 0, G(s) = (1 − �2)/R2, M = (1 − �2)/R2 and
Af = Bf = 0. As could be expected, since M (2.14) is constant on the entire domain, our bounding
method yields the exact stability limit summarized in Table 1 (e.g. Johns & Narayanan, 2002). Note that
M (1) = 0 and M (� � 2) < 0, demonstrating that azimuthal disturbances are always stable, as could be
expected.

3.2 Catenoid

Next, we extend our analysis by computing the stability limits for the catenoid, which is a limiting case
of the liquid bridge. The catenoid surface can be defined parametrically,

r = c cosh
( s

c
− β

)
, z = s, (3.2)

using pseudo-arclength s ∈ [−1/2, 1/2] and azimuthal angle ϕ ∈ [0, 2π ] as generalized surface coordi-
nates. The catenoid has principal curvatures

κ1 = −κ2 = 1

c
sech2

( s

c
− β

)
(3.3)
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LIQUID-BRIDGE SHAPE STABILITY BY ENERGY BOUNDING 11 of 17

and is distinguished by its mean curvature 2H = κ1 + κ2 = 0. A surface with zero mean curvature is
known as a minimal surface. The catenoid is a two-parameter (c, β) family of solutions, which can also
be represented by the slenderness of the contact radii R1, R2,

Λ1 ≡ L

2R1
= 1

2c cosh(−1/2c − β)
, Λ2 ≡ L

2R2
= 1

2c cosh(1/2c − β)
, (3.4)

or, alternatively, the contact-angles α1, α2; cot α1 ≡ − sinh(−1/2c − β), cot α2 ≡ sinh(1/2c − β).
We compute the stability bounds for the catenoid by using the stability criteria derived for the general

liquid bridge (2.5–2.7). The surface metric for the catenoid is given by

gαβ =
(

cosh2(s/c − β) 0

0 c2 cosh2(s/c − β)

)
, g = c2 cosh4(s/c − β). (3.5)

We apply the surface metric gαβ for the catenoid (3.5) to (2.10) to give

F(s) = 0, G(s; �) = 2

c2
sech2

( s

c
− β

)
− �2

c2
, (3.6)

Af(c, β) ≡ 1

c
sech

(
1

2c
− β

)
tanh

(
1

2c
− β

)
, Bf(c, β) ≡ −1

c
sech

(
− 1

2c
− β

)
tanh

(
− 1

2c
− β

)
,

(3.7)

and

M = Mc(c, β; �) ≡ max
s∈[− 1

2 , 1
2 ]

(
2

c2
sech2

( s

c
− β

)
− �2

c2

)
. (3.8)

The stability criteria for the pin–pin (2.24, 2.25), pin–free (2.31), and free–free (2.37) disturbances are
readily computed. Figure 3 shows the associated stability diagrams for � = 0. Recall that these are the
most dangerous disturbances.

3.2.1 Prior results compared: symmetric catenoid The mirror-symmetric catenoid β = 0 has bound-
ing radii R1 = R2 ≡ R, contact-angles α1 = α2 ≡ α and critical parameter Mc(c, 0; 0) = 2/c2. Given the
critical parameter Mc, the stability limit for the pin–pin disturbance follows immediately from (2.24,
2.25); c = √

2/π for unconstrained and 1/
√

2π for constrained stability, respectively. Erle et al. (1970)
report stability limits for the same problem in terms of the slenderness; ΛE

u = 0.662 and ΛE
c = 0.472

for unconstrained and constrained stability, respectively. Our stability bounds are reported in Table 2,
Λu = 0.660 and Λc = 0.476. Note that our stability results differs from Erle et al. (1970) only at the
third decimal. Hence, we have shown that our bounding method produces sharp results in this case, as
witnessed by the 0.01% error in the critical slenderness. Table 2 summarizes the stability limits for the
symmetric catenoid using both the parameter c and the slenderness Λ ≡ L/2R.

3.2.2 Remarks As we have shown, our method is sharp, being able to reproduce the well-known sta-
bility limits for the symmetric catenoid subject to pin–pin disturbances (Erle et al., 1970). We also report
stability limits to disturbances with mobile contact-lines at one (pin–free) or both (free–free) solid sup-
ports. As indicated, we are unable to find a bound for the symmetric catenoid with mobile contact-lines
(free–free) that gives a sufficient condition for stability. This result is perhaps not surprising, considering
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12 of 17 J. B. BOSTWICK AND P. H. STEEN

Fig. 3. Catenoid stability diagram for � = 0 in the (c, β) parameter space for pin–pin (PP), pin–free (PF) and free–free (FF)
contact-lines shows nested stability windows for pressure and volume disturbances. Note the different vertical scales in the sub-
figures.

Table 2 Stability limits for the symmetric catenoid β = 0 to pressure and
volume disturbances with � = 0, as measured by the critical parameter c∗

and slenderness Λ∗ for the pin–pin, pin–free and free–free conditions

Pressure (c∗, Λ∗) Volume (c∗, Λ∗)
Pin–pin (0.450158, 0.659991) (0.225078, 0.476238)
Pin–free (0.746505, 0.543297) (0.293174, 0.599919)
Free–free (∞, 0) (0.378667, 0.658232)

that as the contact-line moves along the surface-of-support, volume is constantly allowed to leave the
domain, resulting in the collapse of the catenoid upon itself. There is no physical mechanism to resist
collapse. For the constrained case, our computation reveals stability for c > c∗ = 0.37886, which coin-
cides with a contact-angle α > α∗ = 29.91◦. Here the volume conservation condition is relatively sta-
bilizing and acts like a restoring force to the contact-line motion. More generally, Table 2 shows that
volume disturbances are less dangerous than pressure disturbances for every contact-line condition we
consider here.

With regard to the contact-line boundary conditions, according to our bounds, Table 2 shows the
pin–pin disturbance is relatively stable to the pin–free disturbance and the pin–free disturbance is rel-
atively stable to the free–free disturbance. Figure 3 shows the associated nesting of stability windows.
This implies that a capillary surface that is stable to free–free disturbances is also stable to pin–free and
pin–pin disturbances. When viewed in the variational sense, constraints tend to stabilize by restricting
the class of allowable solutions, as is the case with the pinned contact-line. The same reasoning applies
to the volume (constrained) and pressure (unconstrained) disturbances. To summarize, the unconstrained
(pressure) free–free disturbance is the most dangerous or least stabilizing, while the constrained (vol-
ume) pin–pin contact-line is the most stabilizing. This stands as a principle (Bostwick & Steen, 2015).

3.3 General liquid bridge

We have shown that the bounding method is sharp for the well-known stability limits for the liquid
cylinder and symmetric catenoid with pinned contact lines. In addition, we have extended our analysis
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Fig. 4. Symmetric liquid bridge stability diagram in the length–volume (Λ, V ) space for pin–pin conditions to compare the
bounding technique with computations by Lowry & Steen (1995) (LS) for pressure and volume disturbances.

by computing the stability bounds for the more general asymmetric catenoid with mobile contact lines.
These results are new, as far as we are aware.

Next, we consider the most general liquid bridge of length L and equal bounding radii R1 = R2 = R
to further explore the limits of applicability for the bounding method. We represent the liquid bridge in
the length–volume (Λ, V ) space,

Λ ≡ L

2R
, V ≡

∫ 1/2
−1/2 r2(s)z′(s) ds

R2L
, (3.9)

so as to directly compare with exact results for pin–pin disturbances (Gillette & Dyson, 1971; Lowry &
Steen, 1995; Slobozhanin et al., 1997). Here the bridge length is scaled by the bounding radius R and
volume with that of a cylinder Vcyl = πR2L.

Figure 4 plots the stability diagram in the length–volume (Λ, V ) space for the axisymmetric liquid
bridge with pin–pin boundary conditions to compare the ‘exact’ results with those predicted by the
bounding method. As shown, the bounding method is sharp for slender bridges V < 1, reproducing
the ‘exact’ stability bounds reported by Lowry & Steen (1995). For fat bridges V > 1, we are able to
predict a large portion of the full stable states, but not all of them. In general, one could say that the
bounding method works well for slender bridges. This suggests that the newly reported stability bounds
for the asymmetric catenoid with mobile contact-lines is sharp, as the catenoid is a slender liquid bridge.
Lastly, we report the stability bounds for the symmetric liquid bridge for the pin–free (Fig. 5(a)) and
free–free (Fig. 5(b)) boundary conditions. Note that we are unable to find any region of stability to
constant–pressure disturbances with free–free boundary conditions. These results are new, as far as we
are aware.

3.4 Support geometry

For the more general case of pendular rings k̄ |= 0, the stability limits for the pin–pin disturbance are
unaffected by the support geometry. No such statement can be made for the pin–free or free–free dis-
turbances. However, relative stability for these disturbances can be inferred from the planar k̄ = 0 case.
That is, for a fixed interface shape k, α, the shape on a concave solid support (k̄ < 0) is relatively stable to
that on a planar support (k̄ = 0), which is relatively stable to that on a convex support (k̄ > 0) (cf. Fig. 6).
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(a) (b)

Fig. 5. Symmetric liquid bridge stability diagram for � = 0 in the length–volume (Λ, V ) space for pin–free (a) and free–free (b)
boundary conditions illustrating the stability boundaries for pressure (dashed) and volume (solid) disturbances. No bound was
found to guarantee stability to pressure disturbances.

Fig. 6. Schematic of a liquid bridge with axisymmetric support geometry. For pin–free and free–free disturbances, the concave
support k̄2 < 0 (left) is relatively stable to the planar support k̄2 = 0 (centre), which is relatively stable to the convex support
k̄2 > 0 (right). For pin–pin disturbances, the stability limits are identical.

This result, which is summarized in Bostwick & Steen (2015, Section 3.2.2), follows directly from sev-
eral theorems in Courant & Hilbert (1953) related to spectral monotonicity of self-adjoint operator
equations with free disturbances.

The liquid bridge stability diagrams shown in Fig. 5 for k̄1 = k̄2 = 0 can be viewed as a slice of a
larger parameter space that includes the support curvatures k̄1, k̄2. Relative stability for pin–free distur-
bances follows directly from the 1D homotopy for k̄2; the stability windows widen (shrink) for solid
supports concave k̄2 < 0 (convex k̄2 > 0) to the interface. That is, base states that are stable for pla-
nar supports are also stable for concave supports. For free–free disturbances, relative stability is more
complex as the homotopy from the planar state is 2D k̄1 |= k̄2 |= 0. When both supports are concave,
these base states are relatively stable to the planar supports. However, in situations where one sup-
port is concave and the other convex, no immediate statement can be made with regard to relative
stability.

4. Concluding remarks

We have developed the energy bounding method to find the static stability of the liquid bridge to
disturbances with either (i) pinned or (ii) mobile contact lines. The goal is to provide quick stability
checks on equilibrium solutions. In our method, the second variation of surface energy is manipulated
into a quadratic form, which we bound from below to yield a critical functional. Finally, we utilize
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elementary results from the calculus of variations to generate our stability criteria. We illustrate the
utility of our method by comparing our stability criteria to the Plateau limit for the liquid cylinder
(Plateau, 1863) and the symmetric catenoid with pinned contact lines (Erle et al., 1970). Our method
is sharp for these classic problems. We also report new stability results for the catenoid and most-
general symmetric liquid bridge between parallel plates with mobile contact-lines at one or both solid
supports.

In general, stability calculations involve solving a complicated boundary value problem associated
with the second variation or with computing conjugate points (Howe, 1887; Gillette & Dyson, 1971).
Both of these methods prove to be cumbersome, because they involve direct calculations of the second
variation. Alternative methods, such as the Poincaré–Maddocks theorems, employ tools of bifurcation
theory that allows one to determine stability from families of equilibria, thereby bypassing direct cal-
culation of the second variation (Maddocks, 1987; Lowry & Steen, 1995). The primary deficiency in
the Poincaré–Maddocks method is that one must use continuation from a solution whose stability is
known a priori. The strength of our method is that one does not need to construct a solution to the
boundary value problem associated with the second variation. Only information regarding the equi-
librium surface is required to generate the stability criteria for the pin–pin boundary conditions (2.24,
2.25). For the pin–free and free–free disturbances, we replace a complicated boundary value problem
by a much simpler one which has a standard solution. Although our bounding method is clearly approx-
imate, it can produce sharp bounds and requires very little computational effort, unlike most stability
calculations.

Finally, we reiterate that our method generates sufficient conditions for stability. That is, if the
bounding method criterion is satisfied, then the liquid bridge is stable. However, liquid bridges may
be stable even though the criterion is not satisfied. This is seen in Fig. 4, where the stability envelopes
for the bounding method are contained within the true stability envelopes; for slender V < 1 bridges the
curves are nearly indistinguishable, illustrating the utility of our method. We also note that our method
yields no predictions regarding when a liquid bridge may go unstable.
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