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A spherical drop is constrained by a solid support arranged as a latitudinal belt. This
belt support splits the drop into two deformable spherical caps. The edges of the
support are given by lower and upper latitudes yielding a ‘spherical belt’ of prescribed
extent and position: a two-parameter family of constraints. This is a belt-constrained
Rayleigh drop. In this paper we study the linear oscillations of the two coupled
spherical-cap surfaces in the inviscid case, and the viscous case is studied in Part
2 (Bostwick & Steen, J. Fluid Mech., vol. 714, 2013, pp. 336–360), restricting to
deformations symmetric about the axis of constraint symmetry. The integro-differential
boundary-value problem governing the interface deformation is formulated as a
functional eigenvalue problem on linear operators and reduced to a truncated set of
algebraic equations using a Rayleigh–Ritz procedure on a constrained function space.
This formalism allows mode shapes with different contact angles at the edges of the
solid support, as observed in experiment, and readily generalizes to accommodate
viscous motions (Part 2). Eigenvalues are mapped in the plane of constraints to reveal
where near-multiplicities occur. The full problem is then approximated as two coupled
harmonic oscillators by introducing a volume-exchange constraint. The approximation
yields eigenvalue crossings and allows post-identification of mass and spring constants
for the oscillators.
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1. Introduction
Liquid drops held by surface tension are known to assume spherical equilibrium

shapes. When perturbed, the inviscid drop will oscillate at small amplitude with the
characteristic frequency and mode shape given by Lord Rayleigh (1879). The Rayleigh
oscillating drop, of undisturbed radius R, which will be alternatively referred to as the
‘unconstrained oscillator’, has frequencies ordered in a discrete spectrum

ω2
n =

n(n− 1)(n+ 1)(n+ 2)
(n+ 1)ρi + nρe

σ

R3
, n= 0, 1, . . . , (1.1)
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where σ is the surface tension and ρi and ρe are the densities of the interior and
exterior fluids, respectively. Corresponding mode shapes have radial deformations that
are given by the Legendre polynomials, Pn(cos θ). These theoretical results have been
verified experimentally for immiscible drops by Trinh & Wang (1982) and for free
drops in microgravity by Wang, Anilkumar & Lee (1996).

The Rayleigh problem has been extended by Strani & Sabetta (1984, 1988) to
vibrations of a constrained spherical drop, where the constraint forms a solid support
of spherical bowl shape. In this case, the undisturbed state is a single spherical cap.
We shall refer to this problem as the ‘Strani oscillator’. Strani oscillator predictions
have also compared favourably to experiment (Bisch, Lasek & Rodot 1982; Trinh,
Zwern & Wang 1982; Rodot & Bisch 1984). We extend to two coupled spherical
caps. A new feature is that the free-surface domains are disconnected. In contrast to
the Strani approach, ours accommodates two disconnected domains and is immediately
generalizable to three or more domains. From the applied side, our study is motivated
by the growing interest in the dynamics of capillary systems.

The motions of constrained drops are of interest in a number of emerging
applications. Examples include drop atomization (James, Smith & Glezer 2003a;
James et al. 2003b; Vukasinovic, Smith & Glezer 2007), switchable electronically
controlled capillary adhesion (Vogel, Ehrhard & Steen 2005; Vogel & Steen 2010)
and optical microlens devices (Lopez, Lee & Hirsa 2005; Lopez & Hirsa 2008; Olles
et al. 2011). The last two are rooted in the idea of the capillary switch (Bhandar &
Steen 2005; Hirsa et al. 2005; Theisen et al. 2007; Malouin, Vogel & Hirsa 2010).
The capillary switch is composed of two disjoint interfaces which are allowed to
communicate (coupled) through the underlying fluid, much like the communication
that occurs for the belted-sphere. Of interest for coating processes and microfluidic
applications is the control of droplet motion induced by means of a harmonically
driven substrate (Daniel et al. 2004; Noblin, Buguin & Brochard-Wyart 2004, 2005;
Noblin, Kofman & Celestini 2009; Brunet, Eggers & Deegan 2009). In these studies, a
deformable drop is constrained by the substrate on which the droplet rests.

In this paper, we study the linear stability of two coupled spherical-cap surfaces
made by constraining a spherical drop with a solid support (see figure 1 below).
The solid support conforms to the spherical surface and extends between two
latitudes, θ2 6 θ 6 θ1, forming a ‘spherical belt’. The resulting free surface consists
of two spherical caps (disconnected) which are coupled through the liquid beneath
(connected). The interfaces are pinned at the edges of the belt and their motion is
governed by integro-differential equations. The perspective is set by the question: To
what extent can the resultant motions be understood as those of coupled harmonic
oscillators? In the inviscid case, the unconstrained limit recovers the Rayleigh drop
problem.

In the constrained problem, the interface is the union of a surface of support and
two independent free surfaces, which are coupled by the underlying pressure field
through the incompressibility condition. The two surfaces oscillate with a frequency
that can be sensitive to the extent and position of the belt constraint, depending
on the values (θ1, θ2). Near-multiplicities occur when two different modes oscillate
at nearly the same frequency. When there are near-multiplicities, the system is
prone to significant nonlinear interactions (Tsamopoulos & Brown 1983; Hammack
& Henderson 1993). Hence, knowing where such near-multiplicities occur in the
plane of constraints is important to applications. We identify these near-crossings, or
‘pinch points’, in a plot of frequency against constraint. Alternatively, pinch points are
observed to correlate with the volume displaced by one surface of the two pinching
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FIGURE 1. (a) Definition sketch in two-dimensional polar view and (b) sample deformation
in three-dimensional perspective view. Disturbances η1 and η2 are constrained by the belt
support extending over ζ1 ≡ cos θ1 6 cos θ 6 ζ2 ≡ cos θ2. Lengths ζ are scaled by R while
lengths η are left unscaled.

modes. This observation provides a physical characterization of the near-multiplicities
and a method for identifying them.

Finally, motivated by the volume-exchange observations, we introduce the
approximation of two Strani-like oscillators. Each oscillator is characterized by the
volume displaced. The coupling between these linear oscillators occurs via an average
pressure arising as the Lagrange multiplier for the displaced-volume constraint. The
coupled Strani-like oscillator approximation is compared to the exact solution and is
found to be an effective tool for identifying frequency crossings. Finally, solutions
of the coupled Strani-like oscillator operator equations can be reduced to finite-
dimensional mass–spring oscillators by identification of effective-mass and -spring
constants. This is a post-processing step.

To study drop motion in the absence of base-state symmetry, one generally turns to
a computationally based method. Finite-element methods have been employed to study
the finite-amplitude natural oscillations of pendant drops (Basaran & DePaoli 1994),
as well as the forced oscillations of supported drops with application to drop ejection
(Wilkes & Basaran 2001) and hysteretic response (Wilkes & Basaran 1999), which
was reported experimentally by DePaoli et al. (1995). More recently, Ramalingam &
Basaran (2010) have analysed the forced oscillations of the double droplet system
(DDS) by various types of excitation. In another numerical study, James et al. (2003a)
developed a Navier–Stokes solver to capture the drop ejection phenomenon of forced
sessile drops.

A number of papers consider motions of drops constrained by either planar or
spherical-like supports. For drops in contact with a planar support, Gañan & Barerro
(1990) focus on the pinned contact-line disturbance. More recently, attention has been
paid to more general wetting conditions and dynamics of the three-phase contact
line (Lyubimov, Lyubimova & Shklyaev 2004, 2006; Fayzrakhmanova & Straube
2009). Exploiting symmetry, Lyubimov et al. (2006) have investigated the free and
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forced axisymmetric oscillations of an inviscid hemispherical drop, whose contact-line
motion is prescribed by a linearized Hocking condition relating the contact angle
to the contact-line speed. A similar analysis is given for asymmetric disturbances
by Lyubimov et al. (2004). Fayzrakhmanova & Straube (2009) implement the full
Hocking condition via numerical integration to study the stick–slip dynamics and
frequency response caused by contact-angle hysteresis of the forced hemispherical
drop.

For drops in contact with a spherical-bowl constraint, the works of Strani &
Sabetta (1984, 1988), Bauer & Chiba (2004) and Theisen et al. (2007) are most
relevant to this study. Strani & Sabetta (1984) consider the linear oscillations of
an inviscid drop in contact with a ‘spherical bowl’ by using a Green’s function
approach to derive an integral eigenvalue equation, which is then reduced to a set
of linear algebraic equations by a Legendre series expansion. They report a low-
frequency mode, not present for isolated drops. Furthermore, the eigenfrequencies
are shown to grow as the spherical-bowl support is increased from the single
point of contact to the fully enclosed sphere. Strani & Sabetta (1988) extend
their inviscid analysis to the viscous case. Our study recovers the results of these
studies. Bauer & Chiba (2004, 2005) have also investigated spherical ‘bowl-like’
constraints for captured inviscid and viscous drops by approximating finite-sized
constraints with a large number of point-wise constraints. Theisen et al. (2007)
study moderate-amplitude coupled oscillations of non-deformable spherical caps – two
drops pinned on circle of contacts at either end of a tube – and report centre-of-
mass motions. When compared to their experiments, the spherical-cap approximation
is reasonably accurate for these low-frequency drop–drop oscillations. However, for
certain initial disturbances, higher-order mode shapes are excited. To model these
higher-order mode shapes, Bostwick & Steen (2009) analysed the linear oscillations
of a deformable drop constrained by a latitudinal circle of contact and report a shift
in the characteristic frequencies compared to the unconstrained drop, including the
low-frequency n = 1 mode. Their analysis utilizes a ‘Rayleigh–Ritz procedure and
assumes continuous derivatives (contact angles) as well as a continuous displacement
across the circle-of-contact constraint. Observations from droplet–droplet experiments
suggest discontinuous contact angles, however (see Bostwick & Steen 2009, figure 10).
In the formulation in this paper, derivatives of displacement need not be continuous
across the belt constraint.

We begin this paper by defining the linearized field equations and relevant
boundary conditions from which the equation of motion for the drop interface is
derived and formulated as an eigenvalue problem on linear operators. The operator
eigenvalue equation is reduced to a truncated set of linear algebraic equations using
a Rayleigh–Ritz procedure on a constrained function space. The eigenvalues/modes,
which depend upon relative densities and the geometry of the constraint, are then
computed. We compare these solutions to various approximations in the appropriate
limits. Next, the problem is reformulated as two coupled oscillators using the
exchange volume as an embedding parameter. This reduction is particularly effective
in identifying eigenvalue near-multiplicities in the plane of constraints, which are
found to correlate with the exchange volume. We conclude with some remarks on the
computational results.

2. Mathematical formulation
Consider an unperturbed spherical droplet of radius R, constrained by a spherical

belt given through the polar angle θ2 6 θ 6 θ1 in spherical coordinates (r, θ), as shown
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in the definition sketch (figure 1). The drop interface is disturbed by time-dependent
free-surface perturbations, η1(θ, t) and η2(θ, t), which are assumed to be axisymmetric
and small. No domain perturbation is needed for linear problems, thus the domain is
the combination of the regions internal to and external to the static droplet:

Di ≡ {(r, θ) | 0< r 6 R, 0 6 θ 6 π}, (2.1a)
De ≡ {(r, θ) |,R< r <∞, 0 6 θ 6 π}. (2.1b)

The interface separating the interior and exterior fluids (internal boundary) is given
by the union of two free surfaces and one surface of support:

∂Df
1 ≡ {(r, θ) | r = R, θ1 6 θ 6 π}, (2.2a)

∂Df
2 ≡ {(r, θ) | r = R, 0 6 θ 6 θ2}, (2.2b)

∂Ds ≡ {(r, θ) | r = R, θ2 6 θ 6 θ1}, (2.2c)

∂D≡ ∂Df
1 ∪ ∂Df

2 ∪ ∂Ds. (2.2d)

The interior and exterior fluids are assumed to be inviscid, incompressible and
immiscible. The effect of gravity is neglected.

2.1. Field equations
The velocity field for this irrotational flow can be written as u = −∇Ψ , where the
velocity potential Ψ satisfies Laplace’s equation,

∇2Ψ = ∂

∂r

(
r2 ∂Ψ

∂r

)
+ 1

sin θ
∂

∂θ

(
sin θ

∂Ψ

∂θ

)
= 0 [Di,De], (2.3)

in both interior (i) and exterior (e) sub-domains, as required by fluid incompressibility.
The pressure field for small interface disturbances is given by the linearized Bernoulli
equation,

P= ρ ∂Ψ
∂t

[Di,De]. (2.4)

Henceforth, to distinguish between sub-domains, subscripts will be used to denote
material properties and superscripts for field quantities, such as density ρi,e and
pressure Pi,e, respectively.

2.2. Boundary/integral conditions
The no-penetration condition requires a vanishing radial velocity at the surface of
support,

∂Ψ

∂r
= 0 [∂Ds], (2.5)

whereas the linearized kinematic condition relates the normal velocities of the fluid
and free-surface deformation there,

∂Ψ

∂r
=−∂η1,2

∂t
[∂Df

1, ∂Df
2]. (2.6)

The difference in pressures across the interface is balanced by the surface tension σ
times the linearized mean curvature of the disturbed surface,

Pi − Pe =− σ
R2

(
1

sin θ
∂

∂θ

(
sin θ

∂η1,2

∂θ

)
+ 2η1,2

)
[∂Df

1, ∂Df
2]. (2.7)
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Lastly, the integral form of the incompressibility condition (volume conservation)
constrains the free-surface disturbances to satisfy∫ π

θ1

η1(θ, t) sin θ dθ +
∫ θ2

0
η2(θ, t) sin θ dθ = 0. (2.8)

Note that (2.3)–(2.8) are the linearized disturbance equations.

2.3. Normal-mode reduction
Normal modes

Ψ (r, θ, t)= φ(r, x)eiωt, P(r, θ, t)= p(r, x)eiωt, η1,2(θ, t)= y1,2(x)eiωt, (2.9)

with x ≡ cos θ , are applied to the governing hydrodynamic equations (2.3)–(2.8) to
yield the following boundary-value problem on the reduced functions φ and y1, y2:

∇2φ = ∂

∂r

(
r2 ∂φ

∂r

)
+ ∂

∂x

(
(1− x2)

∂φ

∂x

)
= 0 [Di,De], (2.10a)

∂φ

∂r
= 0 [∂Ds], (2.10b)

∂φ

∂r
=−iωy1,2(x) [∂Df

1, ∂Df
2], (2.10c)

p= iωρφ [Di,De], (2.10d)

pi − pe =− σ
R2

(
∂

∂x

(
(1− x2)

∂y1,2

∂x

)
+ 2y1,2

)
[∂Df

1, ∂Df
2], (2.10e)∫ ζ1

−1
y1(x) dx+

∫ 1

ζ2

y2(x) dx= 0. (2.10f )

Equations (2.10) define an eigenvalue problem for the oscillation frequency ω. Here
the shape parameters

ζ1 ≡ cos(θ1), ζ2 ≡ cos(θ2), (2.11)

define the geometry of the spherical-belt constraint.

3. Reduction to an operator equation
The eigenvalue problem (2.10) is reduced to an integro-differential equation in this

section. The resulting equation governs the motion of the interface and is formulated
as an eigenvalue equation on linear operators.

3.1. Velocity potential solution
A general solution to the boundary-value problem (2.10a)–(2.10c) for the velocity
potential φ is sought. To begin, consider boundary conditions (2.10b) and (2.10c) as
a single boundary condition on the interface (2.2d) and restrict ‘allowable’ interface
disturbances to have the form

y(x)=


y1(x), −1 6 x 6 ζ1,

0, ζ1 6 x 6 ζ2,

y2(x), ζ2 6 x 6 1.
(3.1)
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The solution to (2.10a)–(2.10c) is then given by (e.g. Arfken & Weber 2001)

φi(r, x)=−iωR
∞∑

k=1

dk

k

( r

R

)k
Pk(x), (3.2a)

φe(r, x)= iωR
∞∑

k=1

dk

k + 1

(
R

r

)k+1

Pk(x), (3.2b)

where

dk ≡ (y,Pk)

(Pk,Pk)
. (3.3)

Here Pk is the Legendre polynomial of degree k and (f , g) is the inner product of
square integrable functions on the domain x ∈ (−1, 1),

(f , g)=
∫ 1

−1
f (x)g(x) dx. (3.4)

3.2. Integro-differential equation
We now scale interface deformation y, y≡ Ry∗, and drop the ∗ for notational simplicity
in what follows. The balance of capillary pressure (2.10e) and inertial pressure (2.10d),
evaluated at the drop surface using the velocity potential solution (3.2), generates an
integro-differential equation governing allowable deformations,

(1− x2)yxx − 2xyx + 2y=−λ2

[ ∞∑
k=1

(
1
k
+ ρe

ρi

1
k + 1

)
dkPk(x)

]
. (3.5)

Here λ2 ≡ ρiω
2R3/σ is the scaled frequency. The interface deformation y must satisfy

the following boundary/integral conditions:

y(±1)− bounded, (3.6a)∫ 1

−1
y(x) dx= 0, (3.6b)

y(ζ1 6 x 6 ζ2)= 0. (3.6c)

Equation (3.6a) is a necessary condition to guarantee that the interface deformation
is physical, while (3.6b) follows directly from the conservation-of-volume constraint
(2.10f ). Lastly, the no-penetration condition on the surface of support is satisfied by
(3.6c).

3.3. Operator equation
To solve the eigenvalue problem (3.5) and (3.6), it is instructive to formulate the
integro-differential equation as an operator equation

λ2M [y]+ K [y]= 0, (3.7)

where

M

[
y; ρe

ρi

]
≡
∞∑

k=1

(
1
k
+ ρe

ρi

1
k + 1

)(
2k + 1

2

)(∫ 1

−1
y Pk dx

)
Pk(x) (3.8)



Coupled oscillations of deformable spherical-cap droplets. Part 1 319

is a positive-definite integral operator, the density ratio ρe/ρi is a material parameter
and

K [y]≡ (1− x2)
d2y

dx2
− 2x

dy

dx
+ 2y (3.9)

is a self-adjoint differential operator. Putting y = Pn(x) in (3.7) recovers the spectrum
(1.1).

4. Solution of the operator equation
The frequency spectrum and corresponding mode shapes of the eigenvalue

equation (3.7) are computed using the variational procedure of Rayleigh–Ritz. The
necessary input to such a procedure is a predetermined function space, which is
constructed to satisfy the no-penetration condition on the surface of support and
to couple the independent free-surface perturbations, y1 and y2, according to the
incompressibility condition (2.10f ). Equivalently, the two free surfaces are allowed to
‘communicate’ across the spherical-belt constraint through the underlying fluid, subject
to the conservation-of-volume constraint. The eigenfrequencies/modes are computed
using standard numerical routines from a truncated set of linear algebraic equations,
which results from application of the variational procedure.

4.1. The Rayleigh–Ritz method
The eigenvalue equation (3.7) is posed as a variational one, using Rayleigh–Ritz
formalism, whereby the eigenvalues are computed by minimizing the following
functional:

λ2 =min
(−K[y], y)

(M[y], y)
, y ∈ S, (4.1)

over a given function space S. A similar method has been used in the context of
constrained cylindrical interfaces by Bostwick & Steen (2010). Some details of the
theory will be presented here, while a discussion of this classical approach can be
found in many sources (e.g. Segel 1987).

Given n orthonormal basis functions ψi(x), which span an approximation to the
function space S, the variational problem is reduced to a set of linear algebraic
equations from which the eigenvalues/vectors are computed. A solution is constructed
as a linear combination of the orthonormal basis functions,

y(x)=
n∑

i=1

aiψi(x). (4.2)

Equation (4.2) is applied to the functional (4.1) and minimized with respect to the
coefficients ai. The resulting set of linear equations is written as

− λ2
n∑

i=1

Mijai =
n∑

i=1

Kijai, j= 1, 2, . . . , (4.3)

with

Mij ≡
∫ 1

−1
M[ψi]ψj dx, Kij ≡

∫ 1

−1
K[ψi]ψj dx, i, j= 1, 2, . . . . (4.4)
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Equation (4.3) is solved using standard numerical techniques. Given an eigenvalue
λ2(p) and eigenvector a(p)i , the corresponding eigenfunction is

y(p)(x)=
n∑

i=1

a(p)i ψi(x). (4.5)

4.2. Constrained function space
To use the Rayleigh–Ritz procedure on (3.7), a function space that satisfies (3.6) is
constructed. To begin, consider a piecewise test function

f (x)=


f1(x), −1 6 x 6 ζ1,

0, ζ1 6 x 6 ζ2,

f2(x), ζ2 6 x 6 1,
(4.6)

subject to the following conditions:∫ ζ1

−1
f1(x) dx+

∫ 1

ζ2

f2(x) dx= 0, (4.7a)

f1(ζ1)= 0, (4.7b)
f2(ζ2)= 0. (4.7c)

By construction, the test function (4.6) satisfies (3.6c) and therefore the no-
penetration condition (2.10b). The functions f1(x) and f2(x) are the deformations of the
respective free surfaces and are independent, except for coupling via the conservation-
of-volume constraint (4.7a). The perturbation is single-valued, which dictates that its
amplitude must vanish on the boundaries of the spherical-belt constraint (4.7b) and
(4.7c). To construct functions that satisfy (4.7), assume the free-surface perturbations
take the form

f1(x)=
N∑

k=0

bkPk(x), f2(x)=
N∑

k=0

ckPk(x). (4.8)

Substitution of (4.8) into (4.7) gives

b0

∫ ζ1

−1
P0 dx+ · · · + bN

∫ ζ1

−1
PN dx+ · · · + cN

∫ 1

ζ2

PN dx= 0, (4.9a)

b0P0(ζ1)+ b1P1(ζ1)+ · · · + bNPN(ζ1)= 0, (4.9b)
c0P0(ζ2)+ c1P1(ζ2)+ · · · + cNPN(ζ2)= 0, (4.9c)

which is a set of three algebraic equations on the coefficients bk and ck
∫ ζ1

−1
P0(x)dx · · ·

∫ ζ1

−1
PN(x)dx

∫ 1

ζ2

P0(x)dx · · ·
∫ 1

ζ2

PN(x)dx

P0(ζ1) · · · PN(ζ1) 0 · · · 0
0 · · · 0 P0(ζ2) · · · PN(ζ2)


[
b
c

]
= [0]. (4.10)

There are 2(N+1)−3= 2N−1 linearly independent coefficient vectors that solve (4.10)
and equivalently 2N − 1 linearly independent basis functions ξk(x) which solve (4.7).
The set of linearly independent functions is made orthonormal using Gram–Schmidt
orthogonalization and a computer algebra package. The orthonormal basis functions
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inherit the properties of the linearly independent basis functions, such as identically
satisfying the boundary/integral conditions (3.6). Finally, a solution series, which spans
the constrained function space, is constructed using the orthonormal basis functions
ψk(x) as

y(x)=
2N−1∑
k=1

akψk(x). (4.11)

Finite N means that the function space and resulting solutions are approximate.
Nevertheless, for ease of reference, we shall refer to well-converged solutions (4.11) as
‘exact’.

5. Results
The solution series (4.11) is used to reduce the operator (3.7), via a Rayleigh–Ritz

procedure, to a standard algebraic eigenvalue problem. The eigenfrequencies/modes,
as they depend upon ρe/ρi, ζ1 and ζ2, are then computed from (4.3). Setting N = 7
for computation shows relative eigenvalue convergence to within 0.1 % for the results
presented here. Equivalently, 13 terms are used in the solution series (4.11) with a
resolution of eight terms on each free surface.

The Legendre polynomials on [−1, 1] are known to span a function space suitable
for capturing the Rayleigh and Strani solutions of the operator equation (3.7). With
two interfaces, one must be careful to construct the solutions from an appropriately
generalized space. It is convenient to report our solutions (4.11) of (3.7), denoted
EX, as a contrast to those obtained using different spaces (e.g. different bases). The
solutions on different spaces may be thought of as different approximate solutions
(e.g. different truncations) having restricted degrees of freedom. A most severe
approximation restricts disturbances to spherical-cap interfaces (Theisen et al. 2007),
henceforth referred to as T07. These have a single degree of freedom (per interface)
and constitute a one-parameter family of shapes. Applying Newton’s law to the centre
of mass of two coupled spherical caps leads to a second-order ordinary differential
equation for the motion. A different restriction (Bostwick & Steen 2009), possible
when the spherical-belt width is limited to a circle of contact, restricts to smooth
surfaces (continuous derivatives across the circle of contact), which we denote B09.
This restriction, in effect, couples the contact angles across the circle of contact. We
start by comparing EX to the continuous B09 solutions, which are a limiting case
of EX, and then to the ‘spherical-cap’ T07 solutions, which are not a sub-case of
EX. Finally, we motivate and construct a two-oscillator approximation of the exact
problem where the two fully deformable interfaces are coupled linearly. The utility of
this approximation is demonstrated.

5.1. Pinned circle-of-contact (ζ1 = ζ2) approximation
Bostwick & Steen (2009) solve the pinned circle-of-contact problem by assuming a
single smooth free surface. Solutions necessarily have a continuous derivative across
the circle of contact. Figure 2 plots the frequency λ2 against pin location ζ1 for
ρe/ρi = 0. Only the top half of the sphere (0 6 ζ1 6 1) need be plotted since the
frequencies are symmetric with respect to the pin location, λ2

n(ζ )= λ2
n(−ζ ). The figure

shows the B09 frequencies are always larger than the EX frequencies with equality
achieved at local minima (cf. figure 2b). The values of the local minima correspond
to the ‘unconstrained’ Rayleigh frequencies (1.1) with mode number n. These minima
occur at the ‘nodes’ of the corresponding unconstrained mode shapes, referred to as
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FIGURE 2. Frequency (λ2) comparison between the discontinuous (EX), continuous (B09)
(Bostwick & Steen 2009) and spherical-cap (T07) (Theisen et al. 2007) solutions for a drop
pinned on a circle of contact (ζ1 = ζ2) with mode number: (a) n= 1; (b) n= 2, 3.

‘natural’ pin locations. As seen from the computed mode shapes of figure 3(a,c), the
equator is a natural pin location for the odd mode shapes n = 1, 3. However, for even
modes, the equator is an anti-node. These give local maxima of figure 2. Moreover, the
EX modes exhibit discontinuous contact angles, disallowed by the B09 function space.
For example, consider the n = 2 mode shape shown in figure 3(b). The conclusion is
that the B09 function space is too narrow as a model of a droplet pinned at a contact
circle. Recently, Prosperetti (2012) has solved the pinned circle-of-contact problem
using expansions of the free surface and velocity potential in spherical harmonics.
In this approach, the singularity in the curvature must be explicitly accounted for in
cases where the derivative is not continuous. Prosperetti’s frequencies are in excellent
agreement with the EX frequencies.

5.2. Spherical-cap approximation
A different approximation (T07) arises when one restricts to centre-of-mass
oscillations of a droplet pinned along a circle of contact (Theisen et al. 2007). T07
restrict to shapes that are pieces of spheres to analyse the dynamics of the centre
of mass of two droplets coupled through a tube. In the limit of zero tube length,
their problem is identical to ours. A snapshot of the corresponding experiments clearly
shows that there are different contact angles across the constraint (Bostwick & Steen
2009, figure 10a). Figure 2(a) compares T07 with the n = 1 frequency from the B09
and EX solutions. The qualitative behaviour is similar. There is a single maximum
and the frequency is zero at ζ1 = 0 and ζ1 = 1, but B09 most closely resembles the
EX solution. B09 has uniformly higher frequencies, which can be directly attributed to
the overly constrained function space. Note that differences between approximate and
exact frequencies are exaggerated in the plot owing to the use of λ2 as ordinate.

In general, the behaviour of the n = 1 EX mode shape, shown in figures 4(a) and
5(a), qualitatively resembles that of spherical-cap shapes and persists for finite-sized
spherical-belt constraints. The flow induced by the n = 1 disturbance is relatively
uniform, as evident from the streamlines plotted in figures 3(d)–5(d). In contrast, the
n > 1 modes of figures 4 and 5 show richer behaviour, illustrating different ways
that the two free surfaces communicate across the constraint. For example, the mode
shapes of figures 4(b,c) and 5(b) appear to behave like a spherical-cap disturbance
on one free surface and a higher-order shape on the other, which is consistent with
qualitative experimental observations. This suggests that mode shapes may be excited
where one free surface is relatively ‘inactive’ compared to the second free surface,
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(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

FIGURE 3. Eigenmodes (a,d,g) n = 1, (b,e,h) n = 2, and (c,f,i) n = 3, illustrating the (a,b,c)
disturbed interface, (d,e,f ) streamlines and (g,h,i) velocity potential (pressure) for a drop
constrained by a pinned circle of contact at the equator (ζ1 = ζ2 = 0). Here the dashed (dotted)
curves of (d,e,f ) denote points of zero horizontal (vertical) velocity.

as exhibited by the velocity potential (pressure) shown in figure 4(i). Alternatively,
figure 5(c) demonstrates that higher-order shapes can occur on both free surfaces.
As the mode number n increases, the pressure fields are generally more localized
around the free surfaces (cf. figures 3h,i–5h,i) and the flow becomes more complex
(cf. figures 3e,f –5e,f ). Lastly, we note that the pressure fields are relatively uniform
within the fluid domain bounded by the spherical-belt support. Later, we shall use this
observation in formulating the coupled-oscillator interpretation. For reference, figure 7
in Part 2 (Bostwick & Steen 2013) plots the mode shapes and streamlines for viscous
motions using the same geometry as figure 4.

5.3. Spectrum dependence on geometry
Eigenfrequency is expected to increase with the extent of constraint based on
experience with spectral problems. This expectation is realized in figure 6 where
the first five frequencies are plotted as a function of the second pin location ζ2, with
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FIGURE 4. Eigenmodes (a,d,g) n = 1, (b,e,h) n = 2, and (c,f,i) n = 3, illustrating the (a,b,c)
disturbed interface, (d,e,f ) streamlines and (g,h,i) velocity potential (pressure) for a drop
constrained by a spherical belt with ζ1 = −0.7, ζ2 = 0. Here the dashed (dotted) curves of
(d,e,f ) denote points of zero horizontal (vertical) velocity.

the first pin location ζ1 held fixed (ζ2 > ζ1 = 0.4). Indeed, the frequency change is
monotonic with constraint size but there are regions of slow and rapid growth. Slow
growth is seen as a plateau or ‘dead zone’ over which an increase in belt size has no
substantial influence on the frequency. Occasionally, in contrast, rapid growth occurs
over a small increase in constraint extent.

In the dead zones, no appreciable change in mode shape is observed. For example,
figure 7(a,b) shows only a slight variation in the mode shape between points A and
B despite an eight-fold increase in constraint size (0.4/0.05). On the other hand, from
C to D (cf. figure 7c,d), by counting the number of nodes on that surface, the mode
shape of the ζ1 surface (below) changes from n = 2 (C) to n = 3(D). The ‘Strani
oscillator limit’, defined by ζ2 → 1 in figure 6, corresponds to asymptotic lines of
constant λ2 whose numerical value is given by the corresponding eigenfrequency for
the Strani oscillator of size 1− ζ1. A distinguishing feature of these asymptotes is that
they connect dead zones of different mode numbers. For example, as seen in figure 6,
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FIGURE 5. Eigenmodes (a,d,g) n = 1, (b,e,h) n = 2, and (c,f,i) n = 3, illustrating the (a,b,c)
disturbed interface, (d,e,f ) streamlines and (g,h,i) velocity potential (pressure) for a drop
constrained by a spherical belt with ζ1 = −0.6, ζ2 = 0.8. Here the dashed (dotted) curves of
(d,e,f ) denote points of zero horizontal (vertical) velocity.
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FIGURE 6. Frequency λ2 against second pin location ζ2 for fixed ζ1 = 0.4, which shows
regions of slow (‘dead’) (A→ B) and rapid (C→ D) growth as the size of spherical-belt
constraint increases, as well as the ‘pinch points’ between the n = 2, 3 (C,F) and n = 3, 4
(D,E) curves.
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 7. Mode shapes at: (a) point A (ζ1 = 0.4, ζ2 = 0.45); (b) point B (ζ1 = 0.4, ζ2 =
0.85); (c) point C (ζ1 = 0.4, ζ2 = 0.9); (d) point D (ζ1 = 0.4, ζ2 = 0.95); (e) point E
(ζ1 = 0.4, ζ2 = 0.95); and (f ) point F (ζ1 = 0.4, ζ2 = 0.9) of figure 6.

the dead zone between A and B has frequency corresponding to the Strani mode n= 2,
even though it may have three nodal points (shape A). Note also that more than one
dead zone may appear for fixed n, as seen along the n= 5 curve.

The dead zones can be understood as suppression of nodes. As seen in the
progression from shape A to B to D in figure 7(a,b,d), one node shifts from the
top surface (A) to the bottom surface (D). Over the dead zone (AB), the constraint
suppresses that node. That is, the n = 3 mode shape varies little over the dead zone.
Stated differently, over the dead zone one geometry differs little from the next.

5.4. Algebraic and geometric identifications: the nodal index
A spectral problem whose domain geometry has parametric dependence often exhibits
‘wavenumber selection’. For convective instabilities, for example, the geometry selects
the wavenumber of the most unstable mode and certain cross-over geometries have
two or more unstable modes (Charlson & Sani 1970; Beck 1972). In much the
same way, for harmonics in free-surface problems, there can be cross-over geometries
where two or more modes exhibit the same frequency or, in our case, nearly the
same frequency. Before these results are presented, a short discussion concerning the
algebraic/geometric identification of modes is necessary, as relevant to identifying
modes in experiment.

For the Rayleigh problem, the frequency (algebraic) and shape (geometric) identities
of modes coincide. That is, frequency ωn in (1.1) corresponds to mode shape Pn(cos θ)
which exhibits n surface nodes on the half-circle. For the Strani oscillator, frequency
of a mode and the count of surfaces nodes also coincide. In fact, modal labels
are uniquely inherited from the Rayleigh problem by tracing back, i.e. via the limit
ζ1→ 1. In contrast, for our problem with two parameters, the path back to Rayleigh is
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(a) (b)

FIGURE 8. Nodal index ni is defined by extending the disturbance to the full domain
0 6 θ 6 π , illustrated for (a) a mode where ni = 3, the same as the geometric index ng = 3
obtained by counting nodes (circled) over both free surfaces. (b) Displays a mode where the
nodal index ni = 1 is one greater (circled) than the geometric index ng = 0.

not unique and the labels are not conserved. Frequency and shape identities can differ.
To illustrate, mode shapes A, B and D in figure 7(a,b,d) have algebraic identity n = 3
by association with eigenvalue λ3. Stated differently, mode n = 3 has the third highest
frequency in the spectral ordering over the entire range of ζ2 constraint (figure 6). On
the other hand, by counting the surface nodes on both surfaces one associates the
geometric identity ng = 3 for A, ng = 2 for B and back to ng = 3 for D. We call ng the
‘geometric index’. It gives the number of nodes one would observe in experiment.

It turns out that the geometric index ng can be related to the algebraic index n.
The idea is to imagine the disturbance as if on the Rayleigh-problem domain and ask
what is the fewest number of nodes that must be added to have a smooth disturbance.
The total count of nodes on this extension ni, which we shall refer to as the ‘nodal
index’, simply relates to the algebraic index n, ni = n. The nodal index is illustrated
on the completed domain for two different extensions in figure 8. In figure 8(a),
the disturbance can be extended smoothly to the Rayleigh domain without adding a
node. Thus, the nodal index ni = 3 is identical to the geometric index ng = 3. In
contrast, for the disturbance shown in figure 8(b), at least one node must be added
to have a smooth extended surface. Hence, the nodal index ni = 1 is one greater than
the geometric index ng = 0. The nodal index for all three modes A, B and D, in
figure 7(a,b,d) is ni = n= 3. For reference, table 1 provides the index counts (n, ng, ni)
for the modes shown in figure 7. In summary, the geometric index ng can differ by one
from the algebraic identity n, while the nodal index respects ni = n.

5.5. Multiplicity maps and the exchange volume

Multiplicities in the solutions to the linear problem can occur at frequency ‘crossings’.
At these geometries, two different mode shapes have the same frequency. Near-
multiplicities occur at near-crossings. For precisely locating near-crossings, however,
a physically motivated alternative turns out also to be practical computationally.
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Figure 7 Figure 6 n ng ni

a A 3 3 3
b B 3 2 3
c C 3 2 3
d D 3 3 3
e E 4 3 4
f F 2 2 2

TABLE 1. Algebraic (n), geometric (ng) and nodal (ni) index of the mode shapes shown in
figure 7(a–f ), which coincide with points A–F in figure 6.

Consider the volume displaced by the top surface, say, for a fixed eigenmode y(n),

Vn ≡
∫ 1

ζ2

y(n)(x) dx. (5.1)

For a problem with only one interface, e.g. the Rayleigh or Strani drop, the volume
displaced must be zero by volume conservation. With two or more interfaces, the
volume displaced at any one interface must be absorbed at the other interfaces.
Accordingly, the maximum interaction between any two specified interfaces occurs
when the volumes displaced are the volumes exchanged. For two interfaces, volume
displaced must equal the volume exchanged in magnitude. The volume exchanged
can then be obtained by plotting volume displaced against constraint for various
modes. It turns out that the crossings of these curves are an effective way to locate
near-multiplicities of frequencies. For two interfaces volume exchanged must equal
the magnitude of the displaced volume, of course. The volume exchanged then is
obtained by plotting displaced volume against constraint for modes, pairwise, and
locating crossings. It turns out that this is also an effective metric for locating near-
multiplicities of frequencies.

The volume displaced Vn is plotted as a function of the second pin location ζ2

while holding the first pin location ζ1 fixed in figure 9(c,d). Volumes exchanged are
identified by the notation D12 and D23 for the n = 1 and 2 modes and n = 2 and 3
modes, respectively. In contrast, the pinch points (points of closest approach) from
figure 6 have been calculated and reproduced in figure 9(a,b). The pinch points are
seen to coincide with the points of equal volume exchange, which justifies using the
same notational labels for these. Note that the volume-exchange approach identifies
near-multiplicities more precisely and unambiguously. The points Dn(n+1) are transition
points where the n+1 mode shape adds another node and becomes the primary volume
carrier, taking volume from the n mode shape.

The physical interpretation of these crossings is that there is a change in the mode
that dominates the response. This point is clarified in figure 10 which re-plots figure 6
with the crossing points labelled and connected by a best-fit curve. This best-fit
curve turns out to be coincident with the curve obtained for a Strani-like oscillator
(see discussion in § 5.6). It is thereby clear that, over the portions of the frequency
curve connecting horizontal asymptotes, that is, over the active (non-dead) zones, the
response is dominated by the smaller top surface to the extent that it is as if the other
constraint were not present. On the other hand, over the dead zones, the response is
dominated by the larger lower surface as the frequencies correspond to the ζ2 → 1
asymptotes. The competition between constraints can be seen as a tug of war where



Coupled oscillations of deformable spherical-cap droplets. Part 1 329

D23

D12

D23

D12

D23

D12

D23

D12

50

100

150

200

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

50

100

150

0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.3 0.5 0.6 0.7 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6 0.7 0.8 1.00.4 0.8 0.5 0.9

(a) (b)

(c) (d )

FIGURE 9. Location of the pinch points Dij found by plotting (a,b) frequency λ2 and (c,d)
exchange volume Vn against second pin location ζ2 for fixed (a,c) ζ1 = 0.2 and (b,d) ζ1 = 0.4.
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FIGURE 10. The node creation curve (labelled ‘Nodes’) made by connecting successive
pinch points Dij between the curves of frequency λ2 against second pin location ζ2 for fixed
ζ1 = 0.4.

one constraint dominates and then the other as the combination of constraints shields
the surface from the most active mode shapes. In summary, index ng is conserved
along the flat frequencies (horizontal lines) and jumps in ng occur along the ascending
frequencies curve.

A map of the geometric index ng can also identify frequency crossings and is
reported for the first four modes in figure 11. Only half of the constraint plane need
be plotted by symmetry ζ2 > ζ1. At most two mode shapes have the same frequency.
Crossings and near-multiplicities of frequencies occur along the boundaries in the
map. The thickness of these boundary curves in the map of figure 11 reflect the
accuracy of the boundary determination. For the lower harmonics, the locus of near-
multiplicities tends to be smooth and the region where one mode dominates tends to
be simply connected. For higher modes, cusps develop along the loci, cf. modes ng = 3
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FIGURE 11. Multiplicity map gives geometric index ng of lower harmonic (modes taken
pairwise) as a function of pin location (ζ1, ζ2) for pairs: (a) the (dominant) lowest pair, ng = 0
and ng = 1 (n = 1); (b) next lowest pair, ng = 1 and ng = 2 (n = 2); (c) ng = 2 and ng = 3
(n = 3); and (d) ng = 3 and ng = 4 (n = 4). Boundary curve thickness reflects boundary
uncertainty.

and ng = 4, and regions are no longer simply connected. For constraints in the
neighbourhood of the crossings, the system will be most sensitive and nonlinear
interaction can be productively studied using tools such as weakly nonlinear analysis.
These loci are also important from an engineering application viewpoint, as mentioned
earlier.

5.6. Coupled-oscillator approximation
In the development above, the boundary conditions on the free surface y(x) are applied
in the final step of the procedure by incorporation into the function space (4.7).
That is, the operator equation (3.7) is independent of pinning and volume-exchange
constraints. In the previous section, we have seen how identifying the exchange
volume aids in physical interpretation. In this section, we recast the problem to handle
the volume exchange explicitly and show that this reformulation allows a reduction to
coupled oscillators.
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Consider the domain −1 6 x 6 1 split into the two free surfaces ∂Df
1 and ∂Df

2 as
in the definition sketch ∂D ≡ ∂Df

1 ∪ ∂Df
2 ∪ ∂Ds (figure 1). Next, subject the two free

surfaces to the following volume-exchange constraints:∫
∂Df

1

y1 = C,
∫
∂Df

2

y2 =−C. (5.2)

The displaced volume C is exchanged between the interfaces, preserving the total
volume. By introducing Lagrange multipliers µ1, µ2, these constraints can now be
shifted to the operator equation (3.7) through the introduction of the disturbance
energy (augmented energy functional), as defined in the Introduction of Part 2
(Bostwick & Steen 2013),

F[y1, y2;µ1, µ2] =
∫
∂Df

1

(λ1M[y1] + K[y1] + µ1)y1

+
∫
∂Df

2

(λ2M[y2] + K[y2] + µ2)y2. (5.3)

Here λ1 ≡
√
ρiω

2
1R3/σ and λ2 ≡

√
ρiω

2
2R3/σ are the oscillation frequencies

(eigenvalues) of the associated free surface, to be determined. The integrals of (5.3)
represent the respective disturbance energies of two ‘Strani-like’ oscillators, which are
distinguished from the ‘Strani’ oscillator by the terms involving µ1, µ2. We justify
the functional form of (5.3) by noting that, subject to a continuity condition on the
surface of support, one can independently vary the free-surface disturbances y1, y2.
That is, disturbances to oscillator 2, y2, do not explicitly affect the disturbance energy
of oscillator 1.

As stated earlier, the disturbance energy (4.1) is related to the operator
equation (3.7); stationary values of the disturbance energy (4.1) necessarily satisfy the
operator equation (3.7). Once again, recall that the operator equation (3.7) represents
the balance of pressure at the free surface (functions), which is different from the
disturbance energy (4.1), a scalar quantity. With regard to the augmented functional
(5.3), stationary values of the disturbance energy satisfy the following two operator
equations:

λ1M[y1] + K[y1] + µ1 = 0, (5.4a)
λ2M[y2] + K[y2] + µ2 = 0. (5.4b)

The Lagrange multipliers µ1, µ2 may now be interpreted physically as the constant
pressure applied at each respective interface, required to displace a volume C. Thus,
the difference between the ‘Strani’ and ‘Strani-like’ oscillator is the constant pressure
term µ1,2 related to the coupling from the volume-exchange constraint (5.2). Equations
(5.4a) and (5.4b) represent the balance of pressure at the free surface of oscillator 1
and 2, subject to the constant pressure µ1 and µ2, respectively. By this means, one can
associate the operator equations (5.4) with two coupled Strani-like oscillators, where
the coupling occurs through the pressures µ1 and µ2 which each depend on the other
oscillator, in a way to be made explicit below.

We eliminate the Lagrange multipliers µ1, µ2 in favour of the displaced volume C
by integrating the operator equations (5.4) over the respective undisturbed free surface
and then enforcing the constraint (5.2) (i.e. embedding the displaced volume). The
following reduced operator equations result:

λ1m1[y1;C] + k1[y1] = 0, (5.5a)
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C

FIGURE 12. Illustration of free-surface frequencies λ1 and λ2 intersecting at a critical
exchange volume C∗.

λ2m2[y2;C] + k2[y2] = 0. (5.5b)

Here, we have rewritten the equations in a form reminiscent of two separate oscillators,
each with effective spring constants

ki[yi] ≡ K[yi] −

∫
∂Df

i

M−1[K[yi]]∫
∂Df

i

M−1[1]
, i= 1, 2, (5.6)

and effective mass, parameterized by C,

m1[y1;C] ≡M[y1] − C∫
∂Df

1

M−1[1]
, m2[y2;C] ≡M[y2] + C∫

∂Df
2

M−1[1]
. (5.7)

We have chosen to include the coupling in the effective mass term. Alternatively, it
could be left to appear by itself on the right-hand side of the system, as in (5.4).

The solution strategy is now evident. Pick an exchange volume C, solve the
operator equations (5.5) for the oscillation frequencies λ1(C), λ2(C), and then impose
the coupling through the fluid domain, which requires the frequencies to be in
phase, λ = λ1(C∗) = λ2(C∗), and which picks out a critical displaced volume C∗.
In this final step, the determination of C∗ requires the simultaneous solution of two
scalar equations, schematically illustrated in figure 12. Accordingly, each mode shape
exchanges a characteristic displaced volume C∗ between disjoint free surfaces. As
reported above, by making the displaced volume explicit, eigenvalue near-multiplicities
are easily identified.

In summary, the displaced volume C can be viewed as a measure of
‘communication’ between free surfaces. A non-trivial displaced volume implies the
disjoint surfaces are in communication, while mode shapes with zero volume exchange
are essentially de-coupled. Furthermore, introducing the exchange volume allows the
operator equation to be approximated as two coupled Strani-like oscillators. Thus,
solution of the coupled oscillator problem (5.5) can be used to approximate the
exact solution of (3.7). Should a reduction to a coupled-oscillator system be desired,
any solution can be post-processed to identify effective mass (5.7) and spring (5.6)
‘constants’.
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6. Concluding remarks
The linear oscillations of an inviscid fluid drop, held by surface tension and

constrained by a spherical belt are considered here. The integro-differential equation
governing the interface deformation is formulated as an eigenvalue problem on linear
operators. A solution is generated using the variational procedure of Rayleigh–Ritz on
a constrained function space. To construct the constrained function space, we define
the interface as the union of the two free surfaces and one surface of support and
restrict ‘allowable’ solutions.

The free-surface deformations are independent and allowed to communicate, or
exchange volume, across the surface of support, with coupling coming from the
conservation-of-volume constraint. Across the pinned circle-of-contact constraint,
allowable solutions must have a continuous interface but with discontinuous derivative
(contact angle), in contrast to Bostwick & Steen (2009) where the single interface
assumption requires the derivative also be continuous. As with the vibrating membrane
and plate problems of classical mathematical physics (Courant & Hilbert 1953, Chap.
6), the more constrained the function space, the higher the frequency for comparable
function spaces. Spherical-cap models have different degrees of freedom (different
function spaces) and thereby can have higher or lower frequencies than the exact
solution obtained here.

The dependence of frequency on the constraint geometry (ζ1, ζ2) is obtained. Dead
zones and active zones are identified. The observed number of nodes ng is seen
to be conserved along dead zones with nodes introduced/removed along the active
zones. Near-multiplicities of frequency occur near the intersection of dead and active
zones. The near-multiplicities are marked by near-crossings in the frequency–geometry
plot. It is observed that volume exchange is an effective metric for identifying the
near-resonances. In the harmonic hierarchy, the geometric index ng changes depending
on constraint position and extent. Modal dominance (pairwise) is presented as a map
over the (ζ1, ζ2) plane, where boundaries between regions in this plane represent
geometries with near-resonances. The traditional node count ng to identify mode
shapes is ambiguous for the two-interface problem. This bookkeeping issue is resolved
by introducing the nodal index ni, simply related to the geometric index ng, by which
ng = ni or ng = ni − 1, and for which ni = n, the algebraic index.

In the final section of the paper, displaced volume is used again but as a measure of
the communication between disjoint free surfaces. The volume constraint is shifted
from the function space back to the equations using Lagrange multipliers. This
leads to an approximation that couples two ‘Strani-like’ oscillators. Solutions to
these equations can be post-processed to identify effective mass and spring constants,
showing how to make precise a relationship to coupled oscillators.
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Note added in proof
Ramalingam, Ramkrishna & Basaran (2012), which first came to the authors

attention while Parts 1 and 2 were under final review, redoes the B09 problem
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allowing for non-smooth surfaces at pin locations. Their figure 8 compares B09 to
their EX and further confirms our figure 2(a,b).
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