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A spherical drop is constrained by a solid support arranged as a latitudinal belt. The
spherical belt splits the drop into two deformable spherical caps. The edges of the
belt support are given by lower and upper latitudes, yielding a support of prescribed
extent and position: a two-parameter family of geometrical constraints. In this paper
we study the linear oscillations of the two coupled surfaces in the viscous case, the
inviscid case having been dealt with in Part 1 (Bostwick & Steen, J. Fluid Mech.,
vol. 714, 2013, pp. 312–335), restricting to axisymmetric disturbances. For the viscous
case, limiting geometries are the spherical-bowl constraint of Strani & Sabetta (J.
Fluid Mech., vol. 189, 1988, pp. 397–421) and free viscous drop of Prosperetti (J.
Méc., vol. 19, 1980b, pp. 149–182). In this paper, a boundary-integral approach leads
to an integro-differential boundary-value problem governing the interface disturbances,
where the constraint is incorporated into the function space. Viscous effects arise due
to relative internal motions and to the no-slip boundary condition on the support
surface. No-slip is incorporated using a modified set of shear boundary conditions.
The eigenvalue problem is then reduced to a truncated set of algebraic equations
using a spectral method in the standard way. Limiting cases recover literature results
to validate the proposed modification. Complex frequencies, as they depend upon
the viscosity parameter and the support geometry, are reported for both the drop
and bubble cases. Finally, for the drop, an approximate boundary between over- and
under-damped motions is mapped over the constraint parameter plane.
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1. Introduction
Since early studies of capillarity (Segner 1751; Maxwell 1898), the restorative force

of surface tension has been compared to that of an elastic body. Surface tension
resists deformation of a liquid mass from rest configurations in much the same way
as the linear-elastic spring resists excursions of a mass from a rest position. Indeed,
under broad conditions, the linear stability of a liquid mass held by surface tension is
determined by an operator equation on small disturbances to the interface of the same
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FIGURE 1. (a) Definition sketch in two-dimensional polar view and (b) sample deformation
in three-dimensional perspective view. Disturbances η1 and η2 are constrained by the belt
support extending over ζ1 ≡ cos θ1 6 cos θ 6 ζ2 ≡ cos θ2. Lengths ζ are scaled by R while
lengths η are left unscaled.

form as that of the characteristic equation for the damped harmonic oscillator,

γ 2M + γΦ + K = 0. (1.1)

Here, γ is the growth rate, M is the disturbance kinetic-energy operator, Φ is
the disturbance dissipation operator and K the disturbance surface-energy operator.
The kinetic energy M is positive definite and the dissipation Φ a negative-definite
operator that depends on γ in general. The surface energy K can have either sign
depending on the nature of the equilibrium configuration. The equilibria are extremals
of a corresponding surface-energy functional. For the case of an inviscid liquid drop
(Rayleigh problem), the flow is without dissipation Φ = 0 and K is positive definite,
so that schematically γ 2 = −K/M and disturbances neither grow nor decay, γ = ±iω.
Rayleigh (1879) (also Lamb 1932) used normal modes to solve for the operators in
(1.1) and to find that the inviscid drop oscillates with frequencies

ω2
n =

n(n− 1)(n+ 1)(n+ 2)
(n+ 1)ρi + nρe

σ

R3
, n= 0, 1, 2, . . . , (1.2)

where σ is the surface tension and ρi and ρe are the densities of the interior and
exterior fluids, respectively. Corresponding mode shapes have radial deformations that
are given by the Legendre polynomials, Pn(cos θ). Rayleigh’s predictions have been
verified experimentally for immiscible drops by Trinh, Zwern & Wang (1982) and
Trinh & Wang (1982) and for free drops in microgravity by Wang, Anilkumar &
Lee (1996). For drops with viscosity (Chandrasekhar 1961; Miller & Scriven 1968;
Prosperetti 1980b) or moving contact lines (Davis 1980), Φ 6= 0, and the growth rates
typically have real parts so that disturbances can grow or decay. When decay happens,
it can occur in an under-damped or over-damped fashion, of course.

In this paper, we study the linear stability of two coupled spherical-cap surfaces
made by constraining a spherical drop with a solid support (figure 1). The solid
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support conforms to the spherical surface and extends between two latitudes, θ2 6
θ 6 θ1, forming a spherical belt. The resulting free surface consists of two spherical
caps (disconnected) which are coupled through the liquid beneath (connected). The
interfaces are pinned at the edges of the belt and no-slip conditions, as appropriate
to viscous liquids, are enforced along the belt. Integro-differential equations for the
free-surface disturbances are derived.

These operator equations are then solved, restricting to axisymmetric disturbances.
The change in boundary conditions from free to fixed along the support is handled by
an indicator function. This approach is new, as far as we are aware, and captures the
exact dependence of Φ on γ , as well as that of M, Φ and K on the support geometry
(θ1, θ2), density contrast and a viscosity parameter. This paper (Part 2) focuses on
the dependence of the dissipation Φ on viscosity and support geometry, whereas
Part 1 (Bostwick & Steen 2013) concerns motions of the surfaces as coupled
oscillators driving inviscid flows.

Viscous effects, as they relate to the free drop problem, have been investigated
by Reid (1960) for an isolated drop in a vacuum, and Chandrasekhar (1961), who
establishes boundaries between under-damped and over-damped motion. Miller &
Scriven (1968) have derived a dispersion relationship for immiscible drops, whose
interface may or may not have elastic properties. Prosperetti (1980b) uses a normal-
mode analysis to obtain the spectrum for immiscible viscous drops, results later
confirmed computationally by Basaran (1992). As an alternative to normal-mode
analysis, Prosperetti (1980a,c) has studied the initial-value problem and has identified
three phases of evolution. The first phase is characterized by irrotational flow, the
second phase by diffusion into the bulk of vorticity generated at the drop surface
and the final phase by decay of the least-damped normal mode. With regard to
large-amplitude behaviour, Smith (2010) uses a strongly nonlinear analysis to derive
a set of modulation equations showing that the decay rate for the free drop can
be approximated by a quadratic function of the disturbance amplitude. Alternatively,
finite-element methods have been employed to study the finite-amplitude natural
oscillations of free (Basaran 1992) and pendant (Basaran & DePaoli 1994) drops.

The motions of constrained drops are of interest in a number of emerging
applications. Examples include drop atomization (James, Smith & Glezer 2003a;
James et al. 2003b; Vukasinovic, Smith & Glezer 2007), switchable electronically
controlled capillary adhesion (Vogel, Ehrhard & Steen 2005; Vogel & Steen 2010)
and optical microlens devices (López, Lee & Hirsa 2005; López & Hirsa 2008; Olles
et al. 2011). The last two are rooted in the idea of the capillary switch (Bhandar &
Steen 2005; Hirsa et al. 2005; Malouin, Vogel & Hirsa 2010). The capillary switch is
composed of two disjoint interfaces connected by a tube. The interfaces communicate
(coupled) through the underlying fluid, much like the communication that occurs for
the belted sphere. The dynamics of the capillary switch for both free (Theisen et al.
2007) and forced oscillations (Slater et al. 2008) has been studied for centre-of-mass
motions, which restricts interface deformations to spherical caps, and for axisymmetric
deformations in the limit of zero tube length (Bostwick & Steen 2009). More recently,
Ramalingam & Basaran (2010) have analysed the forced oscillations of the double
droplet system (DDS) by various types of excitation.

Our solution approach first invokes normal modes and then maps the flow problem
(interior domain) onto the undisturbed interface using Green’s functions, adopting a
boundary-integral approach. This results in an eigenvalue problem of the form of (1.1).
More specifically, consider an incompressible, viscous fluid occupying an arbitrary
domain D bounded by an interface ∂D held by a constant surface tension σ . The flow
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is capillarity-driven and governed by the Young–Laplace equation p/σ = 2H, which
relates the pressure jump across the free interface p to its shape through the mean
curvature H. In the standard way, time dependence factors out by assuming that field
quantities are proportional to

eγ t, (1.3)

which results in

γv=∇ · T [D], (1.4a)
∇ ·v= 0 [D], (1.4b)
v ·n= γ y [∂D], (1.4c)

T ·n= (2H)δn [∂D], (1.4d)

where v is the velocity field, n the surface normal and (2H)δ = (2H)δ(y) the
linearized mean curvature. More specifically, (2H)δ is the O (δ) contribution to the
mean curvature of the disturbed equilibrium surface, ȳ→ ȳ + δy. Equations (1.4a)
and (1.4b) represent the linearized Navier–Stokes equation and continuity equation for
incompressible fluids, respectively. The kinematic condition (1.4c) relates the velocity
field to the interface disturbance y there. In the case of a velocity potential φ for
irrotational flow, this reduces to ∂φ/∂n = γ y. Lastly, (1.4d) represents the jump in
stress across the boundary, where the full stress tensor T is defined in standard
notation,

T =−p1+ µD, (1.5a)

D = ∇v+ (∇v)t, (1.5b)

with µ the fluid viscosity. Taking the divergence of (1.4a) and using (1.4b) yields
the Laplace equation for the stress tensor. Solving this equation with Green’s
functions leads to an integro-differential operator on interfacial disturbances y. The
no-penetration condition on the solid support is built into the function space while the
tangential stress and no-slip boundary conditions remain part of the operator equation.
They contribute to the dissipation.

Closely related to the operator equation (1.1) is the energy equation. This functional
(mapping functions into the real line) represents a necessary condition on solutions.
The energy equation is obtained by taking the dot product of the linearized
Navier–Stokes equation (1.4a) with v,

γ

∫
D
|v|2 =

∫
∂D

v · T ·n−
∫

D
∇v:T . (1.6)

The Helmholtz decomposition theorem allows one to decompose the velocity field into
a rotational B and irrotational ∇φ part (e.g. Batchelor 1967),

v= B+∇φ. (1.7)

Using this decomposition, one can manipulate the volume integrals of (1.6) into
surface integrals,

γ

∫
∂D
φ v ·n+ µ

∫
∂D

n ·D · (v+ B)−
∫
∂D
(2H)δv ·n= 0. (1.8)



340 J. B. Bostwick and P. H. Steen

A further simplification to (1.8) results when the surrounding fluid is a passive gas,
which requires the shear stress to vanish at the surface,∫

∂D

(
γ 2φ + γµn ·D ·n

(
1+ B ·n

v ·n

)
− (2H)δ

)
y= 0. (1.9)

Note that (1.9) takes the form of (1.1), with operators replaced by functionals. The
functionals M, Φ and K can be read off as

M ≡
∫
∂D
φ y, Φ ≡ µ

∫
∂D

n ·D ·n
(

1+ B ·n
v ·n

)
y, K ≡

∫
∂D
−(2H)δ y. (1.10)

The viscous dissipation Φ in (1.10) generally depends on γ , and its nonlinear
dependence on γ has been exhibited in the special case of the free viscous drop
(Prosperetti 1980b).

There is a considerable literature on viscous corrections, in the form of exp(−κt)
with damping coefficients κ , to the inviscid oscillations of droplets. Schematically,
(1.9) is evaluated at a solution to the inviscid field equations using some
approximation of the dependence of Φ on γ . The oldest approximation goes back
to Lamb (1932) who evaluated Φ in (1.10) using irrotational motions B= 0 to find

κ = ν

R2
(n− 1)(2n+ 1), (1.11)

where ν is the kinematic viscosity. Alternative approximation schemes are still being
introduced. Joseph and coworkers (Padrino, Funada & Joseph 2007) have given
them names such as ‘viscous potential flow’ and the ‘dissipation method’. These
approximation schemes could also be applied to the spherical-belt solutions we report.

Most relevant to the problem considered here are papers invoking spherical-like
constraints. Strani & Sabetta (1984, 1988) consider the linear oscillations of both
inviscid and viscous drops in partial contact with a ‘spherical bowl’ by using a
Green’s function approach to derive an integral eigenvalue equation, which is then
reduced to a set of linear algebraic equations by a Legendre series expansion. They
report a new low-frequency mode, not present for isolated drops, and exponential
eigenfrequency growth as the size of the spherical bowl is increased from a point to
a fully captured sphere. Strani & Sabetta (1988) require their viscous drop to satisfy
the shear boundary conditions by a means that differs from ours, but their governing
equation could also be placed in the context of the operator formalism used here.
For small support angles, Strani & Sabetta’s results compare well with experiments
on supported immiscible drops (Rodot, Bisch & Lasek 1979; Bisch, Lasek & Rodot
1982) and supported drops in microgravity (Rodot & Bisch 1984). Bauer & Chiba
(2004, 2005) have also investigated spherical ‘bowl-like’ constraints for inviscid and
viscous captured drops by approximating finite-sized constraints with a large number
of point-wise constraints.

We begin this paper by defining the linearized field equations and relevant boundary
conditions for the viscous problem, from which the equation of motion for the drop
interface is derived and formulated as an eigenvalue problem on linear operators. The
operator eigenvalue equation is reduced to a truncated set of linear algebraic equations
using a spectral method on a constrained function space, as described in Part 1. The
eigenvalues/modes are then computed from a nonlinear characteristic equation, which
depends upon material properties and the size/location of the constraint. We conclude
with some remarks on the computational results.
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2. Mathematical formulation
Consider an unperturbed spherical droplet of radius R, constrained by a spherical

belt over the polar angle θ2 6 θ 6 θ1 in spherical coordinates (r, θ), as shown in
the definition sketch (figure 1). The drop interface is disturbed by time-dependent
free-surface perturbations, η1(θ, t) and η2(θ, t), which are assumed to be axisymmetric
and small. No domain perturbation is needed for linear problems, thus the domain is
the combination of the regions internal to and external to the static droplet:

Di ≡ {(r, θ) | 0< r 6 R, 0 6 θ 6 π}, (2.1a)
De ≡ {(r, θ) | R< r <∞, 0 6 θ 6 π}. (2.1b)

The interface separating the interior and exterior fluids (internal boundary) is defined
as the union of two free surfaces and one surface of support:

∂Df
1 ≡ {(r, θ) | r = R, θ1 6 θ 6 π}, (2.2a)

∂Df
2 ≡ {(r, θ) | r = R, 0 6 θ 6 θ2}, (2.2b)

∂Ds ≡ {(r, θ) | r = R, θ2 6 θ 6 θ1}, (2.2c)

∂D≡ ∂Df
1 ∪ ∂Df

2 ∪ ∂Ds. (2.2d)

The inner and exterior fluids are viscous and incompressible and the effect of gravity
is neglected.

2.1. Field equations
The field equations, governing the motion of the fluid, are written via a velocity field
u and pressure P. An incompressible fluid necessarily has a divergence-free velocity
field,

∇ ·u= 0. (2.3)

The linear momentum balance on a material volume gives the linearized Navier–Stokes
equation

ρ
∂u
∂t
=−∇P− µ∇ ×∇ × u, (2.4)

where the material properties, ρ and µ, are the fluid density and viscosity, respectively.
Applying the curl to (2.4) gives the balance of angular momentum

ρ
∂Ω

∂t
=−µ∇ ×∇ ×Ω , (2.5)

with the vorticity Ω defined as

Ω ≡∇ × u. (2.6)

2.2. Velocity field
The velocity field for axisymmetric flows is written in spherical coordinates as

u= ur (r, θ, t) er + uθ (r, θ, t) eθ . (2.7)

Here we have assumed a flow without swirl uφ(r, θ, t), although swirl can be easily
added (see appendix C). According to the velocity field (2.7), the vorticity is

Ω =Ω (r, θ, t) eφ = 1
r

[
uθ + r

∂uθ
∂r
− ∂ur

∂θ

]
eφ. (2.8)
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2.3. Reduced system
Substitution of normal modes

ur (r, θ, t)= vr (r, θ) e−γ t, uθ (r, θ, t)= vθ (r, θ) e−γ t, (2.9a)

Ω (r, θ, t)= ω (r, θ) e−γ t, P (r, θ, t)= p (r, θ) e−γ t, (2.9b)

η1,2(θ, t)= y1,2 (θ) e−γ t, (2.9c)

into the hydrodynamic equations (2.3)–(2.6) delivers a reduced set of field equations,

∇ ·v= 0, (2.10a)
ργv=∇p+ µ∇ ×∇ × v, (2.10b)
ργω = µ∇ ×∇ × ω, (2.10c)

ω =∇ × v, (2.10d)

valid in both interior (i) and exterior (e) sub-domains. Here γ is the complex growth
rate.

2.4. Boundary/integral conditions
The no-slip and no-penetration conditions for viscous fluids require

vi,e
θ = 0 [∂Ds] , (2.11a)

vi,e
r = 0 [∂Ds] , (2.11b)

on the surface of support, while continuity of tangential velocity and shear stress

vi
θ = ve

θ

[
∂Df

1, ∂Df
2

]
, (2.12a)

τ i
rθ = τ e

rθ

[
∂Df

1, ∂Df
2

]
, (2.12b)

is enforced on the free surfaces. The linearized kinematic condition relates the radial
velocity to the surface deformation there,

vi
r = ve

r =−γ y1,2(θ)
[
∂Df

1, ∂Df
2

]
, (2.13)

and the difference in normal stress across the free surface is balanced by the surface
tension σ times the linearized curvature of the deformed surface,

τ i
rr − τ e

rr =−
σ

R2

(
1

sin θ
∂

∂θ

(
sin θ

∂y1,2

∂θ

)
+ 2y1,2

) [
∂Df

1, ∂Df
2

]
. (2.14)

The integral form of the incompressibility condition (2.3) constrains the interface
perturbation to be volume conserving,∫ π

θ1

y1(θ, t) sin θ dθ +
∫ θ2

0
y2(θ, t) sin θ dθ = 0. (2.15)

The fluids are assumed to be Newtonian, where the components of stress are related
to the velocity-field components. In spherical coordinates, these relationships are

τrθ = τθr = µ
(

1
r

∂vr

∂θ
+ ∂vθ
∂r
− vθ

r

)
, (2.16a)

τrr =−p+ 2µ
∂vr

∂r
. (2.16b)
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2.5. Velocity-field decomposition
The Helmholtz decomposition theorem (e.g. Batchelor 1967) allows one to decompose
the velocity field as the sum of rotational and irrotational fields. The vorticity field ω
is solenoidal and therefore may be written as the curl of a vector potential B,

ω =∇ × B, (2.17)

where for axisymmetric flows with non-trivial interface deflection (Chandrasekhar
1961),

B= B (r, θ) er. (2.18)

Given (2.17), the velocity field v is decomposed as

v= B+∇Ψ, (2.19)

with the scalar field Ψ defined as the velocity potential. Let x ≡ cos(θ), then the
velocity-field components are

v=
(

B+ ∂Ψ
∂r

)
er −

(
1
r

(
1− x2

)1/2 ∂Ψ

∂x

)
eθ . (2.20)

Similar to the field quantities, the vector and velocity potentials are expanded with
normal modes

B (r, x, t)= Tn (r)Pn (x) e−γ t, Ψ (r, x, t)= φn (r)Pn (x) e−γ t, (2.21)

where Pn(x) is the Legendre polynomial of degree n.

2.6. Velocity-field equations
The rotational field (2.18) satisfies the vorticity equation (2.10c). Substituting the
normal mode (2.21) into (2.10c) generates an equation governing Tn(r),

µ

ρ

d2Tn

dr2
+ γTn − µ

ρ

n (n+ 1)
r2

Tn = 0. (2.22)

The velocity potential φ is chosen such that the incompressibility condition (2.10a)
is satisfied. Substituting (2.20) and (2.21) into (2.10a) results in an inhomogeneous
equation for φn(r),

∇2 (φn (r)Pn (x))=− 1
r2

d
dr

(
r2Tn

)
Pn (x) . (2.23)

A general solution for the velocity field (2.19) is constructed by solving (2.22) and
(2.23).

3. Reduction to an operator equation
Equations (2.10)–(2.15) constitute an eigenvalue problem for the complex growth

rate γ . In this section, the boundary-value problem is reduced to a single integro-
differential equation, which is then formulated as an eigenvalue equation on linear
operators. To that end, the goal is to construct solutions to the field (2.10)–(2.15)
for this capillary-driven flow that depend explicitly upon the free-surface deformations
y1, y2. As in Part 1, we begin by defining the ‘interface’ perturbation as

y(x)=


y1(x), −1 6 x 6 ζ1,

0, ζ1 6 x 6 ζ2,

y2(x), ζ2 6 x 6 1.
(3.1)
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Here the parameters

ζ1 ≡ cos(θ1), ζ2 ≡ cos(θ2), (3.2)

define the geometry of the spherical-belt constraint. In view of the linearized kinematic
condition (e.g. (2.13)) enforced everywhere, the no-penetration condition (2.11b)
is satisfied by construction for disturbances of the form (3.1). At this point the
free-surface deformations y1, y2 remain independent. However, the ‘shear’ boundary
conditions (2.11a), (2.12a) and (2.12b) must change from no-stress (free) to no-slip
(supported). To address this issue, a modified set of boundary conditions is proposed.
A normal-mode analysis with the modified boundary conditions allows one to derive
the viscous operator equation, which depends upon a viscosity parameter ε, the ratio
of inner to exterior densities ρ, the ratio of inner to exterior viscosities µ, and a
support size parameter.

3.1. Vector potential solution
The vector potential solution of (2.22) is given by

T i
n(r)=

( r

R

)1/2
T i

n(R)
Jn+1/2

(
zi
)

Jn+1/2 (Zi)
, Te

n(r)=
( r

R

)1/2
Te

n(R)
H(1)

n+1/2 (z
e)

H(1)
n+1/2 (Ze)

, (3.3)

where

zi,e ≡ r

(
γ
ρi,e

µi,e

)1/2

, Zi,e ≡ R

(
γ
ρi,e

µi,e

)1/2

, (3.4)

and Jk(z) and H(1)
k (z) are the appropriate Bessel functions (standard notation used,

Arfken & Weber 2001).

3.2. Velocity potential solution
Equation (2.23) is solved using variation of parameters for the velocity potential,

φi,e
n (r)=

(
αi,e

n −
n+ 1
2n+ 1

∫ r

R

T i,e
n (s)

sn
ds

)
rn

+
(
β i,e

n −
n

2n+ 1

∫ r

R
sn+1T i,e

n (s) ds

)
r−(n+1). (3.5)

The velocity potential is finite as r→ 0 and r→∞, which requires

β i
n =−

n

2n+ 1

∫ R

0
sn+1T i

n(s) ds=− n

2n+ 1
T i

n(R)

Jn+3/2 (Zi)
Rn+2 (3.6)

and

αe
n =

n+ 1
2n+ 1

∫ ∞
R

Te
n(s)

sn
ds= n+ 1

2n+ 1
Te

n(R)

Hn−1/2 (Ze)
R−(n−1), (3.7)

where

Jk (z)≡ z
Jk−1 (z)

Jk (z)
, Hk (z)≡ z

H(1)
k+1 (z)

H(1)
k (z)

(3.8)

are fractional Bessel functions (again standard notation, Arfken & Weber 2001).
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x
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FIGURE 2. Indicator function Γ (x, ζ1, ζ2).

3.3. Boundary conditions

As with the other field quantities, the interface perturbation is expanded as

y(x)=
∞∑

n=1

dnPn(x), dn ≡ (y,Pn)

(Pn,Pn)
. (3.9)

Using (2.20) and (3.9), the linearized kinematic condition (2.13) is reduced to

T i
n(R)+

dφi
n

dr

∣∣∣∣
r=R

=−γ dn, Te
n(R)+

dφe
n

dr

∣∣∣∣
r=R

=−γ dn. (3.10)

As in Part 1, (3.10) is enforced on the entire interface, and the no-penetration
condition (2.11b) is satisfied by restricting candidate functions to an appropriately
chosen function space. To simplify (3.10), use the velocity potential solution (3.5) to
obtain

αi
n =

n+ 1
n

R−(2n+1)β i
n −

γ

n
R−(n−1)dn, βe

n =
n

n+ 1
R2n+1αe

n +
γ

n+ 1
Rn+2dn, (3.11)

with β i
n and αe

n given by (3.6) and (3.7), respectively.
The remaining unknowns, T i

n(R) and Te
n(R), are found from the shear boundary

conditions: (2.11a), (2.12a) and (2.12b). These boundary conditions are valid on
specified parts of the interface and are not amenable to standard analysis. To resolve
this issue, a new set of boundary conditions is proposed. On the drop interface, the
following equivalent boundary conditions are introduced to replace (2.11a), (2.12a)
and (2.12b):

vi
θ |r=R = ve

θ |r=R, (3.12a)(
τ i

rθ − τ e
rθ

) |r=R (1− Γ (x, ζ1, ζ2))= (µ/R) Γ (x, ζ1, ζ2) v
i
θ |r=R, (3.12b)

with R the length scale and µ the appropriate viscosity scale: µi for an immiscible
drop in vacuum or viscous medium and µe for a bubble in viscous medium. Here
Γ (x, ζ1, ζ2) is an indicator function, which is active on the surface of support and
inactive on the free surfaces (cf. figure 2),

Γ (x, ζ1, ζ2)≡ H(x− ζ1)− H(x− ζ2), (3.13)

where H(x) is the Heaviside step function.
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3.4. Pressure
The pressure is found by substituting (2.21) into (2.10b) to give

p(r, x)= p0 +
∞∑

n=1

ρ

(
γφn − µ

ρ

dTn

dr

)
Pn(x). (3.14)

Using the vector and velocity potential solutions (3.3) and (3.5), the pressure evaluated
on the surface is

pi(R, x)= pi
0 −

∞∑
n=1

(
(n+ 1) µi

T i
n(R)

R
+ ρiRγ 2

n
dn

)
Pn(x), (3.15a)

pe(R, x)= pe
0 +

∞∑
n=1

(
nµe

Te
n(R)

R
+ ρeRγ 2

n+ 1
dn

)
Pn(x). (3.15b)

3.5. Operator equation
The operator equation is derived from the normal-stress boundary condition (2.14),

−pi + 2µi
∂vi

r

∂r

∣∣∣∣
r=R

+ pe − 2µe
∂ve

r

∂r

∣∣∣∣
r=R

=− σ
R2

((
1− x2

)
yxx − 2xyx + 2y

)
, (3.16)

which can be written as
∞∑

n=1

[((
ρe

n+ 1
+ ρi

n

)
γ 2R+ 2 (n− 1) (n+ 2) (µi − µe)

γ

R

)
dn

+ n (n+ 2) µe
Te

n (R)

R
− (n− 1) (n+ 1) µi

T i
n (R)

R

]
Pn(x)

=− σ
R2

((
1− x2

)
yxx − 2xyx + 2y

)
, (3.17)

with T i
n(R) and Te

n(R) determined from the modified boundary conditions (3.12). This
is done in appendix A.

We now scale the interface deformation y, y ≡ Ry∗, drop the ∗ for notational
simplicity henceforth, and introduce the further scalings

γ ∗ ≡
√
ρiR3

σ
γ, εi,e ≡ µi,e√

ρi,eRσ
, µ≡ µe

µi
, ρ ≡ ρe

ρi
. (3.18)

A characteristic of the modified boundary conditions is a ‘shape’ factor

Ln =
(∫ 1

−1

(
P(1)n (x)

)2
Γ (x, ζ1, ζ2) dx

)(
2n+ 1

2
(n− 1)!
(n+ 1)!

)
, (3.19)

which is a measure of the relative size of the surface of support. Here P(1)n (x) is the
Legendre polynomial of degree n and order one (MacRobert 1967).

3.5.1. Drop in vacuum
A viscous drop in a vacuum corresponds to the limiting case µe→ 0 and ρe→ 0. In

this limit, the viscous drop operator equation is given by

γ ∗2Md [y]+ γ ∗Φd

[
y; γ ∗, εi

]+ K [y]= 0. (3.20)
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The differential operator

K [y]≡ (1− x2
)

yxx − 2xyx + 2y (3.21)

is associated with the curvature, while the positive-definite inertia operator is defined
as

Md [y]≡
∞∑

n=1

1
n

(
2n+ 1

2

)(∫ 1

−1
y Pndx

)
Pn (x) . (3.22)

Viscous effects are controlled by the dissipation operator

Φd

[
y; γ ∗, εi

]≡−εi

∞∑
n=1

[(
2 (n− 1) (n+ 2)+ (n− 1) (n+ 1)T i

n (R)
)

×
(

2n+ 1
2

)(∫ 1

−1
y Pndx

)
Pn (x)

]
, (3.23)

where

T i
n (R)=

2 (n− 1) /n− εiAn/n(
2/Jn+3/2 (Xi)− 1

)+ εiAn/Jn+3/2 (Xi)
(3.24)

and

An ≡ Ln/(1− Ln), Xi ≡ (γ ∗/εi)
1/2
. (3.25)

3.5.2. Bubble in viscous medium
A similar operator equation is derived for a bubble; the limit µi→ 0 and ρi→ 0 of

(3.17) gives

γ ∗2Mb [y]+ γ ∗Φb

[
y; γ ∗, εe

]+ K [y]= 0, (3.26)

where the curvature operator is defined in (3.21) and the inertia operator for a bubble
as

Mb [y]≡
∞∑

n=1

1
n+ 1

(
2n+ 1

2

)(∫ 1

−1
y Pndx

)
Pn (x) . (3.27)

The bubble dissipation operator is given by

Φb

[
y; γ ∗, εe

]≡−εe

∞∑
n=1

[(−2 (n− 1) (n+ 2)+ n (n+ 2)Te
n (R)

)
×
(

2n+ 1
2

)(∫ 1

−1
y Pndx

)
Pn (x)

]
, (3.28)

with

Te
n (R)=−

2(n+ 2)/(n+ 1)− εe An/(n+ 1)(
2/Hn−1/2 (Xe)− 1

)+ εeAn/Hn−1/2 (Xe)
(3.29)

and

An ≡ Ln/(1− Ln), Xe ≡ (γ ∗/εe)
1/2
. (3.30)

3.5.3. Immiscible viscous drop in viscous medium
The operator equation for the case of an immiscible viscous drop in a viscous

medium is the most general case. This operator equation is displayed in appendix B.
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4. Solution of the operator equation
The operator equation (3.20), (3.26) and (B 1) are nonlinear in the eigenvalue and

can be reduced to a set of algebraic equations using a spectral approach with the
function space derived in Part 1. We shall present results for the viscous drop in
a vacuum (3.20) and the bubble in a viscous bath (3.26). The resulting matrix
equation is parameterized by the viscosity parameter ε (representing εi or εe) and
the boundaries of the constraint, ζ1 and ζ2, via the indicator function Γ (x, ζ1, ζ2). The
eigenvalues/eigenmodes are then computed from a nonlinear characteristic equation,
found by taking the determinant of the matrix equation.

4.1. Constrained function space

To implement the spectral method on the operator equation (3.20) and (3.26), one
needs to construct a function space for the interface perturbation (3.1) that satisfies the
following conditions: ∫ ζ1

−1
y1(x) dx+

∫ 1

ζ2

y2(x) dx= 0, (4.1a)

y1(ζ1)= 0, (4.1b)
y2(ζ2)= 0. (4.1c)

Equation (4.1a) is the incompressibility condition that couples the independent
free-surface perturbations, y1 and y2, while (4.1b) and (4.1c) ensure the interface
perturbation (3.1) is single-valued. Once again, recall that the no-penetration condition
is satisfied by the form of (3.1). For brevity, we refer the reader to Part 1 for details
regarding the construction of a set of orthonormal basis functions {ψk} that span the
constrained function space and satisfy (4.1). A similar method has been used in the
context of constrained cylindrical interfaces by Bostwick & Steen (2010).

4.2. Reduction to matrix form

A truncated series expansion

y(x)=
N∑

k=1

ckψk(x), (4.2)

is applied to the operator equations (3.20) and (3.26) and inner products are taken to
yield the following set of algebraic equations for ck:

N∑
k=1

(
γ ∗2Mjk + γ ∗Φjk(γ

∗, ε)+ Kjk

)
ck = 0j, (4.3)

with

Mjk ≡
∫ 1

−1
M[ψj]ψk dx, Φjk ≡

∫ 1

−1
Φ[ψj]ψk dx, Kjk ≡

∫ 1

−1
K[ψj]ψk dx. (4.4)

The solvability condition for the matrix equation (4.3) is a zero determinant, which
results in a nonlinear characteristic equation. The roots of the characteristic equation
generate the complex eigenvalue γ ∗(p) and eigenvector c(p)j , while the corresponding
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eigenfunction is given by

y(p)(x)=
N∑

k=1

c(p)k ψk(x). (4.5)

5. Validation of the solution
The eigenvalues/modes for the drop and bubble, as they depend upon the viscosity

parameter ε, are the roots of a nonlinear characteristic equation and are computed
using a variant of the secant method. We generate initial guesses for the secant
method by continuation of the inviscid solution (Part 1) in the viscosity parameter. The
characteristic equation is computed using N = 13 terms in the solution series (4.2),
with a resolution of eight Legendre polynomials on each free surface. This truncation
is shown to produce relative eigenvalue convergence to within 0.1 % for the results
presented here, except near critical damping, the transition between complex and real
eigenvalues. The complex eigenvalues presented here appear in complex-conjugate
pairs.

A number of limiting cases are evaluated next to verify both the numerical routine
as well as the modified boundary conditions (3.12). The inviscid limit µi→ 0, µe→ 0
of (3.17) recovers operator equation (3.7) of Part 1 and, hence, all the inviscid results
of Part 1 are special-case solutions of (3.17). Our focus next is on special viscous
solutions.

5.1. Pinned circle-of-contact limits
Just as for the inviscid drop, pinning at a circle of contact (ζ1, ζ2) = ζ(1, 1) which
is also a node ζ of the eigenmode, recovers the unconstrained drop behaviour. In
the viscous case, we locate the constraint at the node of a Legendre polynomial and
compare to the free viscous drop solution of (Prosperetti 1980b). In this limit, the
‘shape’ factor (3.19) tends to zero and the operator equations (3.20) and (3.26) can
be manipulated into the functional equivalent of the Prosperetti (1980b) equations for
the free drop. As shown in Part 1, the no-penetration condition (2.11b) is naturally
satisfied for this specific constraint and the corresponding frequency and mode shape
are identical to those for the free viscous drop (Prosperetti 1980b).

5.2. Spherical-bowl limits
The limit ζ1→−1 (θ1 = 180◦) of a spherical belt yields a spherical-bowl support of
extent ζ2 = ζ analysed by Strani & Sabetta (1988). ‘Small bowl’ (‘large bowl’) will
refer to a support less than (greater than) hemispherical in extent, likewise for belt
supports.

For a bubble in a viscous bath supported by a small bowl of extent ζ = −0.5
(θ = 120◦), there are no transitions from under-damped to over-damped motions
according to figure 3. The bubble motions remain under-damped. For a fixed mode,
the damping rate increases with εe as the viscous layer penetrates deeper into the bath
until the frequency rapidly decreases to pull the damping rate back down. This may be
viewed as a partitioning of dissipation between spatial and temporal contributions. For
fixed εe, higher modes have higher damping consistent with the greater dissipation at
smaller length scales. Figure 3 can be compared to Strani & Sabetta (1988), figure 2,
and the agreement is excellent (truncation numbers N are comparable).

In contrast, for a viscous drop in a vacuum supported by a small bowl, ζ = −0.94
(θ = 160◦), there is a transition from under- to over-damped, figure 4. The n = 1, 2, 3
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FIGURE 3. Bubble with small-bowl support ζ =−0.5 (θ = 120◦): (a) decay rate Re[γ ∗] and
(b) oscillation frequency Im[γ ∗] against viscosity parameter εe for modes n= 1, 2, 3.
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FIGURE 4. Viscous drop with small-bowl support ζ = −0.94 (θ = 160◦): (a) decay rate
Re[γ ∗] and (b) oscillation frequency Im[γ ∗] against viscosity parameter εi for modes
n= 1, 2, 3.

eigenvalues bifurcate from complex to real at a critical value of the viscosity
parameter. This critical value is smaller for the n = 3 mode compared with the n = 2
mode because there is stronger relative motion between fluid elements for n = 3.
Figure 4 can be compared to Strani & Sabetta (1988), figure 3, and the agreement is
excellent (truncation numbers N are comparable).

The eigenvalues in these plots are obtained by finding the zeros of a nonlinear
equation given by the determinant of (4.3). As the truncation number N increases,
so do the number of roots. Strani & Sabetta (1988) found that the transition from
complex to real roots was especially sensitive to N and, for that reason, that the
prediction of the transition from under-damped to over-damped motion was not
reliable. For further details, the reader is referred to the lengthy discussion provided by
Strani & Sabetta (1988). Our spherical-belt calculations face the same difficulty. As a
consequence, results near the transition point have large uncertainty.

6. Spherical-belt results
The bubble and drop with small-belt support (ζ1, ζ2) = (−0.7, 0) [(θ1, θ2) =

(134◦, 90◦)] have the frequencies reported in figures 5 and 6, respectively. The
dissipation arising from relative fluid motion is very apparent when one compares
the decay rate of the n= 1 mode to the n= 2, 3 modes, where the magnitude is much
more pronounced for the higher mode numbers. The belt geometry is the same as that
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FIGURE 5. Bubble in viscous bath with belt support (ζ1, ζ2) = (−0.7, 0.0) [(θ1, θ2) =
(134◦, 90◦)]: (a) decay rate Re[γ ∗] and (b) oscillation frequency Im[γ ∗] against viscosity
parameter εe for modes n= 1, 2, 3.
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FIGURE 6. Viscous drop with belt support (ζ1, ζ2) = (−0.7, 0.0) [(θ1, θ2) = (134◦, 90◦)]:
(a) decay rate Re[γ ∗] and (b) oscillation frequency Im[γ ∗] against viscosity parameter εi for
modes n= 1, 2, 3.

for the inviscid modes, figure 4, Part 1. Even though viscosity has a strong influence
on the frequencies, the mode shapes shown in figure 7(a–c) cannot be distinguished
from those in figure 4(a–c), Part 1, at least for ε 6 εc. Later, we shall use this
observation to estimate εc (‘frozen interface’ approximation).

Figure 7 also plots the streamlines (d–f ), vector potential (g–i) and velocity potential
(j–l) associated with modes n = 1 (a,d,g,j), n = 2 (b,e,h,k) and n = 3 (c,f,i,l). A
comparison between the flow field (d–f ) for viscous motions to that for inviscid
motions (cf. figure 4 (d–f ), Part 1) shows that the viscous motion is more complex,
particularly near the solid support. Specifically, figure 7(f ) shows that a stagnation
point develops near the solid support for the n = 3 mode. The primary difference
between the inviscid (Part 1) and viscous (Part 2) motions in this problem is the
vorticity equation (2.17) of the flow field. For our problem, the vector potential is a
measure of the vorticity. Figure 7(g–i) shows that the vector potential (vorticity) for
the n = 2, 3 modes is localized around the drop surface, whereas for the n = 1 mode,
the vector potential penetrates deeper into the droplet bulk.

Viscous effects resulting from the no-slip boundary might be expected to scale with
the extent of no-slip. To test this, we plot eigenvalues γ ∗ against the scaled arclength
of the spherical-belt support θ1 − θ2, for two different geometries each starting from
a pinned circle of constraint, one above the equator, cos θ1 = 0.4 (θ1 = 66◦), and the
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FIGURE 7. Eigenmodes (a,d,g,j) n = 1, (b,e,h,k) n = 2, and (c,f,i,l) n = 3 for viscosity
parameter εi = 0.5, illustrating the (a–c) disturbed interface, (d–f ) streamlines (v), (g–i)
vector potential (B) and (j–l) velocity potential (φ) for a drop in a vacuum constrained by
a spherical belt with (ζ1, ζ2) = (−0.7, 0) [(θ1, θ2) = (134◦, 90◦)]. Here the dashed (dotted)
curves of (d–f ) denote points of zero horizontal (vertical) velocity.

other below the equator, cos θ1 = −0.7 (θ1 = 134◦), and then widening the circle to
a bowl by decreasing θ2 until cos θ2 = 1 (θ2 = 0◦) and to a belt by decreasing θ2

until cos θ2 = 0 (θ2 = 90◦), respectively. In all cases, both decay rate and frequency
monotonically increase with θ1 − θ2, consistent with extending the no-slip support
and reducing the free surface. On the other hand, the monotonic increase shows
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FIGURE 8. For mode number n = 1: (a) decay rate Re[γ ∗] and (b) oscillation frequency
Im[γ ∗] against arclength θ1 − θ2 starting at a pinned circle ζ = 0.41 (θ = 66◦, fixed),
thickening to a belt and ending at the small-bowl support (θ2 = 0◦) .
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FIGURE 9. For mode number n = 2: (a) decay rate Re[γ ∗] and (b) oscillation frequency
Im[γ ∗] against arclength θ1 − θ2 starting at a pinned circle ζ = 0.41 (θ1 = 66◦, fixed),
thickening to a belt and ending at the small-bowl support (θ2 = 0◦).

quite different rates for the different cases. Starting at a pinned circle above the
equator, figure 8(b) shows that frequency Im[γ ∗] increases linearly with belt width
and then plateaus. This is consistent with the inviscid behaviour where the frequency
increases with extent of support until all the nodes disappear from the free surface.
The damping Re[γ ∗], figure 8(a), in contrast, shows a nonlinear sigmoidal-like growth
before plateauing. The growth rate starts below average and then increases to above
average. This suggests that both the extent of constraint and the internal structure
of the flow contribute. In contrast, for mode n = 2, the damping is nearly constant
and then abruptly shifts to the plateau, figure 9(a), reminiscent of the ‘dead’ and
‘active’ regions of the inviscid modes (Part 1). On the other hand, figure 9(b), the
corresponding frequency increases sub-linearly until it plateaus.

Starting at a pinned circle below the equator for the n = 1 mode, the damping
and frequency show more gradual transitions to the plateau region, figures 10(a) and
10(b). For mode n = 2, the rates of growth of damping and frequency are similar to
those for the mode n = 2 above-equator case, except less pronounced, figures 11(a)
and 11(b), respectively. In summary, for both geometries for mode n = 1, growths of
frequencies are essentially linear with support extent until they plateau, after which the
remaining free surface acts much like a rigid support. In contrast, for both geometries
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FIGURE 10. For mode number n = 1: (a) decay rate Re[γ ∗] and (b) oscillation frequency
Im[γ ∗] against arclength θ1 − θ2 starting at a pinned circle ζ = −0.69 (θ1 = 134◦, fixed)
thickening to a small-belt support θ2 = 90◦.
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FIGURE 11. For mode number n = 2: (a) decay rate Re[γ ∗] and (b) oscillation frequency
Im[γ ∗] against arclength θ1 − θ2 starting at a pinned circle ζ = −0.69 (θ1 = 134◦, fixed),
thickening to a small-belt support θ2 = 90◦.

and both modes, the damping typically increases with support extent in a nonlinear
way, suggesting that both the extent of support and internal viscous layers play a role.

6.1. Critical damping and the ‘frozen interface’ approximation
The viscous drop is anticipated to have a critical damping εc which will depend on
location and extent of belt support, important information for applications. Near the
critical damping, direct calculation of yN and γ ∗N with increasing truncation N is not
robust, as mentioned above. However, as also noted above, the mode shape for the
viscous belted sphere varies little from the inviscid mode shape over a wide range of
εi below εc. This suggests freezing the interface shape at the inviscid shape in order to
find γ ∗(εi) from (1.9) and thereby obtaining εc = εc(ζ1, ζ2).

To begin, let yn
i be the inviscid interface shape of mode number n. Substitute yn

i
into (3.21)–(3.25) to obtain the coefficients of operator equation (3.20). Note that
coefficient Φd now depends implicitly on unknown γ ∗. Taking inner products with yn

i
yields the scalar disturbance energy balance,

γ ∗2 (Md

[
yn

i

]
, yn

i

)+ γ ∗ (Φd

[
yn

i ; γ ∗, εi

]
, yn

i

)+ (K [yn
i

]
, yn

i

)= 0, (6.1)

from which the complex frequency may be computed. Note that the dissipation
operator Φd(γ

∗) includes viscous effects in a way that prior approximations have
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FIGURE 12. Frozen-interface approximation (denoted ‘i’) for the viscous drop with belt
support (ζ1, ζ2) = (−0.7, 0): (a) decay rate Re[γ ∗] and (b) oscillation frequency Im[γ ∗]
against viscosity parameter εi for modes n= 1, 2, 3.

1

5
2

2.5

1

1.5
1

 

10

25

40

15

–0.5

0

0.5

–0.5 0 0.5
–0.2

–0.1

0

0.1

0.2

–0.1 0 0.1
–1.0

1.0

–1.0 1.0 –0.2 0.2

(a) (b)

FIGURE 13. Frozen-interface approximation: critical viscosity parameter εc for the n = 1
mode as a function of support size (ζ1, ζ2) (b is a blow-up of the dashed region in a). The
limiting case of a pinned circle of contact at the equator (ζ1, ζ2) = (0, 0) (denoted ? in b)
recovers the critical viscosity parameter for the free viscous drop εc→∞.

not (cf. the ‘viscous potential flow’ and ‘dissipation method’ mentioned in the
Introduction).

We find that solutions γ ∗ of (6.1) for the critical damping parameter εc converge
with increasing truncation number N. Figure 12 plots the solutions of (6.1) as
they depend upon the viscosity parameter εi for the same spherical-belt geometry
(ζ1, ζ2) = (−0.7, 0) and truncation number N = 13 used to generate figure 6. Looking
at the n = 1 mode curves suggests that the relative error for εc is ∼10 %. Note that
this is a comparison of two approximations. Figure 13 shows the boundary between
under-damped and over-damped motion as it depends on belt size and position,
εc = εc(ζ1, ζ2). This boundary is important for applications, such as the liquid lens
(Olles et al. 2011). As shown in figure 13(b), the critical viscosity parameter grows
very rapidly for small belt sizes in the neighbourhood of the equator. In this region,
the mode shapes closely resemble spherical-cap disturbances (see figures 3 and 4a in
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Part 1), which generate a flow with very little relative motion and small dissipation
leading to large values of the critical viscosity parameter. The limiting case of a
pinned circle of contact at the equator ζ1 = ζ2 = 0 is a node of the n = 1 mode and,
as mentioned earlier, recovers the free viscous drop behaviour (Prosperetti 1980b).
The associated droplet motion consists of a zero-frequency rigid translation with no
dissipation and, hence, the critical viscosity parameter εc→∞ (cf. figure 13b).

7. Concluding remarks
The linear oscillations of an immiscible, viscous fluid drop, held by surface tension

and by a solid support of spherical-belt geometry have been considered here. We have
extended the work of Prosperetti (1980b) and Strani & Sabetta (1988) to include a
latitudinal belt support. Even though the spherical base-state geometry is special, it is
likely that our results have a bearing on the behaviour of coupled droplets in similar
geometries, much as the coupled spherical-cap model was useful in understanding
experimental results for exposed droplets from an overfilled tube (Theisen et al. 2007).

The integro-differential equation governing the interface deformation is formulated
as an eigenvalue problem on linear operators, of the form of a damped harmonic
oscillator. A solution is generated using a spectral method on a constrained function
space. The function space is constructed by defining the interface as the union
of the three pieces: two free surfaces and one surface of support. Solutions are
restricted to these ‘allowable’ candidate functions. At this level of generality, the
free-surface deformations are independent and allowed to communicate, exchanging
volume beneath the surface of support while coupled by the overall volume constraint.
This follows the approach used in the analysis of the inviscid drop, Part 1. In contrast
to Part 1, a no-slip boundary condition must be satisfied on the solid support. To
that end, a set of modified boundary conditions (3.12), valid on the full interface, are
introduced. An indicator function (3.13) is used to ‘turn on’ the solid support. With
the modified boundary conditions, one can derive the operator equations (3.20) and
(3.26). Reduction of the operator equation to a set of linear algebraic equations could
use various functions as a basis. We choose Legendre polynomials since this allows
one to proceed further with closed-form expressions. The solvability condition for this
matrix equation gives rise to the (nonlinear) characteristic equation for the complex
eigenvalue γ ∗. The modified boundary conditions and the solution approach presented
here are verified against limiting cases in the literature (Prosperetti 1980b; Strani &
Sabetta 1988).

Eigenvalue solutions are reported as a function of viscosity parameter ε for a
viscous drop and a bubble in a viscous medium, for selected belt-support positions and
extent. The effect of viscosity is seen to be a combination of the extent of no-slip
at the solid boundary and internal friction due to relative motion in the bulk. For the
bubble, the diffusion of vorticity into the infinite bulk mitigates the influence of the
no-slip boundary. The bubble never undergoes a transition from under- to over-damped.
On the other hand, for the viscous drop, as ε is increased a critical damping εc is
always predicted. Our predictions of critical damping for the drop suffer the same
difficulties reported by Strani & Sabetta (1988), most likely due to the inefficiency in
capturing viscous structures by the Legendre function basis.

We report that, although internal flow structures change significantly with increasing
ε, the interface shapes change little. This motivates a ‘frozen interface’ approximation
as a means to estimate the critical damping for the viscous drop. Based on relative
error, it provides an estimate of εc that is within ∼10 % of the actual value. Critical
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damping as it depends on belt geometry is also estimated. Contours over the geometry
plane are presented.

This work focuses on axisymmetric interface dynamics of a viscous drop. There also
exist shear/rotational wave solutions of the governing equations. These are admitted if
one considers an additional vector potential that can generate a radial component of
vorticity. Extension to these over-damped motions is given in appendix C.
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Appendix A. Modified boundary conditions
The details required to determine T i

n(R) and Te
n(R) from the modified boundary

conditions (3.12) are given here. For efficiency in presentation, define

J̃n ≡ Jn+3/2

(
(γ ∗/εi)

1/2)
, H̃n ≡ H(1)

n−1/2

(
(µγ ∗/εi)

1/2)
. (A 1)

To begin, apply the definition of the velocity field (2.20) to (3.12a) to give

T i
n

(
1

J̃n

)
+ Te

n

(
1

H̃n

)
=−γ dn

(
2n+ 1

n(n+ 1)

)
. (A 2)

Similarly, (2.16a), (2.20) and (3.5) are applied to (3.12b) yielding(
µe

{
Te

n

(
1+ 2

H̃n

)
+ γ dn

2 (n+ 2)
n+ 1

}
− µi

{
T i

n

(
1− 2

J̃n

)
+ γ dn

2 (n− 1)
n

})
× (1− Γ (x))P(1)n (x)= µi

(
−T i

n

2

J̃n

− γ dn
1
n

)
Γ (x)P(1)n (x). (A 3)

To isolate T i
n and Te

n , recognize that the sum on n is implicit and both sides of (A 3)
may be expanded as a series in P(1)n (x) to give

T i
n

(
µi

Ln

J̃n

− µi

(
1− 2

J̃n

)
(1− Ln)

)
+ Te

n

(
µe

(
1+ 2

H̃n

)
(1− Ln)

)
= γ dn

(
2
(
µi

n− 1
n
− µe

n+ 2
n+ 1

)
(1− Ln)− µi

Ln

n

)
. (A 4)

Equations (A 2) and (A 4) are solved to give T i
n and Te

n as functions of dn, or
equivalently the interface perturbation y.

Appendix B. Immiscible drop operator equation
To derive the operator equation for an immiscible drop, begin by using the scalings

(3.18) to recast (3.17) in the form

∞∑
n=1

{((
ρ

1
n+ 1

+ 1
n

)
γ ∗

2 + 2 (n− 1) (n+ 2) (µ− 1) γ ∗εi

)
dn + n (n+ 2) µγ ∗εiT

e
n

− (n− 1) (n+ 1) γ ∗εiT
i
n

}=− ((1− x2
)

yxx − 2xyx + 2y
)
, (B 1)
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where T i
n and Te

n are determined by solving (A 2) and (A 4) to give

T i
n =

µ

(
1+ 2

H̃n

)
(1− Ln)

2n+ 1
n(n+ 1)

+ 2
(
(1− Ln)

(
n− 1

n
− µn+ 2

n+ 1

)
− εi Ln

n

)
1

H̃n
1

H̃n

(
εi

Ln

J̃n
−
(

1− 2

J̃n

)
(1− Ln)

)
− 1

J̃n

(
µ

(
1+ 2

H̃n

)
(1− Ln)

) dn (B 2)

and

Te
n =

((
1− 2

J̃n

)
(1− Ln)− εi

Ln

J̃n

)
2n+ 1

n(n+ 1)
−
(

2
(

n− 1
n
− µn+ 2

n+ 1

)
(1− Ln)− εi

Ln

n

)
1

J̃n

1

H̃n

(
εi

Ln

J̃n

−
(

1− 2

J̃n

)
(1− Ln)

)
− 1

J̃n

(
µ

(
1+ 2

H̃n

)
(1− Ln)

) dn. (B 3)

Equations (B 2) and (B 3) may be substituted into (B 1) to produce an integro-
differential operator equation for an immiscible drop with material parameters ρ,µ
and εi.

Appendix C. Rotational wave solution of the viscous drop under the spherical-
belt constraint

Previously, the assumption was made that the vorticity could be written in the
form (2.17) using a properly chosen vector potential B. This assumption gave rise
to solutions with non-trivial radial velocities at the interface and equivalently shape
oscillations. To derive the rotational wave solutions, one introduces a vector potential
A that generates a radial component of vorticity (Chandrasekhar 1961),

ω =∇ ×∇ × A, A= A(r, θ)er. (C 1)

This class of solution does not have a radial component to its velocity field, but rather
tangential velocities. As with the other field quantities, A(r, θ) can be expanded as

A(r, θ)=
∞∑

n=1

Sn(r)Pn(cos θ). (C 2)

Substitution of the vector potential (C 1) into the vorticity equation (2.10c) gives

µ

ρ

d2Sn

dr2
+ γ Sn − µ

ρ

n (n+ 1)
r2

Sn = 0, (C 3)

whose general solution is written as

Si
n(r)=

( r

R

)1/2
Si

n(R)
Jn+1/2

(
zi
)

Jn+1/2 (Zi)
, Se

n(r)=
( r

R

)1/2
Se

n(R)
H(1)

n+1/2 (z
e)

H(1)
n+1/2 (Ze)

(C 4)

with

zi,e ≡ r

(
γ
ρi,e

µi,e

)1/2

, Zi,e ≡ R

(
γ
ρi,e

µi,e

)1/2

. (C 5)

The remaining unknowns Si
n(R), Se

n(R) are determined from the shear boundary
conditions

vi
ϕ = ve

ϕ

[
∂Df

1, ∂Df
2

]
, (C 6a)

τ i
rϕ = τ e

rϕ

[
∂Df

1, ∂Df
2

]
, (C 6b)

vi
ϕ = ve

ϕ = 0 [∂Ds] . (C 6c)
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As before, one can use the indicator function to transform (C6) into a uniform set of
boundary conditions,

vi
ϕ|r=R = ve

ϕ|r=R, (C 7a)(
τ i

rϕ − τ e
rϕ

) |r=R (1− Γ (x, ζ1, ζ2))= CΓ (x, ζ1, ζ2) v
i
ϕ|r=R, (C 7b)

valid on the entire interface. The relations

vϕ =−1
r

dPn

dθ
Sn(r), τrϕ = µ

(
2
r2

Sn(r)− 1
r

dSn

dr

)
dPn

dθ
, (C 8)

are applied to the modified boundary conditions (C7) to generate the characteristic
equation,

µHn+1/2 (X
e)− Jn+1/2

(
Xi
)= (n+ 2) (µ− 1)+ (1− µ) Ln

1− Ln
, (C 9)

that determines the growth rate of the rotational waves. Here the following definitions
have been used:

Xi ≡ (γ ∗/εi)
1/2
, (C 10a)

Xe ≡ (µγ ∗/εi)
1/2
, (C 10b)

Ln ≡
(∫ 1

−1

(
P(1)n (x)

)2
Γ (x, ζ1, ζ2) dx

)(
2n+ 1

2
(n− 1)!
(n+ 1)!

)
. (C 10c)
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