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An inviscid spherical liquid drop held by surface tension exhibits linear oscillations of a
characteristic frequency and mode shape �Rayleigh oscillations�. If the drop is pinned on a circle of
contact the mode shapes change and the frequencies are shifted. The linear problem of inviscid,
axisymmetric, volume-preserving oscillations of a liquid drop constrained by pinning along a
latitude is solved here. The formulation gives rise to an integrodifferential boundary value problem,
similar to that for Rayleigh oscillations, and for oscillations of a drop in contact with a spherical
bowl �M. Strani and F. Sabetta, J. Fluid Mech. 141, 233 �1984��, only more constrained. A spectral
method delivers a truncated solution to the eigenvalue problem. A numerical routine has been used
to generate the eigenfrequencies/eigenmodes as a function of the location of the pinned circle of
constraint. The effect of pinning the drop is to introduce a new low-frequency eigenmode. The
center-of-mass motion, important in application, is partitioned among all the eigenmodes but the
low-frequency mode is its principal carrier. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3103344�

I. INTRODUCTION

It is well known that a plucked liquid drop will oscillate,
reflecting a competition between inertia and surface tension
�capillary action�. The study of small, inviscid, free oscilla-
tions of an isolated, spherical drop is attributed to Rayleigh.1

The Rayleigh frequencies of a drop immersed in a second
fluid are given by

�n
2 =

n�n − 1��n + 1��n + 2�
�n + 1��i + n�e

�

R3 , �1�

where �, �i, �e, and R are surface tension, drop density �in-
terior�, density of fluid of immersion �exterior�, and the ra-
dius of the undeformed drop, respectively. The Rayleigh
mode shapes are given by the Legendre polynomials.2 The
n=0 and n=1 modes are zero frequency modes which can be
attributed to conservation of volume and translational invari-
ance, respectively. In practice, the smallest nonzero fre-
quency mode is important, because this mode is typically the
first to be excited. The lowest nonzero mode corresponds to
n=2 for Rayleigh oscillations. Interested in low-gravity ap-
plications, Trinh and Wang3 experimentally verified Eq. �1�.
These results, which are valid for small perturbations,
have been extended to moderate amplitude oscillations by
Tsamopoulos and Brown.4 They use domain constrained per-
turbations and a Poincaré–Lindstedt expansion to report cor-
rections to both mode shape and frequency at second order in
amplitude for both droplets and bubbles.

Viscous effects have also been considered for free oscil-
lations of immiscible drops. Miller and Scriven5 derived a
general dispersion equation for the complex oscillation fre-
quency of a viscous fluid droplet immersed in another vis-

cous fluid for both free and inextensible interfaces, valid for
small perturbations. Prosperetti6 used a normal mode analy-
sis for free interfaces, proposed by Miller and Scriven, to
compute the continuous spectrum of a viscous drop in an
immiscible liquid. Basaran7 used a finite element method to
numerically investigate the nonlinear oscillations of viscous
drops and reports strong mode coupling with finite viscosity
and decreased frequency of oscillations for large-amplitude
disturbances, along with recovering the linear predictions of
Prosperetti.

More recently, attention has been paid to spherical fluid
drops under a variety of constraints, because of applications
such as inkjet printing, crystal growth and light focusing us-
ing liquid lenses.8–10 Strani and Sabetta considered the linear
oscillations of a drop in partial contact with a spherical bowl
for both the inviscid11 and viscous12 cases. The unperturbed
shape is a single spherical drop resting on a spherical sup-
port, similar to the contact a golf ball makes with a tee. They
found that an additional low-frequency vibrational mode was
present �n=1�, in comparison with isolated drops where it is
zero �Eq. �1��. This low-frequency mode has been attributed
to oscillatory motion of the center of mass which arises due
to breaking of the translational invariance of the drop. More
recent works report observations of center-of-mass motion of
constrained drops. Basaran and DePaoli13 reported oscilla-
tory center-of-mass motion of pendant drops and Bian
et al.14 also reported a low-frequency slosh mode for a fluid
constrained to a cylindrical tube. In addition, Courty et al.15

showed that the “translational” mode is important for contact
times of bouncing spherical droplets. For all these, the free
surface is a simply connected domain.

Theisen et al.16 considered a liquid overfilling a small
cylindrical hole, drilled in a flat plate, in such a way that a
droplet protrudes on either side of the plate. The total liquid
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volume can be adjusted. The top droplet is subjected to air-
pressure disturbances from a loudspeaker. Theisen et al.
modeled the system as spherical-cap drops coupled through a
length L of liquid and predict the center-of-mass motion.
They compared the predicted frequencies for small-
amplitude motions against experiment. The agreement is rea-
sonable. For large-amplitude initial deformations, however,
nonspherical shapes are common and the model breaks
down. The model in this paper predicts such higher modes
and may be expected to be relevant to the experiments in the
limit L→0 �see Sec. V�. The droplet-droplet configuration is
important to various applications. In grab-and-release appli-
cations, liquid is pumped into the small droplet to form a
liquid bridge against a substrate �grab� and then withdrawn
from the droplet to break from the substrate �release�.17

In spherical-cap liquid lens applications, the focal length
�radius of curvature� of the liquid lens can be quickly and
continuously varied for use in an optical microlens
device.8,9,18,19

In addition to natural oscillations, there has been exten-
sive research on forced oscillations of constrained drops. For
example, Lyubimov et al.20,21 analyzed free and forced oscil-
lations of hemispherical drops for both axisymmetric and
nonaxisymmetric cases. DePaoli et al.22 experimentally ob-
served hysteresis phenomenon in large-amplitude forced os-
cillations of pendant drops, which was numerically observed
by Wilkes and Basaran.23 In another application area, Smith
and co-workers24–26 focused on high-frequency forced oscil-
lations of sessile drops for atomization purposes and low-
frequency forced oscillations for droplet ejection. Drop ejec-
tion for pendant drops had also been studied by Wilkes and
Basaran.27

The purpose of this study is to examine the natural axi-
symmetric oscillations of a liquid drop, pinned on a circle of
contact. This work is an extension of the inviscid study of
Strani and Sabetta,11 where the key difference is that the
domain of the free surface has two components rather than a
single component. The problem may be reduced to solving
an integrodifferential boundary value problem on the free
surface deformation. The resulting operator equation is iden-
tical to that of Rayleigh and of Strani and Sabetta. The re-
spective problems differ only by the boundary conditions
which must be enforced.

When considering the oscillations of an isolated fluid
drop �Rayleigh�, the relevant boundary conditions on the free
surface deformation are boundedness of perturbations at the
north and south poles ��=0,��. In the Strani and Sabetta
problem, the interface deflection must vanish on the bowl of
contact in addition to requiring boundedness at the north pole
��=0�. In both cases, the resulting problems are well-posed
two-point boundary value problems.

In our problem, pinning the fluid drop on a circle of
contact gives rise to an additional boundary condition on the
free surface perturbation. This condition, in addition to the
boundedness at the poles, defines a three point boundary
value problem, thus making the problem overdetermined un-
like standard two-point boundary value problems. Strani and
Sabetta use a Green’s function approach and Legendre series

expansions to reduce the problem to an infinite set of alge-
braic equations.

A spectral method is used here to solve the three point
integrodifferential boundary value problem. The spherical
symmetry of the problem suggests that all relevant quantities
�velocity potential, perturbation amplitude� may be expanded
using Legendre polynomials, the eigenfunctions that corre-
spond to eigenfrequencies �1�. Judicious choice of linear
combinations of Legendre polynomials allows one to gener-
ate basis functions and thereby a function space which obeys
all boundary and integral conditions. A series solution is con-
structed in this function space and then used to reduce the
integrodifferential equation to matrix form, using the stan-
dard L2 inner product.

The pinned circle-of-contact constraint introduces the
low-frequency center-of-mass mode, as well as modifies the
higher frequency modes, according to the position of the
constraint. In general, the higher order mode shapes have an
associated center-of-mass motion. That is, the center-of-mass
motion partitions predominantly to but not solely to the
lowest-frequency mode. Higher mode shapes carry part of
the center-of-mass motion and the fraction carried depends
on the position of the constraint.

II. MATHEMATICAL FORMULATION

The undisturbed shape of the drop is a sphere of radius
R, which is pinned on a latitudinal circle specified by �0, as
in the definition sketch �Fig. 1�. The inner and outer fluids
are inviscid and incompressible, the time dependent �time t�
free surface deformations ��� , t� are small and the flow is
assumed to be irrotational. The effect of gravity is neglected
and only axisymmetric perturbations are considered.

FIG. 1. Definition sketch.
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A. Velocity potential

Assuming the flow is irrotational, the velocity field may
be written as v=−��, where the velocity potential � satisfies
Laplace’s equation on the domain, written in a spherical co-
ordinate system as

�2� = sin �
�

�r
�r2��

�r
� +

�

��
�sin �

��

��
� = 0. �2�

The domain is the combined region internal to and external
to the droplet, D�Di�De where, for linear problems, no
domain perturbation is needed,

Di � ��r,��	0 � r � R,0 � � � �
 ,

�3�
De � ��r,��	R � r � 	,0 � � � �
 .

B. Pressure

The pressure of the fluid is defined by the linearized
Bernoulli equation, valid for small oscillations,

p = p0 + �
��

�t
, �4�

over the domain D. This equation applies in both subdo-
mains. When we need to distinguish between subdomains
below, we will use superscripts for field quantities and sub-
scripts for material properties. Hence, �i and �e will represent
the density of the internal and external fluids, respectively,
while pi and pe are the internal and external pressures, and so
forth.

C. Kinematics

The linearized kinematic condition on the free part of the
surface domain �Df relates the radial velocity to the surface
deflection there,

��

�r
= −

��

�t
on � Df = ��r,��	r = R,� � �0
 . �5�

At the pinned circle-of-contact �Ds, the no penetration con-
dition requires the radial velocity to vanish,

��

�r
= −

��

�t
= 0 on � Ds = ��r,��	r = R,� = �0
 . �6�

D. Momentum balance across interface

The normal stress boundary condition for inviscid fluids
is written as28

pi − pe = � � · n̂ .

That is, the pressure difference across the interface is bal-
anced by the surface tension times the curvature of the per-
turbed interface. For small deflection �, the mean curvature
evaluates to the term in the square brackets,

pi − pe = �� 2

R
−

1

R2� 1

sin �

�

��
�sin �

��

��
� + 2�� , �7�

which holds on the free part of the interface �Df.

E. Conservation of mass

The surface perturbation is constrained by the constant
volume condition �incompressibility�,

�
0

�

� sin �d� = 0. �8�

III. REDUCED SYSTEM

The mathematical model may be reduced in the standard
way by the use of normal modes,

��r,�,t� = 
�r,��ei�t, �9�

���,t� = iy���ei�t, �10�

where the deflection is taken � /2 out of phase with the radial
component of velocity �10�, consistent with the kinematic
condition �5�. Substitution of the normal modes �9� and �10�
into the governing equations �2�–�8� gives a reduced problem
on the new functions 
 and y,

�2
 = 0 on D , �11�

���i

i − �e


e� = −
�

R2� 1

sin �

�

��
�sin �

�y

��
� + 2y on � Df ,

�12�

d


dr
= �y on � Df , �13�

d


dr
= �y = 0 on � Ds, �14�

�
0

�

y sin �d� = 0. �15�

Equations �11�–�15� define an eigenvalue problem on the al-
lowable perturbations.

A. Velocity potential solution

The reduced velocity potential 
 obeys Laplace’s equa-
tion on the domain; Eqs. �11� and �13� may be recognized as
a standard Neumann type boundary value problem. Introduc-
ing �=cos �, separation of variables and the method of
Frobenius may be used to find a standard solution,


i�r,�� = �R�
0 + �
k=1

	

k

k

rk

Rk Pk���� , �16�


e�r,�� = − �R��
k=1

	

k

k + 1

Rk+1

rk+1 Pk���� , �17�

where


k =
�y,Pk�
�Pk,Pk�

,
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�Pk,Pk� =
2

2k + 1
.

Here �f ,g� is the standard inner product of square integrable
functions on the domain �� �−1,1�,

�f ,g� = �
−1

1

f���g���d� . �18�

B. Surface deformation

Expanding �12� using the new coordinate � gives

d

d�
��1 − �2�

dy

d�
� + 2y

= −
�i�R2

�
�
i�R,�� −

�e

�i

e�R,�� .

The solutions �16� and �17� may be used to reduce the inho-
mogeneous differential equation on the free surface pertur-
bation, to an integrodifferential equation,

�1 − �2�
d2y

d�2 − 2�
dy

d�
+ 2y

= − ���y,P0� + �k=1

	 �1

k
+

�e

�i

1

k + 1
� �y,Pk�

�Pk,Pk�
Pk ,

�19�

where �=�i�
2R3 /� is the scaled eigenfrequency.

Solutions of Eq. �19� must satisfy the following bound-
ary conditions. All solutions must be bounded at the north
and south poles

y�1� − bounded. �20�

The no penetration condition �14� reduces to a zero ampli-
tude perturbation condition at the circle of contact, where a
�cos �0,

y�a� = 0. �21�

In addition, Eq. �15� reduces to

�
−1

1

y���d� = 0. �22�

Equations �19�–�22� represent the reduced eigenvalue prob-
lem on the free surface perturbation.

IV. SOLUTION METHOD

It is productive to frame the integrodifferential equation
as an operator equation,

L�y� + �M�y� = 0. �23�

The linear operators defined via Eq. �19� are

L�•� � �1 − �2�
d2

d�2 • − 2�
d

d�
• + 2• �24�

and

M�•,
�e

�i
 � �•,P0� + �

k=1

	 �1

k
+

�e

�i

1

k + 1
� �•,Pk�

�Pk,Pk�
Pk. �25�

Here �e /�i is the density ratio and may be treated as a pa-
rameter. If the functions y are restricted to boundary condi-
tion �20� and the volume constraint �22�, then the eigenvalue
problem corresponds to the classical Rayleigh problem. The
operators L and M are then self-adjoint and M is a positive
operator. Solution gives Legendre polynomials as eigenfunc-
tions, which are the Rayleigh modes, and eigenvalues which
correspond to frequencies �1�.

Alternatively, the problem may be posed as a variational
one following a standard Rayleigh–Ritz procedure. Our strat-
egy will be to construct a function space that incorporates the
additional boundary condition �21� and then seek a series
solution to Eq. �23� using appropriately chosen basis func-
tions that span this new space.

A. Basis functions

The idea is to construct basis functions hk��� satisfying
Eqs. �20�–�22�. Then a solution of the following form is
sought:

y��� = �
k=1

	

fkhk��� . �26�

The procedure is straightforward but we offer some details of
the steps involved.

To construct the function space, we begin by assuming a
test function of the form g���=�i=0

N ciPi���. The Legendre
polynomials are used because they form a complete, ortho-
normal set on the domain29 and they automatically satisfy
Eq. �20�.

Consider condition �22� first. Substitute the test function
g��� into Eq. �22�,

�
−1

1

g���d� = c0�
−1

1

P0���d� + c1�
−1

1

P1���d� + ¯

+ cN�
−1

1

PN���d� = 0. �27�

Since �−1
1 Pi���d�=0 for all i�0,29 the only contribution

from Eq. �27� is the first term and c0=0 is determined.
Next, enforcing condition �21� requires

g�a� = c1P1�a� + c2P2�a� + ¯ + cNPN�a� = 0. �28�

This equation can be interpreted as the inner product be-
tween a fixed vector and the unknown coefficient vector
�c1 ,c2 , . . .cN�. It says that there are N−1 linearly independent
coefficient N-dimensional vectors that solve Eq. �28�. In
other words, there are N−1 basis functions. They are written
as

vk��� = Pk��� −
Pk�a�
P1�a�

P1���, k = 2,3, ¯ ,N . �29�

It can be readily verified that these functions satisfy Eqs.
�20�–�22�. By the above remark, N−1 such functions will
span the reduced space �space with constraint incorporated�
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or, alternatively, if one function in the direction of the con-
straint is appended, these N functions will span the original
unconstrained space.

The basis functions �29� are linearly independent but
they are not orthonormal. For efficiency in computations, it
is convenient to work with an orthonormal set. The last step
is to use a Gram–Schmidt procedure on vk to deliver ortho-
normal functions, hk, renumbered k=1,2 , ¯ ,N−1. This step
is done using symbolic computer algebra.

B. Reduction to matrix form

We start by writing the truncated expansion,

y��� = �
k=1

N−1

fkhk��� . �30�

Note that this is an order N−1 approximation in the reduced
space but an order N approximation in the unconstrained
space. That is, the surface perturbation has N−1 degrees of
freedom, all orthogonal to the constraint direction �the Nth
dimension�. The operator equation �23� is reduced to a ma-
trix equation

Tijf j = 0 �31�

by taking inner products with the basis functions,

Tij = �L�hi� + �M�hi�,hj� = �
−1

1

�L�hi� + �M�hi��hjd� .

�32�

For example, the 1j position is the projection onto the jth
basis function, when the operator is applied to the first basis
function.

Solutions of Eq. �31� determine the eigenvalues �n and

the eigenvectors f̂ �n�. The eigenfunctions yn are then con-

structed by applying the eigenvector coefficients f̂ k
�n� to the

orthonormal basis functions hk,

yn��� = �
k=1

N−1

f̂ k
�n�hk��� . �33�

The eigenfunctions are determined only up to a constant and
the final step is to fix that constant by specifying,

ŷn =
yn

max�	yn�− 1�	, 	yn�1�	�
. �34�

This scaling is reminiscent of the Rayleigh eigenfunctions
where a similar scaling is applied to the north pole only ��
=1�. We scale with respect to the maximum displacement at
either pole ��= 1� because, unlike the Legendre polyno-
mials �Rayleigh eigenfunctions�, our eigenfunctions are nei-
ther symmetric nor antisymmetric about the equator and be-
cause the norm on the eigenfunctions is inherited from the
norm on the Legendre polynomials.

A number of checks on the computational results are
performed. Limiting cases can be compared to results in lit-
erature and these will be discussed in Sec. V. Another check
uses the self-adjoint nature of the operator L. The null space
of L is found to be P1���, which has a node at a=0, thus

satisfying Eq. �21�. The Fredholm alternative applied to Eq.
�23� requires that the right hand side, �M�y�, be orthogonal
to the null space of L; that is,

�P1���,− �M�hj�� = 0, �35�

where

M�hj� � �
k=1

	 �1

k
+

�e

�i

1

k + 1
�� �hj���,Pk����

�Pk���,Pk����Pk��� .

The term in the brackets on the right hand side is nonzero,
which requires that �=0. The computational results show
that the n=1 eigenfrequency tends to zero when the circle of
contact tends to the equator of the fluid drop �a=0�, consis-
tent with the Fredholm alternative requirement.

V. RESULTS

The modes and vibration frequencies of the constrained
fluid drop are computed. The scaled frequencies �n for the
first three modes are plotted in Fig. 2 as a function of the
location of the circle of contact a, for �e /�i=0. Also plotted,
as horizontal lines, are the corresponding Rayleigh frequen-
cies �R in the legend�. The frequency of the constrained
problem is never lower than that of the unconstrained prob-
lem, with equality achieved whenever the constraint falls on
a node of the corresponding Rayleigh mode �i.e., a node of a
Legendre polynomial�. This is anticipated since the con-
straint is satisfied “naturally” in the latter case. What is not
anticipated is that the constrained frequency can more than
double the Rayleigh frequency for certain pin locations. For
example, pinning the n=2 mode at the equator raises the
frequency from 8 to 22.

Much like the local minimums of Fig. 2 which occur at
“natural” pin locations, the local maximums occur at “un-
natural” pin locations with respect to the “unconstrained”
Rayleigh modes. The definition of an “unnatural” pin loca-
tion becomes apparent when the eigenfrequencies and eigen-
modes are computed. The results presented here were ob-
tained with a 13 term expansion, which gives convergence of
the first three eigenfrequencies to within 0.1% for all pin
locations. The rate of convergence depends upon the pin lo-
cation. For example, the n=2 mode shows convergence to
the prescribed tolerance �0.1%� using only five terms for
a=−0.557, a natural location for this mode. On the other

�1 �0.5 0.5 1
a

10

20

30

40

50

60

R3 Ω2 Ρi��������������������
Σ n�3 R

n�2 R
n�3
n�2
n�1

FIG. 2. Eigenfrequency vs pin location ��e /�i=0�.
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hand, if the drop is pinned at the equator, the n=2 mode
converges to the prescribed tolerance using 10 terms. If one
desires the eigenfrequency and mode shape for a high wave-
number, say n=20, the number of terms necessary in the
expansion is of the order 30. However, the recursive nature
of the Gram–Schmidt procedure makes it very computation-
ally intensive to generate 30 orthonormal basis functions;
this is the step that computationally limits the approach.

Figure 2 also shows that pinning the drop introduces a
low-frequency mode �n=1� not present in the Rayleigh case.
This mode has been reported previously by Strani and
Sabetta,11 among others. The Strani study considered a drop
in partial contact with a spherical-cap support, remarking
that the new mode “tends to a zero frequency rigid displace-
ment” as the constrained portion of the surface vanishes.
The Strani limit of the contact region shrinking to a point
��→�� coincides with our limit of the circle shrinking to a
pole �a→ 1�. Our results agree with Strani’s in this com-
mon limit and both results tend to the corresponding frequen-
cies �1�. Mode shapes and velocity potentials for this case are
shown in Fig. 3.

Another special pinning location is the equator. For the
Rayleigh problem, all odd modes have a node at �=0.
Therefore, when a=0, all odd constrained frequencies corre-
spond to odd Rayleigh frequencies. The mode shapes are
shown in Fig. 4, above the corresponding velocity potentials,
where P1��� and P3��� are recognized as shapes for n=1
and n=3. Figure 5 shows the first three eigenfunctions for
a=−0.557, which is the location of a node for P2���. Not
surprisingly, the second mode shape corresponds to P2���.

In view of the completeness of the Legendre polynomi-
als, any shape can be decomposed into a weighted sum of
Pn���. These weights, for the mode shapes shown in Figs.
3–5 are reported in Appendix B for reference.

For the Rayleigh problem, the n=1 mode has zero fre-
quency �1� and may be associated with the linearized center-
of-mass motion of the drop �see Appendix A�. The imposed
constraint, fixed in the laboratory frame, breaks the transla-
tional invariance to typically yield a nonzero frequency for
the center-of-mass motion. For the Rayleigh modes, the
center-of-mass motion is completely determined by the
n=1 mode and the higher order mode shapes are effectively
decoupled for motion of the center of mass. In contrast, there
is no such simple partition for constrained motions.

Our interest is in what role the center of mass plays in
the higher modes that we report in this paper. To that end, the
contribution of the center of mass motion �zcm� to any mode
is found to be �zcm� /R=3 /2iei�nt�ŷn , P1� in Appendix A. Un-
derstanding this contribution is important in applications
such as ink-jet printing where generating large excursions of
the center-of-mass often correlates with pinch-off of drop-
lets. Even though this paper restricts to small-amplitude mo-
tions, such linear results are known to often carry through to
nonlinear behavior.

The center of mass is found to oscillate at the eigenfre-
quency �n with a contribution to the eigenmode �ŷn , P1�.
Figure 6 shows the decomposition �zcm�n= �ŷn , P1� as a func-
tion of pinning location. The n=1 mode carries the majority
of the center-of-mass motion, but not all of it. The higher
mode shapes are accompanied by an associated motion of the
center of mass, thereby coupling the translation and oscilla-
tory Rayleigh modes. Richard et al.30 postulated that this

�d� �e� �f�

�a� �b� �c�

FIG. 3. Eigenmode ��a�–�c�� and velocity potential ��d�–�f�� for a=−0.99.
Mode n=1 ��a� and �d��, n=2 ��b� and �e��, and n=3 ��c� and �f��.

�d� �e� �f�

�a� �b� �c�

FIG. 4. Eigenmode ��a�–�c�� and velocity potential ��d�–�f�� for a=0. Mode
n=1 ��a� and �d��, n=2 ��b� and �e��, and n=3 ��c� and �f��.

�d� �e� �f�

�a� �b� �c�

FIG. 5. Eigenmode ��a�–�c�� and velocity potential ��d�–�f�� for a=−0.557.
Mode n=1 ��a� and �d��, n=2 ��b� and �e��, and n=3 ��c� and �f��.

�1 �0.5 0.5 1
a

0.2

0.4

0.6

0.8

1
�zcm�n

n�4
n�3
n�2
n�1

FIG. 6. Center-of-mass motion contribution to eigenmodes
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coupling might explain the discrepancy between experimen-
tal and theoretical prefactor values for contact and impact
times for droplet bouncing.15 While it may be convenient to
think of the n=1 mode as a center-of-mass mode, it is clearly
an approximation, at best.

The ordering of the center-of-mass decomposition for
the n�1 modes is not preserved with pin location �Fig. 7�.
For example, the n=2 mode carries less center-of-mass mo-
tion than the n=3 or n=4 mode for a pin location near
a=0.557 �the node of P2����.

For a fixed initial deformation amplitude and/or kinetic
energy, suppose one would like to excite a preferred mode to
get the greatest extension of the center of mass in order to
encourage a pinch-off of a certain volume, say, Figs. 6 and 7
provide a guide as how to choose the optimal pin location for
such behavior.

The above results have illustrated the behavior for
�e=0. Results for other density ratios are readily computed.
Increasing the ratio of outer to inner density ��e /�i� is found
to decrease the eigenfrequencies compared to the case of an
isolated fluid drop ��e=0�. Let �n

0 denote the nth eigenfre-
quency for �e=0 and �n be the eigenfrequency for �e�0.
Using the definition of �, we set �2=�n

0 /�n as the ratio of the
eigenfrequency for an isolated drop to the eigenfrequency for
�e�0. The computed �2 against ��e /�i� is shown in Fig. 8.
It is seen that a nonzero outer density has a greater effect on
the higher frequency modes, which is consistent with the
numerical results of Strani and Sabetta for varying density
ratios in the common limit, a→−1 �Fig. 8�.

VI. CONCLUDING REMARKS

The classical Rayleigh problem can be posed as a varia-
tional problem for a quadratic functional. The minimization
is taken over functions that satisfy conditions �20� and �22�.
We refer to this as the unconstrained problem. Equation �23�
represents the corresponding Euler–Lagrange equation, ob-
tained by requiring the first variation to vanish. In this paper,
as an extension of the Rayleigh problem, we have restricted
candidate functions to be pinned on a latitudinal circle-of-
constraint �21�. Using the Rayleigh–Ritz variational
approach,31 one can show that the frequency of the con-
strained problem cannot decrease relative to the uncon-
strained one. The eigenvalues and eigenfunctions of the con-
strained problem that we compute directly are consistent
with these bounds.

One motivation for our study is to compare against pre-
dictions of the spherical-cap model. Theisen et al.16 re-
stricted to spherical-cap shapes in considering the dynamics
of the center of mass of two droplets coupled through a tube.
In the limit of zero tube length, the system reduces to two
spherical caps coupled along a common circle-of-contact.
When the two caps are complementary pieces of a sphere,
the equilibrium state corresponds to a sphere with a latitudi-
nal circle-of-constraint, the problem that we consider.
Among other results, they report frequency of oscillation of
small-amplitude motions as it depends on a. The frequency
of our mode n=1 shows a qualitatively similar dependence
on a as the spherical-cap mode �Fig. 9�. Both give an oscil-
lation frequency of zero when a=0 and a=1 and have a
single maximum near a=0.7. On the other hand, there is
quantitative discrepancy between the frequencies. This can
be traced to the different shapes allowed near the circle of
constraint. For the spherical caps, the tangent to the interface
from below and from above the pinning latitude must be
discontinuous �except for equilibrium shapes�. On the other
hand, the formulation in this paper does not allow a singu-
larity in curvature, which precludes discontinuous slopes.
Thus, the spherical-cap shape may reasonably capture the
observed frequencies for finite nonzero tube lengths but will
likely fail quantitatively for sufficiently short tubes.

The issues are illustrated in Fig. 10. A snapshot of the
two coupled drops, digitally modified to remove the tube, is
seen in Fig. 10�a�16 Figure 10�b� shows the n=2 computed
eigenmode, for a pin location slightly away from the equator
to account for small gravitational effects on the static equi-

�1 �0.5 0.5 1
a

0.1

0.175

�zcm�n

n�4
n�3
n�2

FIG. 7. Center-of-mass motion contribution to higher eigenmodes �blowup
of Fig. 6�
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FIG. 8. Density variation in eigenmodes for a=−0.99.
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FIG. 9. Frequency vs pin location: spherical-cap �SC� and n=1 mode.
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librium shape. This qualitative comparison is acceptable if
one ignores the behavior near the contact line. The photo-
graph shows different apparent contact angles for the top and
bottom interfaces, a feature especially apparent at the right
side where the top contact line has evidently depinned. Fur-
thermore, comparison near the contact-line, photo against
computation, shows a different curvature. In addition, it
should be noted that in the computed shape, the tangents at
the contact-line appear dissimilar at this scale but are actu-
ally smooth, consistent with the discussion of the previous
paragraph. Because of the contact-line issues and the influ-
ence of the tube, quantitative comparison with the experi-
ments is precluded. The point here is to elucidate these
issues.

A practical question regarding the computations pre-
sented in this paper is whether there is a preferred way to
excite the system to get the greatest extension of the center
of mass, say, for a fixed constraint position and initial defor-
mation amplitude. Clearly, the n=1 mode carries the major-
ity of the center-of-mass motion, but the excursion of the
n=2,3 , . . . modes may be unexpected. One might think that
the lower order modes to carry more of the center of mass
than the higher order modes, considering that the velocity
fields for the higher order modes are more localized on the
surface �see Sec. II A�. On the contrary, for certain pin loca-
tions, it is seen that the higher modes carry more of the
center-of-mass motion. For these pin locations, to get the
greatest extension of the center of mass, one should prefer-
entially excite particular modes.

A goal of this work is to extend Strani and Sabetta’s
analysis to include “belts” of restricted deformation on the
sphere. That is, suppose one wishes to pin the interface be-
tween north latitudes 50° and 70°. This can be done by add-
ing a number of circular pinning constraints. Appendix C
shows how the analysis for a single constraint can be readily
generalized to two pinned circles. The spherical bowl con-
straint considered by Strani is recovered with a sufficient
number of closely placed pinning circles. A result of the
analysis for two circles is that the frequency gaps seen in Fig.
2 begin to fill. That is, according to Fig. 2, there is no pin-
ning location to give a scaled frequency between 22 and 30.
By adding a second constraint, one can choose a pin location
to achieve any desired frequency.
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APPENDIX A: CENTER-OF-MASS MOTION

Here we use the definition of the center of mass to de-
compose the eigenmodes into center-of-mass motion �Figs. 6
and 7�. The center-of-mass resides on the z-axis due to the
assumed axisymmetry of perturbations. We may define the
center-of-mass zcm of a given perturbation ��� , t� in the stan-
dard way as

mzcm =� zdm = 2���
0

� �
0

r

r3 sin���cos���drd�

=
��

2
�

0

�

r4 sin���cos���d� , �A1�

where the radial perturbation coordinate is defined in Fig. 1
as

r = R�1 + ����,t�� , �A2�

and

r4 = R4�1 + ����,t��4 = R4�1 + ��4���,t�� + ¯
 . �A3�

Likewise, the center-of-mass coordinate may be expanded as

zcm = �zcm�0 + ��zcm�1 + ¯ . �A4�

Expanding Eq. �A1� in � gives

m��zcm�0 + ��zcm�1 + ¯�

=
��R4

2
�

0

�

�1 + �4���,t� + ¯�sin���cos���d� ,

�A5�

m��zcm�0 + ��zcm�1 + ¯�

=
��R4

2
�

0

�

sin���cos���d� + �2��R4�
0

�

���,t�

�sin���cos���d� + ¯ . �A6�

Using �=cos���, m=�
4
3�R3 and equating terms of the same

order we find

�zcm�0 = 0, �A7�

�zcm�1 = 3
2R��n��,t�,P1���� . �A8�

Using the definition of �n�� , t� as an eigenmode,

�n��,t� = iei�ntŷn��� , �A9�

the scaled center-of-mass motion is

�zcm�1

R
=

3

2
iei�nt�ŷn,P1� . �A10�

�a�
�b�

FIG. 10. Comparison of �a� experiment against �b� predicted n=2 eigen-
mode for a=0.05.
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APPENDIX B: DECOMPOSITION
OF EIGENMODES

A given eigenmode ŷn��� may be decomposed into the
Rayleigh modes as follows:

ŷn��� = �
k=1

	

bkPk��� , �B1�

where

bk =
�ŷn,Pk�
�Pk,Pk�

=
2k + 1

2
�ŷn,Pk� . �B2�

A numerical routine was run using a 13 term expansion.
Shown below is the decomposition of the first four eigen-
modes into the first eight coefficients of the 13 term expan-
sion, for the pin locations used to generate Figs. 3–5:

�1� Rayleigh decomposition for a=−0.99.

n b1 b2 b3 b4 b5 b6 b7 b8

1 0.784 0.321 �0.160 0.108 �0.080 0.061 �0.048 0.038

2 �0.084 0.804 0.383 �0.188 0.127 �0.095 0.073 �0.057

3 �0.031 0.128 �0.783 �0.453 0.206 �0.136 0.100 �0.076

4 0.015 �0.056 0.152 �0.719 �0.511 0.212 �0.135 0.097

�2� Rayleigh decomposition for a=0.001.

n b1 b2 b3 b4 b5 b6 b7 b8

1 0.999 0.001 0 0 0 0 0 0

2 0 0.644 �0.008 0.523 0.002 �0.214 �0.001 0.132

3 0 0.004 0.991 0.006 0 �0.002 0 0.001

4 0 �0.104 0 0.589 �0.028 0.570 0.002 �0.222

�3� Rayleigh decomposition for a=−0.557.

n b1 b2 b3 b4 b5 b6 b7 b8

1 0.488 �0.072 0.312 �0.189 0.018 0.084 �0.085 0.023

2 0.034 0.928 0.064 �0.034 0.003 0.014 �0.014 0.004

3 0.039 0.010 �0.619 �0.499 0.028 0.108 �0.101 0.026

4 �0.027 �0.006 0.177 �0.482 �0.476 �0.377 0.269 �0.062

APPENDIX C: BASIS FUNCTIONS FOR A DOUBLE
PINNED FLUID DROP

The analysis outlined previously can be extended to the
case of a double-pinned spherical fluid drop, where we de-
fine a and b as the location of the pinned circles-of-contact.
We now augment Eqs. �20�–�22� with a boundary condition
on the radial velocity amplitude or equivalently the perturba-
tion amplitude at the second pinned circle-of-contact.
Now, the boundary/integral conditions to be satisfied are as
follows:

y�a� = 0, �C1�

y�b� = 0, �C2�

�
−1

1

y���d� = 0. �C3�

By the same reasoning as Sec. IV, we seek to construct basis
functions which obey all necessary conditions and use them
to form an approximate solution to the integrodifferential
operator equation. We begin again by assuming a test func-
tion of the form

�a� �b� �c�

FIG. 11. Eigenmodes for a=0.775, b=−0.5, �a� first, �b� second, and �c�
third modes.

�a� �b� �c�

FIG. 12. Eigenmodes for a=−0.775, b=0.001, �a� first, �b� second, and �c�
third modes.
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g��� = �
i=0

N

ciPi��� . �C4�

Equation �C3� requires that c0=0, as was the case for the
single pinned circle of contact. Plugging Eq. �C4� into Eqs.
�C1� and �C2� gives

g�a� = c1P1�a� + c2P2�a� + ¯ + cNPN�a� , �C5�

g�b� = c1P1�b� + c2P2�b� + ¯ + cNPN�b� , �C6�

or equivalently,

�P1�a� P2�a� ¯ PN�a�
P1�b� P2�b� ¯ PN�b� �

c1

c2

]

cN

� = �0� . �C7�

Some linear algebra on Eq. �C7� allows one to find N
−2 linearly independent basis functions, which satisfy Eqs.
�C1�–�C3�,

vn��� = Pn��� −
Pn�a�
P1�a�

P1���

−
�P1�a�Pn�b� − Pn�a�P1�b��
�P1�a�P2�b� − P2�a�P1�b��

P2���

+
P2�a�
P1�a�

�P1�a�Pn�b� − Pn�a�P1�b��
�P1�a�P2�b� − P2�a�P1�b��

P1��� . �C8�

We again apply the Gram–Schmidt procedure to these lin-
early independent functions and use them in the operator
equation �23� to reduce the problem to a truncated set of
algebraic equations. Shown in Figs. 11–13 are a few ex-
amples of the eigenfunctions so obtained.
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