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Drawing parallels to the symmetry breaking of atomic orbitals used
to explain the periodic table of chemical elements; here we introduce
a periodic table of droplet motions, also based on symmetry breaking
but guided by a recent droplet spectral theory. By this theory, higher
droplet mode shapes are discovered and a wettability spectrometer
is invented. Motions of a partially wetting liquid on a support have
natural mode shapes, motions ordered by kinetic energy into the
periodic table, each table characteristic of the spherical-cap drop
volume and material parameters. For water on a support having a
contact angle of about 60°, the first 35 predicted elements of the
periodic table are discovered. Periodic tables are related one to an-
other through symmetry breaking into a two-parameter family tree.

droplet vibrations | sessile drop dynamics | meniscus motions | capillary
ballistics | moving contact line

Droplets and droplet motions surround us. Our harvests de-
pend on rain drops. We sweat, we shower, and we drink.

Our eyes make tears and our blood splats. Drops enable the protein
content of our bodily fluids to be measured (1), our silicon chips to
be fabricated (2), and complex parts to be additively sculpted by
drop-on-demand processing (3, 4). Water droplets in motion are
shaped into objects of beauty by surface tension. Their images have
become symbols of purity and cleanliness, selling beer, jewelry,
clothing, and automobiles. However, despite more than a century of
study, the motions of droplets on a support have resisted systematic
classification. This paper introduces the periodic table classification
of capillary-ballistic droplet motions.
The capillary-ballistic model assumes an ideal fluid with sur-

face tension acting on the deformable surface (SI Appendix).
Capillary-ballistic motions are typical of thin liquids like water.
Prototypical of dynamics of this kind are free drop vibrations,
predicted by Rayleigh to have frequencies (5) λkl as in

λ2kl = kðk− 1Þðk+ 2Þ, k= 0,1,2, . . . , 0≤ l≤ k, [1]

where the corresponding deformation is Y l
kðθ,φÞ in spherical

coordinates. Here, wavenumber k is the degree and l is the order
of the spherical harmonic Y l

k (6). Frequencies [1] and mode
shapes Y l

k constitute the so-called Rayleigh spectrum, predictions
verified experimentally (7, 8). Note that, in [1], different l′s share
the same frequency. These degeneracies arise from the perfect
symmetry of the spherical free drop. The introduction of a sup-
port typically breaks these degeneracies.
Deformations of the supported drop (9), Fig. 1 (Bottom Row),

break from the Y l
kðθ,φÞ shapes. The number of layers n (Top Row,

in schematic) and of sectors l [Bottom Row: bold lines, rendered
shape (Right)] characterize modal symmetry. Using k= l+ 2ðn− 1Þ,
symmetries are alternatively classified “mathematically” by wave-
number pairs ½k, l�. Modes are either “symmetric” (short for axi-
symmetric), e.g., [6,0] – leftmost, “star,” e.g., [6,6] – rightmost, or
“layer” modes (short for layer sector), e.g., [6,2] and ½6,4� – middle
two modes. Note that the Rayleigh spectrum [1] splits. That is, [1]
predicts that all four modes have identical frequencies––since all
have k= 6—yet, as observed for supported drops, these four modes
have distinct frequencies, predicted by our theory. The four modes
illustrate symmetry breaking from the axisymmetric shape (left-
most). In this way, introducing the support splits spectra and breaks

modal symmetry. Next, we outline the chemical periodic table
analogy, which organizes how such spectra are split and how the
corresponding modes mix.
The chemical periodic table, or “chemical PT,” is arguably the

most far-reaching design tool of industrial mankind (10, 11). This
largely empirical ordering of elements has been rationalized
using the Aufbau, or building-up, principle of filling of atomic
orbitals (12, 13). The more mathematical approach to atomic
structure is the spectral theory of classical quantum mechanics
built on the Schrödinger equation (14), cited as a triumph of 20th
century physics. Predictions of these two approaches are often in
agreement, yet they need not be. This paper emphasizes such
discrepancies in prediction, for a spectral theory of droplet
motions. The theory predicts mixing and splitting of spectral
lines which, depending on parameter values, can lead to differ-
ences between Aufbau and actual spectra, discrepancies histori-
cally referred to as “irregularities” in the chemical context (11).
Similar to the chemical PT, the droplet motion PT, or “droplet

PT,” derives from a spectral theory built on a Schrödinger-like
equation. Capillary waves on a liquid droplet undergoing ideal
motion are governed by a wave equation (5). The waves are
quantized by confinement at the liquid boundary, much as the
box boundary quantizes the particle in a box, the textbook pro-
totype of the quantum concept. The droplet boundary is located
where the liquid, gas, and solid support meet, known as the
contact line (CL) (15). Quantization occurs whether or not the
CL is pinned or moving. The resulting droplet wave theory leads
to a PT wherein droplet motions are ranked according to energy
levels with periods and groups arising from symmetries of mode
shapes generated by the standing waves. Note that this phe-
nomenon is physically distinct from “pilot wave hydrodynamics,”
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whose analogy to quantum-mechanical concepts has recently
been developed (16, 17).
For our droplet motions, the ordering is according to kinetic

energy, proportional to the square of the frequency of oscilla-
tion. For atoms, the energy arises from the arrangement of
electrons in their orbitals, yet for multielectron atoms, because of
electronic interactions, shielding, and relativistic effects, it re-
mains an open challenge to predict ordering by energy from
quantum-mechanical first principles (18). Textbooks typically
rationalize the ordering of the elements by invoking the Pauli
exclusion, Hund, and Aufbau principles (often with Madelung
rule) (19–21). These three principles are essentially empirical
guides––none has been derived from the principles of quantum
mechanics––and actual energy ordering deviates (22). In con-
trast, the relative simplicity of droplet motions means that their
energy levels can be readily computed from a Schrödinger-like
equation. This simplicity enables as yet undiscovered “motion
elements” to be predicted, the wettability spectrometer to be
invented, and the PT to be contextualized among droplet worlds.

Mode Shapes and Droplet PT
A drop of low-viscosity liquid can be excited to yield nearly ideal
motions, as happens for water drops on a horizontal plate vertically
shaken from below (9, 23). Fig. 2A shows the experiment in sche-
matic. At rest, a small enough droplet on a plate (hatched) exhibits
a spherical-cap shape (dashed). On excitement by periodically
forcing (double arrow), a volume-preserving deformed shape (blue)
is the response (Fig. 2A).
Vertical shaking can break the symmetry of the rest shape. See

Movie S1 for a time-periodic response. During up- or down scans
in driving frequency, mode shapes are those exhibiting resonance

and corresponding frequencies are identified as the natural fre-
quencies (18). Spatial symmetries of the spherical cap are polar
and azimuthal in nature. Breaking polar but not azimuthal
symmetry yields axisymmetric shapes while breaking azimuthal
necessarily breaks polar symmetry yielding fully 3D shapes.
In the droplet PT, modes are organized into periods and groups,

Fig. 2B. Periods are distinguished by the first wavenumber k, or
principal quantum number, and groups are distinguished by the
second wavenumber l, or second quantum number. The leftmost
group consists of star modes. The rightmost group is a merger of
the l= 0 and l= 1modes. The other groups in Fig. 2B also represent
mergers into single groups of even- and odd-layer modes.
The l= 1 modes are distinguished as rocking modes because a

single peak rocks from side to side, pointing first to one side,
then retracting and sweeping to point to the opposite side. The
only rocking mode with star symmetry is the ½1,1� mode. This
mode turns out to be the only unstable mode. It translates along
the support while rocking, the so-called walking droplet (24) (SI
Appendix). This instability might be likened to the reactivity of
the hydrogen atom.
An abbreviated chemical PT is shown in Fig. 2C and, as with the

droplet PT, energies increase left to right and top to bottom. Colored
blocks in the chemical PT represent the s-, p-, and d orbitals, which,
when filled, have 2 (green), 6 (blue), and 10 (red) groups each.
Corresponding blocks of the chemical and droplet PTs are

colored similarly to emphasize the common symmetry-breaking
origin of groups within these blocks. Relative to the droplet PT,
colored blocks of the chemical PT are wider because of addi-
tional (third and fourth) quantum numbers. Additionally, the
droplet PT has a purple block taking on the role of the f orbitals
(lanthanides) in a long-form version of the chemical PT.
For the chemical PT, the building-up “principle” is really a

guide (22), as mentioned, since violations or irregularities do
occur. The first irregularity arises in building from Ar to K and
persists through Ca and Sc [Fig. 2C (circled)]. It arises because
the energy- (actual atoms) and symmetry-ordering (imagined
orbitals) begin to deviate. For the droplet PT, irregularity cor-
responds to the mixing of spectral lines, as discussed below.

Capillary-Ballistic Model
The dynamically deforming meniscus is a free boundary with its
own free boundary, the CL, yielding a nested free-boundary-
value problem. The Schrödinger-like wave equation governing
meniscus dynamics assumes ideal vorticity-free liquid motions
beneath the surface. The bulk liquid inertia is countered by
surface tension at the deformable meniscus, according to the
Young–Laplace interfacial condition. A boundary integral ap-
proach maps the problem to the surface domain and a CL drag
model closes the formulation. See also SI Appendix.
After invoking normal modes, proportional to eiΩt, the gov-

erning equation on the domain Γ∪γ (Fig. 2A) is

ρΩ2M½η�= σK ½η�, [2]

where M and K are mass (inertia) and capillarity (curvature)
integrodifferential operators, operating on deformations η(θ,φ).
Dirichlet conditions on η correspond to a pinned CL. For the

Fig. 1. Supported drop modes: numbers of layers n (side view, Top Row) and sectors l [top view, Bottom Row; photo (Left), rendered (Right)] give modal
symmetry. Wavenumber k depends on n as k = l + 2 (n − 1). See SI Appendix for discussion of alternative (n,l) and [k,l] wavenumber classifications.

A B

C

Fig. 2. Mode shapes and PTs. (A) sketch of disturbance (rendered, blue) to
rest state (dashed, black); (B) sample droplet PT with energy increasing left
to right and top to bottom, with symmetry-related groups of modes: star
(green), 4,5-layer (purple), 2,3-layer (red), and symmetric and rocking (blue).
(C) Chemical PT with blocks of groups distinguished by color, and with the
first irregularity in Aufbau ordering circled.
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free drop of radius R, modes are η=RY l
k, yielding via evalua-

tion, ρΩ2M½η�=−ρRΩ2Y l
k and σK ½η�=−ðσ=R2Þkðk− 1Þðk+ 2ÞY l

k,
which put into [2] yield Rayleigh spectral lines [1], after scaling
λ2 ≡ ðρR3=σÞΩ2. For supported drop motions, more broadly, solu-
tions of the spectral eigenvalue problem (2) with specified CL
conditions yield frequencies Ωkl and shapes ηkl, which together
constitute the spectrum. These must be obtained computationally.
To summarize, our capillary-ballistic model is classical hydrody-
namically with one exception––a CL drag coefficient is introduced
to account for the resistance to liquid CL movement along the
solid support. Spectra will depend on this CL line drag, and that
modeling is now briefly described.

Control Parameters, Contact Angle, and Mobility
Resonant frequencies and associated mode shapes make up a
spectrum, which depends on droplet volume and the material sys-
tem (liquid/solid/gas), viewed here as controllable (Fig. 3A). Two
parameters characterize this system: contact angle (CA) α and CL
resistance Λ (25, 26), called the “line drag” (Fig. 3B). For simplicity,
we shall refer to α< 90° systems as hydrophilic, or “philic” for short,
α> 90° as hydrophobic, or “phobic.” The two-parameter family of
spectra leads to a two-parameter family of droplet PTs.
Mobile drops have movable CLs. Fully mobile drops have a

fixed CA (Δα = 0) without regard to CL displacement Δη (or
speed) (Fig. 3C, Left), while a pinned drop (fully immobile) has
fixed displacement (Δη = 0) without regard to CA deviation Δα
(Fig. 3C, Right). The fully mobile and pinned CL behaviors are
ideal extremes that span actual behavior. For actual CL motion,
there is always some finite resistance (nonzero and noninfinite)
to the driving force agent, Δα, which limits the CL speed,
Δη=Δt≡UCL (Fig. 3B, dashed line), according to Δα = ΛUCL.
The line drag Λ is also known by its reciprocal, the mobility. Note
that our linearized theory does not account for CA hysteresis but

approximates it. For our purposes, Λ may be viewed as a phe-
nomenological parameter. It should be noted that Λ is well de-
fined, has been measured experimentally, and has been related
to CL dissipation, independent of any theory (27).
For both pinned and fully mobile CLs, motions predicted by

the capillary-ballistic governing system [2] are dissipationless.
In these cases, the system is Hamiltonian and the sum of
potential and kinetic energies is an invariant––all motions
are oscillatory. Nonoscillatory motions only occur away from
the ideal extremes, that is, for Λ ≠ 0, ∞. Moreover, these ex-
tremes imply that a maximum of CL dissipation must occur
somewhere between.
In summary, supported drops have spectral lines, λklðα,ΛÞ, and

mode shapes that depend on two parameters. Varying ðα,ΛÞ
samples this two-parameter family of PTs and irregularities arise
whenever mixing of spectral lines occurs (24).

Spectral Lines, Splitting, and Mixing
The free (unsupported) drop is an important comparison case. The
Rayleigh spectrum [1] has already been introduced and has been
related to the more general spectral problem [2]. According to [1],
frequency λ increases asymptotically as λ3=2 for large wavenumber,
as for purely capillary dispersion (29). The fact that higher wave-
numbers have higher frequencies is referred to as “standard order.”
The first symmetry-breaking consequence of introducing the

support is the restriction k+ l= even, owing to the condition of no
liquid penetration at the plate (zero normal fluid velocity). Already
for the mobile hemisphere ðα,ΛÞ= ð90°, 0Þ, the evenness condition
must be invoked, eliminating half the Rayleigh modes and leaving
only those with mirror symmetry across the equator. Varying to any
ðα,ΛÞ≠ ð90°, 0Þ breaks this mirror symmetry and splits the spectral
lines. In Fig. 3D, spectral splitting from the mobile hemisphere by
varying Λ is illustrated for three frequencies, λ5l for l= 1,3,5. From

A B C

D E

F

Fig. 3. Spectra depend on α and Λ. (A)
Rest-state contact angle α or, equivalently,
spherical-cap volume V; and (B) CL mobility
Λ, which relates CL speed, UCL, to CA de-
viation from rest, Δα (CL kinetic property);
(C) Limiting behaviors of CL motion corre-
spond to (C, Left) no resistance Λ = 0 (Δα = 0),
a “fully mobile” CL with time-dependent dis-
placement Δη, and to (C, Right) infinite re-
sistance Λ = ∞ (Δη = 0), an immobile or
“pinned” CL with time-dependent deviation
Δα. In between, 0<Λ<∞, are “partially mo-
bile” CLs. (D and E) Spectral splitting (D) by CL
mobility Λ and (E) by CA α. (D) Splitting of
frequency λ5,l for hemisphere (α = 90°) by
mobility Λ≠ 0. (D, Inset) Broken shape sym-
metry is illustrated for the [5,1] mode by re-
flection across the equatorial plane, contrasting
mobile and pinned modes. (E) Splitting of fre-
quencies λ5,l for mobile modes l = 1,3,5, in
α-dependence; (F) For (α, Λ) = (60, 0), splitting
and mixing of spectral lines (frequencies λk,l)
with explicit k dependence and with l in-
creasing (+) downward (arrow), and (Inset) il-
lustrating shapes corresponding to spectral
lines breaking downward with l, for philic PTs
(α < 90). (F, Inset) Illustration of an irregularity:
the [6,6], has lower energy than the [5,1] and
[5,3] modes, breaking standard order.
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mobile to pinned, modewise, there is a monotonic increase in fre-
quency that amounts to a net 25% overall. The insets illustrate how
profile symmetry is broken. In Fig. 3E, for Λ= 0, the same three
frequencies are shown in dependence on α. For the same footprint,
phobics have lower frequency than philic drops because of larger
volumes. Modal monotonicity (28) is also exhibited in this
α-dependence.
For ðα,ΛÞ= ð60°, 0Þ, Fig. 3F illustrates in a stairstep spectral plot

how the first 8 Rayleigh degeneracies split into 24 lines, akin to the
Balmer and Lyman spectral series for the hydrogen atom. Only the
so-called Noether mode k= 1 does not split. Remarkably, breaking
the mirror symmetry by geometry imperfection (α≠ 90° with Λ= 0)
destroys the time independence of the Noether mode (compare
SI Appendix), much as does breaking full mobility by introduc-
ing some line drag (Λ≠ 0 with α= 90°). In summary, imperfec-
tion ðα,ΛÞ≠ ð90°, 0Þ by either geometry or mobility can break the
Noether time independence.
Non-Rayleigh spectral lines beyond k= 1 split into multiple

steps with corresponding mode shapes distinguished by azi-
muthal structure (Fig. 3F, Inset). For k= 5, for instance, splitting
leads to three distinct lines having the shapes of ½5,1�, ½5,3�, and
½5,5�. Mode ½5,1� has the highest frequency (Fig. 3F, Inset). For
k= 6, splitting leads to four modes, ½6,0�, ½6,2�, ½6,4�, and ½6,6�. For
philic drops with the same k, the shape with greatest symmetry
(½5,1� or [6,0]) has the highest frequency. In other words, for
philic drops, splitting occurs downward with increasing

asymmetry l while, for phobic drops, splitting occurs upward with
increasing l, as already seen in Fig. 3E. A similar splitting occurs
for the atomic spectral lines (30, 31).
Mixing of spectral lines upsets the standard order by breaking

monotonicity. That is, mixing corresponds to a lower k having a
higher frequency. For ðα,ΛÞ= ð60°, 0Þ, mixing first occurs at k= 4
where the [5,5] mode has λ55 < λ42 (Fig. 3D). Mixing also occurs
among the k= 5,6 bands of spectral lines (Fig. 3D, Inset). Spec-
tral mixing leads to irregularities in the PT. The ðα,ΛÞ= ð60°, 0Þ
PT follows the standard order up until the sixth element,
mode [4,4], according to Fig. 3F, after which it deviates, exhibiting
irregularity; compare Fig. 4, bottom row, near left, in contrast
to top row, left (or Fig. 2C).

Breaking Symmetry, PTs, and Irregularities
Symmetry is broken by breaking mobility and/or geometry, as
noted, with an influence on the PT as summarized in Fig. 4.
Breaking mobility is illustrated in the bottom row and breaking
geometry in the top row. The top row exhibits two standard
orderings, referred to as the philic (α < 90°) and the phobic (α >
90°) standards. These orderings split differently on increasing
shape asymmetry l. For phobic drops, splitting occurs upward to
higher energies while for philic drops, splitting occurs down-
ward to lower energies, as in Fig. 3D, discussed above. For
example, for philic modes with the same k, star shapes have

  

  

Fig. 4. Symmetry breaking from spherical shape with corresponding PTs in stadium view (colored, symmetry groups). Hemispherical drops (Top Center, blue)
provide the symmetry center for a two-parameter family ðα,ΛÞ of symmetry breaking. Breaking left ðα< 90°Þ and right ðα> 90°Þ correspond to philic and
phobic rest shapes (blue), while breaking down and away correspond to decreasing mobility. Elements within each PT are ordered by kinetic energy, in-
creasing left to right and top to bottom. First break (Top Row) occurs to slightly philic (Left) and to slightly phobic (Right) mobile drops, defining two standard
orders. Second break (Bottom Row) occurs to mobile (Λ= 0, near center) and to pinned (Λ=∞, far from center) drops. Groups, colored by mode type, illustrate
irregularities (mixing colors) to standard orders that develop with greater symmetry breaking and higher-order elements.
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lower energy than symmetric shapes while the reverse holds for
phobic modes.
We adopt terminology to parallel that used for the chemical

PT. Groups are vertical columns and periods are horizontal rows.
The principal wavenumber k plays the role of the principal
quantum number and defines the period, labeled 1–7, Fig. 4 (Top
Row). Modes are atoms and mode number is atomic number.
Secondary wavenumbers l are orbital types (s, p, d, f), and so forth.
For any principal wavenumber k, there are l≤ k orbital types,
subject to k+ l= even. Note that in the droplet PT metaphor there
is only one mode per orbital type. That is, in contrast to the
chemical PT where s-, p-, d-, and f orbitals can accommodate
multielectrons so that groups and blocks differ, for our PT, every
group consists of one single block. And, in our rendering of the
PTs, star modes ðk= lÞ are colored green, symmetric ðl= 0Þ and
rocking modes ðl= 1Þ are blue, 2,3-layer-sector modes ðl= 2,3Þ are
red, and 4,5-layer-sector modes ðl= 4,5Þ are purple. In the stan-
dard order, these symmetries define the groups, labeled I, II, III,
and IV, Fig. 4 (Top Row).
The philic and phobic standard PTs (Fig. 4, Top Row) can be

built up in mode number Z by prescription. From a mode
number Z with wavenumber k, one builds to Z+ 1 as follows. For
the phobic (philic) case, add (subtract) to (from) the secondary
wavenumber l until l= k (until l= 0), subject to k+ l= even, at
which point the period is full. In both phobic and philic cases, if
the period of mode Z happens to be full, first increase the
wavenumber to k+ 1 and then proceed as just prescribed. This
building up has been carried out up to Z= 19 for the standard
PTs in Fig. 4 (Top Row), corresponding to seven periods and

four groups. Clearly, this Aufbau procedure can continue
without end, leading to an unlimited number of periods and
groups. For most droplet PTs, this Aufbau procedure has lim-
ited usefulness, however, because of the occurrence of irregu-
larities. Just as in the case of the chemical PT, irregularities
tend to accumulate with increasing mode number and greater
symmetry breaking.
In Fig. 4 (Bottom Row), the four PTs illustrate four different ir-

regularities. PTs are always constructed by ordering modes
according to increasing energy, left to right and top to bottom.
Consider the philic case. Comparing ðα,ΛÞ= ð60°, 0Þ with the philic
standard (89°, 0), one observes that the standard ordering applies
through the ½4,4� mode. Thereafter, the ½5,5� jumps ahead of the
½4,2� mode, effectively punching a hole in the PT and pushing the
groups II, III, and IV downward one unit. As the standard ordering
is broken and the periods mix, the Aufbau principle fails. In con-
trast, comparing the ðα,ΛÞ= ð60°,∞Þ case to the standard philic
PT, one observes that the ordering is maintained. The imperfection
of a pinned CL is enough to bring the PT back into registry with the
standard PT. In this sense, pinning stabilizes the PT.
In summary, the spectrum for the fully mobile hemispherical

drop serves as the organizing center or mother spectrum from which
bursts a two-parameter family of daughter spectra, by symmetry
breaking. Each family member is represented by its own PT and
these members are related one to another by a family tree of PTs,
illustrated in Fig. 4, where CA varies leftward and rightward
away from the hemisphere and the line drag increases downward.

Results
Fig. 5 gives the predicted and to-date discovered PT for water
drops with CLs pinned on a circle of 25-mm radius, having vol-
umes that give a rest CA of 60°. Rendered shapes (Left) are
paired to observed mode shapes (Right). The dynamic surface
topography of shapes is observed in the top-view snapshot,
whereby light from below passes a fixed grid before being
refracted at the deformable interface (23). The first 35 modes
have been discovered, guided by the frequency predictions of our
capillary-ballistic spectral theory.

Dynamic Wettability Spectrometer
The idea of the wettability spectrometer is to measure frequency
shifts against the Rayleigh standard, to infer the line drag from
our spectral theory predictions. Shifts are easily measured using
frequency scans, much as with traditional spectrometers (e.g., IR
and UV). In our case, instead of probing molecular or atomistic
modes, we probe droplet vibratory modes using line drag as a
metric for dynamical wettability (32–35). With the great pro-
liferation of “designer supports”––chemically and mechanically
conditioned surfaces tailored for desired properties (36)––there
is a growing need to characterize dynamical wetting.
The practicability of our spectrometer depends on the sensi-

tivity of spectral lines to wettability changes. Fast-moving CLs
occur at small spatial scales, making line drag challenging to
quantify. Spectral sensitivity is currently being tested on the In-
ternational Space Station, taking advantage of the spatial and
temporal amplification provided by microgravity (37). Further
Earth-based testing is planned, taking advantage of a new class of
fast digital holographic microscopes (38). Spectral theories of me-
niscus motions, like that presented here, but differing in details of
constraint, are of broad applicability to drop-on-demand printing
and to capillarity-driven atomization, among other forming
processes that rely on rapid shaping by surface tension.

Our Chemical World, as One of Many Worlds
If one could set up a parallel between the chemical and droplet
PTs, one might use the droplet perspective to imagine worlds
with chemistries different from ours. A first step in this direction
determines whether our chemical PT belongs on the philic or

Fig. 5. Droplet PT discovery for (α,Λ) = ð60°,∞Þ with panels showing ren-
dered shape by theory (Left) against corresponding observed shape (Right).
The first 35 modes have been experimentally observed. The extension to 35
modes of the truncated 19 mode set (boxed), the PT of Fig. 2B, illustrates
how groups build out the droplet PT. Kinetic energy increases left to right
and top to bottom. Thin arrows indicate continuation of the period.
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phobic side of Fig. 4. If one associates spherical symmetry of
atomic orbitals with cylindrical symmetry of droplet modes, then
the answer must be “the philic side,” since energy breaks toward
less stable (downward) for philic drops just as higher orbitals
make atoms less stable typically. A next step is to scale based on
the rate of accumulation of irregularities. Of the six droplet PTs
in Fig. 4, three exhibit irregularities and two of these occur for
phobic drops. Hence, moving from the center, there are different
rates of irregularity accumulation, philic and phobic. This is
expected in view of the asymmetric spectral splitting away from
the hemispherical drop (Fig. 3E). A simplest such parallel scales
the first occurrence of irregularity between the PTs. For the
chemical PT, this corresponds to the intersection of groups I–III
and period 4; that is, the K, Ca, and Sc progression (Fig. 2D), as
discussed above. For the droplet PTs, the corresponding in-
tersection yields the ð60°, 0Þ world (Fig. 4), where the [5,5] mode
has lower energy than the [4,2] and [4,0] modes. In this way, it may
be claimed that the ð60°, 0Þ droplet world parallels our chemical
world, all the while being surrounded by neighboring worlds.

Discussion
From the semiconductor chips in our cell phones, fabricated by
immersion lithography, to the water spray hitting our shower
walls, droplets with moving CLs feature indirectly and directly in
our daily lives. Here we have framed a spectral theory of
capillary-ballistic droplet motions in terms of symmetry breaking
from the free spherical drop and here introduced a two-parameter
family of PTs of mode shapes, each PT ordered by energies and
subordered by symmetries into periods and groups, much like the
chemical PT.
On one hand, the droplet PT is much simpler than the

chemical PT. On the other hand, each droplet PT possesses a
richer context, being surrounded by a doubly infinite family of
neighboring PTs. This richer context stimulates our imagination
about other chemical worlds––different elements might combine

in different ways to make different molecules. Motion elements
from the droplet PT already have been observed to combine as
motion molecules, with some elements superposing linearly and
others clinging together nonlinearly, as judged by the hystere-
sis they exhibit during mutual joining and parting (9). Of course,
the nonlinear behavior of all droplet motions is governed by the
same set of rules, the nonlinear Navier–Stokes equations. The
nonlinear behavior of combining elements is largely unexplored
while the influence of viscous effects on droplet spectra has re-
ceived some attention (39). Both extend our ballistic motions.
Inspired by Helmholtz’s discovery of the permanence of vor-

tical motions in an ideal fluid (40), Lord Kelvin proposed vortex
atoms as a basis for matter (41). Vortex atoms were long for-
gotten by the time that Bohr introduced the old quantum theory
(12), a theory which successfully explained the observed spectral
lines of hydrogen and thereby provided the first substantial
framework for understanding the chemical PT. It is with some
irony, then, that droplet PTs based on the motions of ideal fluids
can provide a perspective on the chemical PT, broader than that
provided by the old quantum theory. We offer this paper as
homage to those of the past centuries who have labored in the
realm of ideas, enabling more encompassing perspectives.

Materials and Methods
The experimental methods (9, 23) and the capillary-ballistic model with its
solution method (24) have been previously reported. In SI Appendix, fol-
lowing the order of the main text, we provide some detail for better
understandability.
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