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Geometry of polygonal hydraulic jumps and the role of hysteresis
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An impinging liquid jet impacts a target plate, forming a hydraulic jump that can exhibit
a steady polygonal geometry under a range of conditions. Experiments are conducted to
determine the effect of weir geometry and flow history on mode selection and the geometry
of these polygonal jumps. Modal transitions occur at different flow rates in upscale and
downscale flow sweeps, leading to hysteresis and the coexistence of multiple modes at a
given flow rate, illustrating the importance of flow history. The characteristic ratio A/PH
or normalized jump geometry, where A is the upstream area of the jump, P is the perimeter,
and H is the downstream height, is unaffected by the flow history or experimental protocol
but has a slight dependence on the weir height hw and weir radius rw provided the ratio
of the weir radius to nozzle radius rn is large, rw/rn � 28. The collapse of the geometry
suggests surface tension plays a critical role in the formation of polygonal jumps. All of
our data, approximately 1800 observations, collapse upon plotting the scaled perimeter
P/H with the downstream Weber number We, and we show the critical wavelength is
approximately constant λ/H for any given experiment, suggesting the mode selection
mechanism is related to Plateau-Rayleigh breakup.

DOI: 10.1103/PhysRevFluids.5.044005

I. INTRODUCTION

Circular hydraulic jumps are formed when a liquid jet impacts a horizontal plate, which creates a
radial flow that abruptly changes height at a critical radius. Predictions for that critical radius were
given by Rayleigh [1] for an inviscid fluid, which was improved by Watson [2] to account for liquid
viscosity and the plate boundary layer, which agreed with experimental observations to a varying
extent [3–9]. Bush and Aristoff [10] extended Watson’s theory to account for small surface tension
effects near the jump circumference and demonstrated the jump radius can be increased through the
use of surfactant to lower the surface tension. However, it was not until Bhagat et al. [11] showed
surface tension and viscous forces balance the momentum at the jump (independent of gravitational
effects) that the critical radius for circular jumps was well understood. In contrast, the stability of
circular hydraulic jumps is not as well understood. Ellegaard et al. [12,13] showed in a beautiful
experiment that the steady circular hydraulic jump can lose stability and form striking polygonal
shapes under a particularly small range of experimental conditions, highlighting the sensitive
dependence between fluid inertia, viscosity, and surface tension effects. In this paper, we perform
a careful experimental study of polygonal hydraulic jumps and are interested in documenting the
role of flow history (experimental protocol) and weir geometry on mode selection and the resulting
polygonal jump geometry.

Observations of asymmetric instabilities in circular jumps were documented [7,14] prior to
the discovery of steady polygonal jumps by Ellegaard et al. [12,13], and since then, there have
been numerous discoveries of complex geometric structures in circular hydraulic jumps, which
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include the hydraulic bump [15], the clover regime [16], and steady rotating polygonal jumps [17].
Steady polygonal jumps have also been observed on microdecorated surfaces [18], micropatterned
surfaces [19], and rotating surfaces [20]. The transition from symmetric to asymmetric structures
is typically preceded by a roller vortex downstream of the jump [21–24], and Labousse and Bush
[25] theoretically investigated the role of this toroidal vortex in the formation of polygonal jumps,
the hydraulic bump, and the Leidenfrost torus [26]. More generally, it is believed that mode
number selection in polygonal hydraulic jumps is related to Plateau-Rayleigh breakup, a capillary
phenomenon, and this was demonstrated in experiments by Bush et al. [16] where a polygonal
jump is destroyed by introducing surfactant into the system which sufficiently lowers the surface
tension of the liquid. Models have been put forth to predict the transition from circular to polygonal
jump geometry, which include the phenomenological model by Martens et al. [27] and the inertial
lubrication models of Rojas et al. [28], Rojas and Tirapegui [29].

The difficulty in relating the geometry of polygonal jumps to Plateau-Rayleigh breakup of a
cylinder is the secondary curvature inherent in the toroidal geometry of the jump. This dependence
on the secondary curvature is seen in experiments on liquid toroids in Newtonian fluids [30],
polymers [31], and yield stress materials [32] and also appears explicitly in theoretical models of
capillary breakup of toroids [33,34]. Polygonal instabilities on toroidal surfaces have also been
observed in the Leidenfrost state [26,35]. In classical Plateau-Rayleigh breakup of a liquid cylinder,
instability is driven by geometry as the cylinder breaks up into spherical drops to minimize surface
area. Our experimental data collapses when plotting the jump perimeter scaled by the downstream
jump height against the downstream Weber number, also showing the importance of geometry in
the formation of polygonal jumps.

Lastly, polygonal hydraulic jumps are interesting from a pedagogy perspective as they illustrate
the concept of hydrodynamic instability, i.e., competition between forces, in a table-top experiment
that can be used in classroom demonstrations. As stated earlier, the phenomenon occurs over a
small range of parameters, and it is important to achieve precise experimental conditions to observe
polygonal jumps. We aim to provide these details in our description of the experimental setup
for ease of reproducibility by the community. For example, we observed that a pulseless flow is
required to achieve steady jumps and that small irregularities in weir height around the perimeter
resulted in asymmetric shapes, to name a few details. Furthermore, we document two experimental
protocols, (i) natural state and (ii) upscale-downscale, and show how they yield different results for
all other experimental conditions fixed. Weir geometry is also important to the extent that it affects
the downstream jump height, and we show this using weirs with circular and square geometry.

We begin this paper by describing in detail the experimental protocol to create polygonal
hydraulic jumps and the image processing and measurement techniques required to accurately
describe the jump geometry. Two flow protocols, (i) natural state and (ii) upscale-downscale, are
contrasted for a fixed set of experimental parameters, and we show the existence of hysteresis for
a given mode number N in the upscale-downscale case. Even though mode selection is affected by
the protocol, the jump geometry as defined by the characteristic ratio A/PH is not, and we show
how that ratio depends upon the weir height hw and weir geometry through the radius rw for circular
weirs and the edge length Lw for square weirs. We show the scaled jump perimeter P/H scales with
the downstream Weber number We and collapses all of our geometric data onto a master curve.
We use this collapse of the data to show the scaled wavelength λ/H ≈ 3, concluding that the mode
selection mechanism is related to Plateau-Rayleigh breakup. Lastly some concluding remarks are
offered.

II. EXPERIMENT

Hydraulic jumps are created by the experimental apparatus shown in Fig. 1(a). Fluid flows
through a nozzle of radius a with flow rate Q at a height hN above a glass plate with prescribed
geometry, either circular with radius rw or square with edge length Lw. After the fluid impacts the
plate it flows radially outward over a weir of hw and into the recirculation catch tank, which allows

044005-2



GEOMETRY OF POLYGONAL HYDRAULIC JUMPS AND THE …

(a)

(b)

(c)

FIG. 1. Experiment: (a) schematic diagram, (b) close-up view of the hydraulic jump, and (c) typical
polygonal hydraulic jump.

it to flow in a closed loop. Note that to create the “free-fall effect” the weir is placed at the outer
edge of the plate. A hydraulic jump forms in the fluid upstream of the weir, as shown in Fig. 1(b).
For a certain set of experimental parameters, asymmetric polygonal hydraulic jumps are formed
[see Fig. 1(c)]. These steady structures are extremely delicate and require precise control of the
experimental conditions to observe.

Commercial antifreeze (ethylene glycol) was used as the working liquid. The density
ρ = 1.12 g/cm3 was measured using an Anton-Paar DMA 35 density meter, viscosity ν =
13.7−16.4 mm2/s was measured with an Anton Paar MCR-302 rheometer, and surface tension σ =
44 mN/m was measured using a CSC tensiometer. A centrifugal pump (Iwaki MD-30RT-115NL)
circulates the fluid at a flow rate in the range Q = 30−110 mL/s and was chosen to create pulseless
flow, which is critical in creating the polygonal structures. A Variac (or autotransformer) delivers
a variable output voltage to the pump, which changes the impeller speed, thereby allowing for fine
flow rate adjustment in increments of ≈1 mL/s. The flow rate was measured using a flow meter
consisting of a calibrated Digiten FL-408 paddle sensor with a maximum error of 1 mL/s. The plate
was measured horizontal, and the nozzle was measured vertical to within 0.01◦ using a DXL360S
dual + axis digital protractor, such that the jet impact was normal to the plate. The nozzle had
sufficient length that the flow was fully developed and laminar. We have experimented with tapered
nozzles, consistent with previous work [16,36–38], but found no noticeable differences between
nozzles with and without a taper. The nozzle radius a = 0.46 cm and nozzle height hN = 1.0 cm
were kept fixed throughout our experiments. Scaling lengths with a gives a Bond number Bo ≡
ρga2/σ = 5.28 and jet Reynolds number Re ≡ Q/νa = 450−1350 in our experiments. Note that
since we use a single fluid in our experiments, we report our results in terms of flow rate Q instead
of Re.

Glass target plates were used because of their uniform thickness, smooth surface, and trans-
parency. Weirs were affixed to the outer edge of plates with (i) circular geometry of radius rw =
7.6, 12.7, 15.2, 17.8 cm and (ii) square geometry of edge length Lw = 22 cm. Each weir geometry
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FIG. 2. Image processing routine takes a raw image and filters it, from which the area A and perimeter P
can be extracted.

was precision three-dimensionally printed in four separate heights, hw = 2.67, 2.84, 3.17, 3.4 mm
(three for the square weirs, 2.84, 3.17, 3.4 mm), and fine-grit sand paper was used to ensure the
weir height was uniform along the perimeter. To measure the downstream fluid height H , we utilize
a method by Ellegaard et al. [39], Rao and Arakeri [40] which consists of vertically translating a
current-conducting rod using a stepper motor into the fluid, at which point an electrical signal is
recognized. We measure the fluid height 3 cm inside the weir for consistency. The range of heights
we report is H = 5.50–6.52 mm.

The geometry of the polygonal hydraulic jump is imaged from beneath the glass plate and results
in the typical image shown in Fig. 2. Light-emitting diode (LED) lighting is used to accentuate the
boundary of the jump. The jump geometry is characterized by the external height H , previously
discussed, and the area A and perimeter P of the planar shape. We summarize the image processing
technique to compute A and P. A raw image is taken from beneath the target plate, centered, and
the resulting image is filtered into a black-and-white image (filtered image). The inner portion of
the filtered image is isolated, and the white pixels are counted to extract the area of the structure.
Edge detection is used to determine the perimeter. The calculated values of A and P are found using
a calibration based on known geometries beforehand. To summarize, a polygonal hydraulic jump is
characterized by the mode number N , downstream height H , area A, and perimeter P.

Two distinct experimental protocols are used, (i) upscale-downscale and (ii) the natural state,
which highlights the role of hysteresis and flow history in the formation of polygonal hydraulic
jumps. The goal of the upscale-downscale protocol is to determine the range of flow rates for
which a given mode number N is possible. The upscale portion of the protocol begins by slowly
increasing the flow rate until a steady jump appears. This is typically the N = 3 shape. The flow
rate is then increased in small increments, ≈1 mL/s, and data is collected at each step, but the jump
is not interfered with. We continue to increase the flow rate until the jump becomes unsteady, which
typically occurs for the N = 10 mode. The downscale portion of the protocol begins at the highest
flow rate that achieves a steady jump, and the flow is decreased in small increments until the jump
collapses into the fluid jet. The range in flow rate for which a given mode N exists will be referred
to as the hysteresis �Q. The natural-state protocol differs in that at a given flow rate the jump is
destroyed by a glass probe and allowed to relax into its preferred geometry. Here it is important
to use small increments, as the transition from N → N + 1 does not always happen suddenly and
under certain conditions multiple shapes N exist for a given flow rate.

III. RESULTS

We report experimental observations of polygonal hydraulic jumps and highlight the role of (i)
weir geometry hw, rw and (ii) the experimental protocol on the jump geometry (N, H, A, P). We
begin by contrasting mode number selection in the two experimental protocols and characterize the
hysteresis as it depends upon the weir height. The normalized jump geometry A/PH is shown to be
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(a) (b)

FIG. 3. Mode number N against flow rate Q contrasting the (a) natural state and (b) upscale-downscale
protocols for a weir with hw = 3.17 mm and rw = 17.8 cm.

unaffected by the particular protocol but does depend upon the weir geometry, and we characterize
this dependence. All of our data, approximately 1800 observations of polygonal jumps, collapse
with the downstream Weber number using H as the characteristic length scale. Lastly, we show the
scaled wavelength approaches a constant value, leading us to believe the mode selection mechanism
is related to the Plateau-Rayleigh instability.

A. Experimental protocol

Figure 3 contrasts the natural state and upscale-downscale protocols by plotting the mode number
N against flow rate Q for the same weir. In both cases, the mode number N increases with the flow
rate Q, and for the natural-state protocol that trend appears to be linear [see Fig. 3(a)]. Interestingly,
for higher mode numbers, multiple shapes are observed for a given flow rate in the natural-state
protocol. For example, Fig. 3(a) shows that for Q ≈ 62 mL/s, it is possible to observe N = 7, 8, 9
modes. That is, mode selection is not unique, despite the fact that the natural-state protocol requires
the destruction of the prior shape before the relaxation of the jump into the lowest-energy state. We
assume these regions correspond to the boundary of the domain of attraction between two or more
modes. Lastly, we note that jump asymmetry was not common in the natural-state experiments but
did occur more frequently in these overlap regions.

In the upscale-downscale protocol, modal transitions occur when N → N + 1 during the upscale
sweep and N → N − 1 during the downscale sweep, as shown in Fig. 3(b). For a given mode N ,
the upscale and downscale transitions occur at different flow rates, and this difference increases
with mode number. This difference illustrates hysteresis �Q, which we define as the difference
between the maximum flow rate during the upscale sweep and the minimum flow rate during the
downscale sweep for a given mode number. At a given flow rate Q more than one mode can exist,
and for 58 < Q < 70 mL/s there are four potential modes. Figure 4 shows the mode shapes at the
transitions in the upscale and downscale sweeps. Here we note that for each polygonal shape there
is a ring vortex (“roller”) downstream of the jump that is best seen in the entrained bubbles adjacent
to the polygon sides in the upscale sweep of Fig. 4, consistent with prior experimental observations
[21–25]. Within the vortex, there is a slow azimuthal flow towards the corners where a strong jet
expels the liquid downstream that can easily be seen by adding dye to the fluid directly downstream
of the jump [27]. In the upscale sweep, the area A and perimeter P of the shape will increase, and the
mode will transition from N → N + 1. Typically, we observe that one or more sides of the polygon
become either asymmetric or convex before transition. During the downscale sweep, the sides are
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FIG. 4. Mode shapes at the transition for the upscale-downscale experiment, shown in Fig. 3(b), for a weir
with hw = 3.17 mm and rw = 17.78 cm.

typically concave, and the shape decreases in size until one of the corners becomes small enough
that the rotating vortices there interact with one another, leading to a collapse of the corner and
therefore N → N − 1.

Figure 5 plots the mode number N against the hysteresis �Q, as it depends upon the weir height
hw. The trend is similar for low mode numbers, N = 3–6, but starts to deviate for N � 7, with the
taller weirs which we attribute to the larger flow rate (equivalently, inertia) required to create such
shapes.

B. Geometry of the jump

For each data point the flow rate Q, mode number N , area A, perimeter P, and external height
H are determined. This information allows us to completely characterize the geometry of the
polygonal hydraulic jump. As we have shown, the experimental protocol is important in mode
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FIG. 5. Mode number N against hysteresis �Q as it depends upon weir height hw for fixed rw = 17.8 cm
in the upscale-downscale experiment.
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FIG. 6. Characteristic ratio A/PH against flow rate Q as it depends upon weir height hw for the rw =
17.78 cm plate for the natural state and upscale-downscale data. Inset images for Q = 60 mL/s show the
difference in the N = 8 mode between hw = 2.67 mm and hw = 3.4 mm.

number selection, and we investigate if the jump geometry is similarly affected. To do so, we
introduce the characteristic ratio A/PH , or scaled area, which is the ratio of the projected area
of the upstream region of the jump A to the surface area of the transition region of the jump PH ,
where the curvature is the highest. Figure 6 plots the characteristic ratio A/PH against flow rate Q
for both natural-state and upscale-downscale data. Interestingly, for a fixed weir height hw all the
data collapse to a single curve, indicating the geometric number A/PH is independent of shape for
given flow conditions. For increasing weir height hw, the curve is shifted to the right, indicative of
the larger flow rate required to make a shape with similar geometry. This also tends to correspond
to a change in mode number; for example, for A/PH = 1.2 the mode number increases, and the
shape becomes more concave. The contrast between shapes for a fixed flow rate Q = 60 mL/s is
similarly striking, showing that for higher hw the sides become more concave but the mode number
is constant.

C. Weir geometry

In previous experimental studies, it has not been clear whether the weir geometry outside of the
weir height hw affected modal behavior. To investigate this we experimented with circular weirs
of varying radius rw = 7.2–17.2 cm and a square weir with edge length Lw = 22 cm. In all cases,
the weir was affixed to the outer edge of the plate to create the free-fall effect. Figure 7(a) plots
the mode number N against flow rate Q for a fixed weir height hw = 2.84 mm and varying weir
geometry in the natural-state experiments, showing the data for the circular weirs generally overlap
one another, whereas the data for the square weir differ from the circular weirs. This indicates there
is some effect, albeit small, of weir geometry on mode selection in the natural-state protocol. This is
most likely related to the breaking of the circular symmetry of the flow over the weir, which would
be akin to angular modulations of the weir height. Figure 7(b) plots the characteristic ratio A/PH
against flow rate Q, showing a collapse of the same data for all weir geometries.

Weir geometry becomes important when the jump radius becomes comparable to the weir radius.
Figure 8 plots the mode number N against flow rate Q in an upscale-downscale experiment,
comparing our largest radius weir (rw = 17.8 cm) to our smallest radius weir (rw = 7.62 cm),
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(a) (b)

FIG. 7. Weir geometry: (a) mode number N and (b) characteristic ratio A/PH against flow rate Q for
hw = 2.84 mm, as it depends upon the weir geometry, during the natural-state experiment. Weirs are either
circular with a prescribed radius rw or square with a prescribed edge length.

which is comparable in size to a typical jump. It is interesting to note that the downscale sweep
is relatively unaffected by the weir radius, but the upscale sweep shows a dramatic difference with
the smaller-radius weir, exhibiting modal transitions at much smaller flow rate than the larger weir
radius. This difference suggests weir radius plays a role when the scale of the jump is comparable in
magnitude to the scale of the weir. We observed that for a ratio of weir to nozzle radius rw/rN � 28
the results are indistinguishable, but there are notable differences when rw/rN = 16.5.

As discussed previously, the characteristic ratio A/PH is independent of mode number, weir
geometry, and the experimental protocol but does depend upon weir height hw. This suggests the
downstream fluid height is the relevant length scale, and we introduce the downstream Weber

FIG. 8. Mode number N against flow rate Q in the upscale-downscale experiment with hw = 2.84 mm
contrasting the largest (rw = 17.8 cm) and smallest (rw = 7.6 cm) radius weir.
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(a) (b)

FIG. 9. Scaled perimeter P/H against the downstream Weber number We for all data as it depends upon
(a) weir height hw and (b) mode number N .

number We ≡ ρQ2/γ H3. Figure 9 plots the scaled perimeter P/H against We for all of the data,
approximately 1800 experiments, and shows a nice collapse. In general, higher mode numbers N
are associated with larger Weber numbers We, but there is a finite range where those modes can
be observed, which is related to the hysteresis seen in the upscale-downscale experiments [see
Fig. 9(b)].

D. Critical wavelength

The collapse of our data for the jump geometry with Weber number We suggests that mode
number selection is determined by the competition between fluid inertia and surface tension forces.
A similar competition is seen in Plateau-Rayleigh breakup of a liquid jet, and we investigate
whether a similar mechanism is responsible for polygonal hydraulic jumps. The difference is that
our polygonal jump exhibits a weak secondary curvature of the toroidal geometry. We define the
wavelength as λ ≡ P/N and plot the scaled wavelength λ/H against mode number N in Fig. 10 for

(a) (b)

FIG. 10. Scaled wavelength λ/H against mode number N for the (a) natural state and (b) upscale-
downscale experiments with rw = 17.8 cm, depending upon weir height hw .
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the natural-state and upscale-downscale experiments, as it depends upon the weir height. Our data
show the weir height does not affect the critical wavelength. The difference in critical wavelength
during the upscale and downscale sweeps is presumably related to hysteresis [see Fig. 10(b)]. For
the natural-state experiments, the scaled wavelength λ/H ≈ 3 is approximately constant, consistent
with the Plateau-Rayleigh instability mechanism where the critical scaled wavelength is constant
and depends upon the radius of the liquid cylinder, which would correlate to the downstream
height H in our toroidal geometry. The small deviation of λ/H with mode number N suggests
a weak dependence upon another parameter, which might include the secondary curvature of the
toroidal shape, which becomes more important for smaller mode numbers. This dependence has
been observed in the breakup of liquid toroids [30].

IV. CONCLUDING REMARKS

An experimental study of polygonal hydraulic jumps was performed, resulting in the observation
of approximately 1800 steady-state polygonal structures. Our focus was on the role of experimental
protocol and weir geometry in the formation of polygonal jumps. For each observation, we
quantified the mode number N , perimeter P, area A, and downstream fluid height H of the jump, as it
depended upon the weir geometry through the height hw and radius rw. Two protocols were defined,
(i) the natural state and (ii) upscale-downscale, to observe the transition between modal behaviors.
For the upscale-downscale experiments, we observed hysteresis �Q in mode number selection and
multiple modes existing at the same flow rate. Surprisingly, we found the jump geometry, as defined
by the characteristic ratio A/PH , is unaffected by the experimental protocol and weir geometry,
provided the ratio of weir to nozzle radius rw/rN � 28, but has a weak dependence upon the
weir height hw. All of our data collapse against the downstream Weber number We, suggesting
the downstream height is the relevant length scale.

Scaling the wavelength with downstream height shows a collapse to an approximately constant
value λ/H ≈ 3, suggesting the modal selection mechanism is related to the Plateau-Rayleigh
instability of a liquid column, which exhibits a constant scaled wavelength, irrespective of mode.
This conclusion was previously reported, and our results further support the perspective that surface
tension is important in the formation of polygonal hydraulic jumps [16,41]. Our scaled wavelength
differs slightly from the Plateau-Rayleigh prediction of λ/H = 4.5, and we attribute this difference
to a number of factors that influence this constant, such as the introduction of a secondary curvature
in the toroidal geometry compared to the cylinder and the role of viscosity in defining the critical
wavelength. This shift in critical wavelength is also seen in Plateau-Rayleigh breakup of liquid
rivulets [42] and liquid toroids [33]. As mentioned by Pairam and Fernández-Nieves [30] for a
toroidal donut, the major and minor radii evolve from an initial shape by expanding or contracting
until a critical value is reached, upon which the donut pinches off in the critical wavelength. Note
that the hydraulic jump geometry is unable to spontaneously expand or contract to adopt a preferred
geometry, and perhaps for this reason there is a range of preferred λ/H that we see in experiment.
This is best seen in the upscale-downscale experiments, which exhibit different critical wavelengths
for the maximum and minimum modes [see Fig. 10(b)]. Even so, there is a mild collapse of the data
for these states, indicating that polygonal hydraulic jumps are a geometric phenomenon governed
by a complex balance between surface tension, viscosity, and fluid inertia.
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