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ABSTRACT:
A method for obtaining the elasticity, surface tension, and viscosity of ultrasonically levitated gel drops is presented.

The drops examined were made of agarose, a hydrogel. In contrast to previous studies where fluid properties are

obtained using ultrasonic levitation of a liquid drop, herein the material studied was a gel which has a significant

elasticity. The work presented herein is significant in that gels are of growing importance in biomedical applications

and exhibit behaviors partially determined by their elasticities and surface tensions. Obtaining surface tension for

these substances is important but challenging since measuring this quantity using the standard Wilhelmy plate or

DuNuoy ring methods is not possible due to breakage of the gel. The experiments were conducted on agarose gels

having elasticities ranging from 12.2 to 200.3 Pa. A method is described for obtaining elasticity, surface tension, and

viscosity, and the method is experimentally demonstrated for surface tension and viscosity. For the range of

elasticities explored, the measured surface tension ranged from 0.1 to 0.3 N/m, and the viscosity ranged from 0.0084

to 0.0204 Pa s. The measurements of surface tension are, to the authors’ knowledge, the first obtained of a gel using

ultrasonic levitation. VC 2020 Acoustical Society of America. https://doi.org/10.1121/10.0001068
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I. INTRODUCTION

Ultrasonic levitation of drops and bubbles has been used

for some time as a method for measuring fluid properties.1–12

The overall approach typically relies on the development of an

ultrasonic standing wave field which is amplitude modulated

to cause quadrupole shape mode oscillations of the drop.

Characteristics of the drop’s oscillation are then used to extract

one or more fluid properties. The analytical development for

how the acoustic radiation pressure interacts with the drop to

determine drop shape and oscillation characteristics has been

explored by several researchers.3,13–15

Much work has been done on the use of ultrasonic levi-

tation to measure interfacial tension. Marston3 presented a

theoretical development showing how the quadrupole

response of a drop or bubble could be used to measure the

interfacial tension, and this approach was experimentally

demonstrated by Marston and Apfel2 for a benzene drop in

water, showing that the quadrupole oscillatory characteris-

tics were in agreement with tabulated values of interfacial

tension for benzene. Marston and Apfel4 investigated a drop

of p-xylene in water, obtaining a value of interfacial tension

that deviated from that obtained using a DuNuoy ring tensi-

ometer measurement by only 4%. This approach was further

explored by Hsu and Apfel5 who also developed an

approach to account for finite viscosity effects and con-

ducted preliminary measurements of changes in interfacial

tension with increasing surfactant concentration on the drop

surface. Further studies on surfactant measurements were

conducted by Tian et al.8,9 who measured both the surface

elasticity (not to be confused with the bulk elasticity exam-

ined herein) and surface dilational viscosity of surfactants

on levitated drops. Trinh and Hsu6 suggested the possibility

of obtaining the surface tension of an ultrasonically levitated

drop by measuring the outline of the equilibrium shape of

the drop and extracting surface tension using the equation

for the drop shape obtained from a balance of the relevant

forces (see also Marston3 and Marston et al.13). Trinh et al.7

used amplitude modulation of ultrasonically levitated drops

to measure the surface tension of water, hexadecane, sili-

cone oil, and water-glycerin mixtures.

Surface tension and viscosity can be obtained by ultra-

sonically levitating drops, where the general approach is to

use characteristics of the drop oscillation frequency and dis-

sipation to extract both fluid properties. This can be

achieved via a transient approach wherein a drop is excited

into prolate-oblate shape oscillations, the excitation source

is eliminated, and then the decay in drop oscillation is mea-

sured. The frequency and damping constant of the decaying

signal are then used to obtain surface tension and viscosity.

This approach was reviewed and used in a recent publication

by Kremer et al.10 and was shown by Holt et al.12 to be

effective in measuring the difference in the viscosity of nor-

mal blood and the blood of individuals with sickle cell dis-

ease. A more common approach for obtaining viscosity and

surface tension is to obtain the steady-state frequency

response function of a drop. In this method, a modification

of which is the subject of the present work, the amplitudea)Electronic mail: jsaylor@clemson.edu
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modulation frequency is scanned through a range near the

natural frequency of the drop and the response of the drop is

recorded. By treating the drop as a forced damped oscillator,

its response can be described as (following the treatment of

Hosseinzadeh and Holt11)

x

A
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x
xn

� �2
 !2

þ 2f
x
xn

� �� �2

vuut
; (1)

where A is the driving amplitude, x and xn are the driving

frequency and natural frequency, respectively, f is the

damping coefficient, and x is the amplitude of drop oscilla-

tion. Obtaining xn and f from experimentally obtained

ðx=A;xÞ, values for viscosity l and surface tension r can

then be obtained from Lamb’s16 equations for the n¼ 2

quadrupole shape mode of spherical oscillation for a drop of

radius R and density q,

x2
n ¼

8r
qR3

(2)

and

f ¼ 5l
qR2xn

: (3)

This approach has been used by Trinh and co-workers,17,18

Hosseinzadeh and Holt,11 and others. In the above, it should

be noted that Eq. (1) is a simplified version of the more gen-

eral case presented by Marston3 and Marston and Apfel,4

where terms for viscous dissipation in the boundary layer

near the interface as well as viscous dissipation in the flow far

from the interface are included [the terms that include “a” in

Eqs. (6) and (7) of Marston and Apfel4]. For the conditions

here where the drops are on the order of a millimeter, the gel

and air densities are on the order of 1000 and 1 kg/m3, respec-

tively, and the absolute viscosities of gel and air are on the

order of 10�3 and 10�6 Pa s, respectively, the general result

of Marston3 and Apfel and Marston4 reduces to Eq. (1).

Similarly, Eq. (3) is a simplified equation for the case where

viscous dissipation due to boundary layer effects is neglected

[again eliminating a terms in Eqs. (6) and (7) of Marston and

Apfel4 and noted in other works19–21].

In all of the above investigations, the drops which were

studied were liquids and lacked elasticity. The motivation

of the present work is to develop a method for obtaining the

fluid properties of a drop composed of a hydrogel which has

significant surface tension, viscosity, and elastic modulus.

We are unaware of attempts to do this using ultrasonically

levitated drops. It is noted that McDaniel and Holt22

obtained the elasticity of aqueous foam drops via the acous-

tic levitation approach. Viscous dissipation and surface ten-

sion were not considered in that work. Below, we develop

an approach for obtaining the frequency response of ultra-

sonically levitated gel drops and using this information to

extract the surface tension, viscosity, and elasticity of that

gel drop. This approach is then experimentally demonstrated

for obtaining surface tension and viscosity, with the experi-

mental demonstration of obtaining elasticity left as future

work.

The present work focuses on gels, specifically hydro-

gels. These materials, often referred to as soft solids, are

unique in that both surface tension and elasticity can be

roughly comparable in magnitude. Drops composed of a gel

material, therefore, differ from the studies discussed above

which concern liquids for which surface tension is the only

restoring force during drop oscillation. That soft solids have

surface tension and the importance of surface tension in

these materials is illustrated by the rapidly growing field of

elastocapillarity in which both elasticity and capillarity

affect the physics.23–25 Surface tension r becomes important

when the characteristic length L of the system is of the same

size as the elastocapillary length ‘e � r=G, where G is the

shear modulus of the gel. When L < ‘e, the gel is subject to

capillarity as observed in recent experiments; e.g., gravity-

driven26 and capillary breakup of a solid cylinder27 and pla-

nar elastocapillary waves.28,29 Surprisingly, recent work by

Style et al.30 has shown that for soft elastomers (G � 1 kPa)

the elastic strength actually increases with liquid inclusion

concentration, in direct contrast to classic Eshelby theory of

inclusions,31 and the magnitude of the increasing stiffness is

directly proportional to the surface tension of the elastomer.

The aforementioned applications highlight the critical need

to be able to measure the surface tension of soft gels. The

measurement technique described herein enables determina-

tion of surface tension for these elastomer composites which

will allow one to optimize/design such composite materials

with minimal inclusions for a desired strength. This is espe-

cially important given that the standard DuNuoy ring and

Wilhelmy plate measurement methods32,33 are not possible

for gels, since the measurement itself would break the gel.

We note in passing that the surface tension of liquids can be

measured using the pendant drop method, wherein the image

of the drop outline is used in combination with the Young-

Laplace equation to obtain the surface tension value.34,35

While application of this approach to gels would not suffer

the physical problems associated with Wilhelmy plate or Du

Nuoy ring measurements, we are not aware of any theory

that would enable extraction of the elasticity and surface

tension using this approach.

Gels have grown in importance in recent years due to

their use in various bio-printing technologies such as cell

printing and tissue engineering which employs the basic

principles of inkjet printing but adapted to bioinks.36,37

Bioinks are typically hydrogels that are capable of sustain-

ing biological function. They have complex rheologies char-

acterized by surface tensions and elasticities that are both

significant. Typically, a cell/gel mixture is forced through a

nozzle, creating a drop containing (usually) a single cell

which then impacts a substrate. Repetition of this process

can be used to build up engineered tissues. Cell viability in

such processes is linked to the strains experienced by the

cell within the gel drop during the printing process.38 These
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strains are in turn partially determined by the surface tension

and elasticity of the gel drop. Hence, development of bio-

printing technologies requires an ability to know (viz., an

ability to measure) the surface tension of gels.

Herein we extend to gel drops the method of obtaining

fluid properties of liquid drops and foams via ultrasonic levi-

tation. While viscosity, elasticity, and surface tension are all

important, only surface tension and viscosity are experimen-

tally obtained by the method presented herein, and elasticity

is measured independently via a standard method.

As will be shown later in this paper, the reason we were

unable to measure elasticity using the method presented

here is due to the moderate amount of noise in the system.

This, coupled with a relatively small range in R in the drops

studied, precluded obtaining elasticity experimentally. We

note that the theory developed herein enables obtaining

measurements of elasticity in principle.

Details surrounding this point are further discussed in

Sec. IV.

II. EXPERIMENTAL METHOD

A. Droplet levitation and modulating the acoustic
force

The experimental setup is illustrated in Fig. 1. As indi-

cated, an ultrasonic transducer is used to levitate the gel

drop. A camera and light emitting diode illumination source

was used to image the gel drop and obtain its size, with the

illumination source backlighting the drop. The transducer

consists of a horn and reflector, following the general proce-

dure of Trinh.39 The horn and reflector are separated by an

integer number of half wavelengths, with the drop levitated

at one of the nodes. Two pre-stressed PZT transducers

(Channel Industries, Inc.) were used in the horn, and each

had an outer diameter of 46 mm, an inner diameter of

16 mm and a thickness of 3.2 mm. The transducer was

driven by an Agilent 33220 A function generator, Kron-Hite

amplifier (7500) combination. A carrier wave was created

by the function generator at the nominal resonant frequency

of the transducer which was 30.3 kHz. The actual resonance

frequency varied due to variances in manufacturing

tolerances, the degree of coupling between the PZT and the

transducer components due to the clamping force holding

the PZT in place, as well as temperature variations due to

self-heating. The carrier wave was amplitude modulated at a

range of frequencies near the resonant frequency of the

drop, which was on the order of 100 Hz, two orders of mag-

nitude lower in frequency than the carrier wave. During an

experiment, the AM frequency was swept from below to

above the drop resonant frequency. A code written in

LABVIEW was used to control the drop levitation and AM fre-

quency sweep. The AM frequency sweep typically took

3 min.

The transducer was initially tuned by adjusting the dis-

tance between the reflector and horn to most effectively lev-

itate a drop. Then, the carrier wave frequency was adjusted

to do the same. The process was iterated to achieve maxi-

mum levitation. From this point forward, resonance of the

transducer could drift due to heating of the transducer and

changes in temperature and humidity of the air. This drift

would rarely exceed 10 Hz, but this was large enough to

prevent effective levitation of drops. To address this, a

software control in LABVIEW was used to adjust the carrier

wave frequency between AM frequency sweeps to main-

tain transducer resonance as shown in Fig. 2. The applied

voltage and current to the transducer were measured with a

Measurements Computing data acquisition module

(USB-2020 DAC) at a sample rate of 10 MHz. The phase

shift between these two signals was calculated, and the car-

rier wave frequency was adjusted to keep the phase shift

as close as possible to zero, which maximizes the power

applied to the ultrasonic levitation system. The carrier

wave frequency was adjusted 3 times per second. The over-

all method for drop levitation is similar to that presented in

Fredericks and Saylor.40

The amplitude of gel drop oscillation was measured

using a laser light extinction approach similar to that of

Marston,41 as shown in Fig. 1. A helium-neon laser beam

(632.8 nm wavelength) was expanded to �5 mm and

directed at the levitated gel droplet. The resulting occluded

beam strikes an optical detector whose output is a linear

function of the light intensity striking the detector. By

FIG. 1. Schematic of the experimental apparatus.
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placing a plate with a 3 mm diameter hole in front of the

detector, the output is proportional to the fraction of the

laser light that is occluded by the oscillating drop. Hence,

the output voltage of the photodetector is linearly related

to the projected area of the levitated droplet, which is taken

as the amplitude of oscillation. It is noted that for small

oscillation amplitudes, this voltage is proportional to the

change in drop radius. The frequency of the detector signal

is equal to the oscillation frequency of the levitated drop.

For each frequency in the AM scan, 5 s of data were

acquired. Then the frequency was increased and another 5 s

of data were obtained. The frequency was increased in

increments of 1 Hz, and a scan consisted of 30 frequencies.

The amplitude of the resulting drop oscillation at each exci-

tation frequency was obtained by taking the FFT of the last

4 s of each 5 s time trace. The first second of each trace was

discarded to remove any influence of the previous AM fre-

quency. The amplitude obtained from this FFT is referred to

as x and the amplitude of the driving frequency is referred to

as A in Eqs. (1) and (4) presented below. Each experiment

resulted in a point in the plot of the amplitude of drop oscil-

lation versus excitation frequency. The natural frequency

was taken to be the frequency at which a maximum in the

drop oscillation was observed.

B. Formation of gel drops

Following the approach of Tokita and Hikichi,42 hydro-

gels were prepared by dissolving agarose powder (Sigma

Aldrich type VI-A) in doubly distilled water (though Tokita

and Hikichi used de-ionized water) at 90 �C for 1 h. Our

goal was to create gelled drops that were as close to spheri-

cal as possible. We initially allowed the drop to gel on a

Teflon surface, and also experimented with letting the drop

gel while ultrasonically levitated. However, both of these

approaches resulted in relatively oblate drop shapes along

with significant changes in the drop size due to evaporation.

Herein we followed the method of Chakrabarti43 and created

a liquid mixture having a density gradient spanning the den-

sity of the gel. Specifically, we partially filled a beaker

with silicone oil (PDM-7040, Gelest) having a density of

q ¼ 1:07 g/ml, and above this we poured n-octane (Acros

Organics), having a density of q ¼ 0:7 g/ml. Both silicone

oil and n-octane are not miscible in agarose. The agarose

solutions we used had a nominal density of q ¼ 1:0 g/ml,

and when placed in the beaker the agarose drops quickly

migrated to the interface of the two liquids and exhibited a

highly spherical shape as shown in the image of a sample

gel drop presented in Fig. 3. Figure 4 shows one of these

drops levitated in the ultrasonic standing wave field without

amplitude modulation, showing that the equilibrium shape,

though not as spherical as in Fig. 3, is still quite round. In

addition to generating spherical drops, this approach also

had the benefit of allowing gelation without evaporation,

ensuring that the agarose/water concentration did not change

during gelation. After allowing these drops to gel at room

temperature for at least 3 h, a drop was removed from the

silicone oil/n-octane beaker after which it was carefully

washed in n-heptane (Fisher Chemicals) for 2 min to remove

any excess silicone oil or octane. The drop was then washed

FIG. 2. Flow chart depicting the method for adjusting the carrier wave fre-

quency by monitoring the phase shift a.

FIG. 3. (Color online) Image of a gel drop located at the interface between

silicone oil and n-octane in a cuvette. The gel drop has a diameter of

2.86 mm and the gel has an elasticity of G¼ 13.0 Pa.
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once more with a fresh solution of n-heptane. After this, the

drop was inserted into the levitation system and an experi-

ment was initiated after allowing 15 s to pass so that any

remaining heptane evaporated. Multiple drops were made

from the same agarose solution ensuring that the concentra-

tion and hence the elasticity were the same when doing mul-

tiple runs. Drops made in this way were kept in the silicone

oil/n-octane beaker until needed. For the work presented

here, the drop radius varied from R¼ 1.16–1.6 mm, and the

agarose concentration varied from 0.106 to 0.285 wt. %.

For each concentration of agarose gel used in these

experiments, the complex modulus G ¼ G0 þ iG00 for that

gel was obtained using an Anton Paar rheometer (MCR

302). This method employs a small Petri dish in which the

gel solution is placed and allowed to gel. The rheometer

then contacts the surface of the gel with a disk. Dynamic

oscillatory shear tests over a range of frequencies from 1 to

50 rad/s were then obtained. Prior to these measurements, a

small amount of silicone oil was placed over the annular

region between the disk and the edge of the Petri dish, pre-

venting evaporation during the course of the measurement.

For the gels used here, the loss modulus G00 was found to be

over one order of magnitude smaller than the storage modu-

lus G0 and G00 is ignored hereinafter. This behavior has been

demonstrated for agarose by other authors as well, for exam-

ple, Monroy and Langevin28 who showed that the loss

modulus was at least one order of magnitude smaller than

the storage modulus for 0.2 wt. % agarose hydrogels (very

similar to the 0.106–0.285 wt. % agarose hydrogels explored

here) over a frequency range from 10�2 to 102 Hz. Thus, the

agarose hydrogels used in our experiments behave as linear

elastic solids. For simplicity, the storage modulus G0 is

referred to as G hereinafter. For the gels investigated here,

G ranged from 12.2 to 200.3 Pa over the agarose

concentrations explored. The 95% confidence interval for

measurement of G was 5.6 Pa which included the instrument

uncertainty and experimental uncertainty obtained from

measuring several samples of the same gel. For each value

of G explored, at least three experimental runs were con-

ducted, except for the case when G¼ 38 Pa when two runs

were conducted. An average of 3.6 experiments were run for

each value of G.

III. RESULTS

A. Theoretical model

Obtaining surface tension, elastic modulus, and viscosity,

r, G, and l, from the results presented above requires a

model relating the driving frequency and drop oscillation

amplitude to the natural frequency and damping coefficient

as was done for just r and l using Eqs. (1)–(3) in Sec. I.

This is done by developing an equation for the oscillations

of a sphere having non-zero elasticity, viscosity, and surface

tension.

Here we begin by following the general approach pre-

sented in Hosseinzadeh and Holt,11 which is a simplifica-

tion of that presented by Marston3 for the case of

negligible boundary layer dissipation and which exploits

the similarity of the oscillating drop with the damped-

driven oscillator, an approach which has been exploited in

the study of drops and bubbles in different ways by a range

of researchers,16,44–52

€x þ 2fxn _x þ x2
nx ¼ A cos xt; (4)

where f is the damping ratio, xn the natural frequency, and

ðA;xÞ the driving amplitude and frequency, respectively. In

the harmonic oscillator structure, inertia acts as the “mass,”

the resistive force of surface tension and elasticity as the

“spring constant,” and viscous dissipation as the “damping

constant,” all of which are determined by projecting onto a

particular interface shape gðh;u; tÞ. Our drop oscillates in

the fundamental mode gðh;u; tÞ ¼ xðtÞP2ðcos hÞ, where P2

is the Legendre polynomial of order n¼ 2,53 and we project

onto this mode, which is axisymmetric and oscillates

between an oblate and prolate shape.

Each component of the essential physics that enters into

our model is schematically viewed as a spring or dashpot

whose constant is normalized with respect to the drop mass.

These relationships have been individually determined in

the literature.16,54,55 Damping is associated with viscous dis-

sipation of a fluid which was computed by Lamb using the

potential flow solution for the spherical drop16 and assuming

negligible viscous dissipation due to boundary layer effects;

this gives f in Eq. (3). Both surface tension and elasticity

resist deformation like a spring and we idealize these two

forces as springs acting in parallel so that we can superim-

pose their effects. We note that this, along with an assump-

tion of a constant value for ðr; l;GÞ, independent of drop

deformation, restricts us to Newtonian materials whose elas-

ticity and surface tension do not interact. The spring

FIG. 4. (Color online) Image of a gel drop levitated in an ultrasonic

standing wave field. The amplitude modulation is zero in this case, showing

the equilibrium shape of the drop in the field. The gel drop diameter is

2.82 mm and the elasticity is G¼ 13.0 Pa.
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constant due to surface tension is given by Eq. (2) assuming

an inviscid liquid drop.54 The spring constant due to elastic-

ity is computed from a nonlinear characteristic equation

which is derived in the Appendix to give

g g2 � 10
� �

j2ðgÞ � 2 g2 � 16
� �

j3ðgÞ ¼ 0 (5)

for the scaled elastic frequency

g ¼ xR
ffiffiffiffiffiffiffiffiffi
q=G

p
(6)

with jl the spherical Bessel function, assuming an incom-

pressible spherical globe,55 which admits a numerical solu-

tion g ¼ 2:665 that when rearranged gives the spring

constant due to elasticity

x2
n ¼ 2:665ð Þ2 G

qR2
: (7)

There is no explicit coupling between surface tension and

elasticity in the above development, and to our knowledge

no such model exists for a spherical drop. Combining the

spring constants due to surface tension and elasticity gives

an effective spring constant

x2
n ¼

1

qR3
8rþ ð2:665Þ2GR
h i

; (8)

which can be combined with the damping ratio f in Eq. (3)

in the system response, Eq. (1). This enables a relationship

between driving frequency and drop oscillation amplitude to

ðr; l;GÞ. Specifically, using the ðx=A;xÞ data from any

given gel drop levitation run and fitting it to Eq. (1) using

xn and f as fitting parameters, the resulting ðxn; fÞ can be

obtained and used to get l from Eq. (3), and G and r
from Eq. (8) by doing multiple runs with gel drops having

different R.

B. Experimental results

While experiments were indeed conducted at different

R for gels of the same concentration, the range in R was

small and increasing this range was challenging due to diffi-

culties in forming small drops and in stably levitating large

drops. This, combined with scatter in the data, made difficult

the extraction of ðr; l;GÞ from the experiments using the

approach outlined above. Instead, G was measured as

described in Sec. II, and is used as an input while ðr; lÞ are

extracted from the experimentally obtained ðxn; fÞ.
Figure 5 is a plot of drop oscillation amplitude scaled to

the driving amplitude versus driving frequency for a sample

run where the elasticity of the gel was 32 Pa. Along with

this plot are images of a gel drop undergoing shape mode

oscillations over the entire period of the oscillation. The

solid line in the plot was obtained by fitting the data using

Eq. (1). As noted in Sec. II the frequency at which the peak

in this plot is observed is taken as the natural frequency. In

Fig. 5, the peak is located at a frequency of 99.32 Hz, and

was identified using the fit to the data as opposed to the data

alone, since the fit incorporated information from multiple

data points and was therefore less sensitive to a spurious

measurement. It is also noted that while measurements were

obtained at 30 excitation frequencies for each drop, only 21

were used (and presented in Fig. 5) because data points

obtained far from resonance exhibited greater scatter.

The results of all the runs are presented in Figs. 6 and 7

showing how the natural frequency of the gel drop varies

with G. In Fig. 6, the natural frequency is scaled to the capil-

lary natural frequency given in Eq. (2) (designated xr in the

figure), and in Fig. 7 the natural frequency is scaled to the

elastic frequency, Eq. (7) (designated xG in the figure). In

both of these plots and those to follow, the vertical error

bars are the 95% confidence intervals for that value of G. As

noted in Sec. II, the 95% confidence interval for G was only

5.6 Pa, and horizontal error bars are not included since this

f

FIG. 5. (a) Plot of oscillation amplitude versus excitation frequency f for a sample run where the elasticity was G¼ 32 Pa. (b) Image of a gel drop undergoing a

full period of shape mode oscillation. The drop radius was R¼ 1.43 mm in this particular experiment.
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magnitude in uncertainty is smaller than the width of the

symbols in these figures.

The fact that in neither Fig. 6 nor Fig. 7 is the scaled

frequency a constant demonstrates that both surface tension

and elasticity are playing a role in the gel drop dynamics, as

expected. It also shows that r must be varying with the aga-

rose concentration since a constant value for r independent

of that concentration (which would translate to a constant r
independent of G) should give a horizontal line in the plot

of xn=xG in Fig. 7, which is not the case.

Applying the theory developed in Sec. II, each data

point presented in the above plots can be translated into a

viscosity and surface tension, and these are presented in

Figs. 8 and 9, respectively. The linear fits presented in Figs.

8 and 9 are

l ¼ 6:005� 10�5Gþ 0:008384 (9)

and

r ¼ 0:001022Gþ 0:07229; (10)

respectively.

It is noted that obtaining l via the method described

above is more sensitive to errors in data points that were far

from the natural frequency. Hence, in obtaining l, a total of

nine data points were used, the data point at the natural fre-

quency and four above and below that frequency. Since fre-

quency scans were obtained in 1 Hz increments, this

corresponds to a range of 8 Hz in frequency when obtaining

l. This approach resulted in less scatter in the data than

when using the entire data set since data farther from the

resonance point was sometimes spurious in nature, occa-

sionally exhibiting an amplitude higher than that at the

natural frequency.

IV. DISCUSSION

Figures 8 and 9 demonstrate the ability of the described

method to obtain ðr; lÞ for levitated gel drops. The ability

to obtain r is especially noteworthy since we are aware of

no other means for obtaining surface tension for a gel. Of

course, this also means that we are unable to compare our

results to other data or methods. However, by setting G¼ 0

in Eq. (10), we obtain an extrapolated value of r ¼ 0:0723

N/m for the pure water case, which is essentially the exact

value of r for pure water at STP.56

FIG. 6. Plot of the gel drop natural frequency scaled to the capillary natural

frequency versus elasticity G.

FIG. 7. Plot of the gel drop natural frequency scaled to the natural fre-

quency of a purely elastic drop versus elasticity G.

FIG. 8. Plot of viscosity l versus elastic modulus G with linear curve fit.

FIG. 9. Plot of surface tension r versus elastic modulus G with linear curve fit.

2494 J. Acoust. Soc. Am. 147 (4), April 2020 Shao et al.

https://doi.org/10.1121/10.0001068

https://doi.org/10.1121/10.0001068


We should note that the viscosity presented here is not

the viscosity as it is typically understood, viz., the constant

which relates the shear stress to the velocity gradient in a

flowing liquid, since we are considering gels, which do not

flow. Hence, l is simply the quantity which accounts for

energy dissipation in the deforming gel drop. Indeed, when

we set G¼ 0 in Eq. (9), we obtain l ¼ 0:00838 Pa s which

differs from the value of pure liquid water at STP by a factor

of 10, a result which is likely due to the change in what l in

Eq. (3) represents when a liquid becomes a gel and ceases to

admit flow, even at very small G.

With regard to the measurement of physical properties

by exciting shape oscillations in ultrasonically levitated

drops, it should be noted that Hosseinzadeh and Holt11 dem-

onstrate that, for liquid drops, the measurements of r and l
could be in significant error if the oscillation amplitudes are

too large. Specifically, their work contradicts the oft-cited

conclusion of Becker et al.,57 that for oscillation amplitudes

less than 10%, nonlinearities would not be significant, pre-

sumably avoiding errors in measurements of r and l.

Indeed, Hosseinzadeh and Holt11 suggest that oscillation

amplitudes be kept to less than 0.5% to avoid errors in mea-

surements of r and l. Herein our oscillation amplitudes

were all less than 5%, which is less than that suggested by

Becker et al.,57 but significantly larger than that suggested

by Hosseinzadeh and Holt.11 Though we recognize the

validity of the work of Hosseinzadeh and Holt,11 we think

that our oscillation amplitudes are sufficiently small and jus-

tify our assumption that nonlinearities are not playing a sig-

nificant role in our measurements by the following

arguments. First, as noted by Hosseinzadeh and Holt,11 the

previous work that they reviewed revealed surface tension

measurements that underpredicted or overpredicted known

values when oscillation amplitudes were large. However,

when extrapolating to zero G, our Eq. (10) gives a surface

tension identical to that of water. Second, for the case of vis-

cosity, Hosseinzadeh and Holt11 note that it is the deviation

of the actual velocity field from the infinitesimal amplitude

shape mode oscillations predicted by Lamb,16 which is the

cause for finite amplitude contributions to errors in the mea-

surement of viscosity of ultrasonically levitated liquid drops.

This is unlikely to be the case for the gel drops considered

here where flow does not occur. Indeed, one author contends

that it is only when turbulent flow occurs that a deleterious

effect on viscosity measurement occurs,58 a situation cer-

tainly not possible here. Finally, even for the case of the

glycerol-water system investigated by Hosseinzadeh and

Holt11 (20 wt. %), their data show that even at a high 12%

amplitude oscillation they see an error in the measurement

of viscosity greater than 10% only for drop diameters larger

than about 1.5 mm (reading off of the data presented in their

Fig. 4). Our results at oscillation amplitudes of 5% or less

are for drop radii ranging from 1.16 to 1.6 mm indicating

that we should only see errors approach 10% for the largest

of the drops we investigated. Hence, we do not see finite

amplitude effects as contributing to errors in our measure-

ments of physical properties, though we recognize that the

authors we compare to above are all working with liquid

systems and so it would be useful to do a study of the upper

bound of oscillation amplitude for the measurement of

ðr; l;GÞ, in gel systems. Perhaps the best way to do this

would be to conduct experiments such as those presented

above, but for a larger range of R where G could be obtained

(see below) and thereby compared with standard rheometer

measurements of G.

As noted in Sec. III A, only ðr; lÞ are obtained herein

from the experimental data. It is possible to obtain ðr; l;GÞ
from the data, taking advantage of small differences in R for

the droplets used at each value of agarose concentration.

However, the range in R for these experiments was small,

and the scatter in the data presented in Figs. 8 and 9 was not

insignificant. However, this does not preclude using this

method for obtaining G given a data set containing a wider

range in R. A likely cause of the scatter is the low frequency

oscillation (on the order of a few Hz) of the drop position

within the ultrasonic standing wave field. Future work

should focus on stabilizing the drop position, perhaps by

including a shroud around the standing wave field to help

block air currents in the room, and the development of a

method for making gel drops capable of a large range in R.

Success in these steps would enable obtaining measurements

of ðr; l;GÞ via this method.

V. CONCLUSIONS

A relationship was developed relating the surface ten-

sion, viscosity, and elasticity of a gel to the oscillatory char-

acteristics of a gel drop. Experiments were conducted

showing that this relationship could be applied to an ultra-

sonically levitated gel drop excited into shape mode oscilla-

tions to measure the surface tension and viscosity of that gel

drop. Specifically, agarose gel drops were investigated hav-

ing a range of elasticity from 12.2 to 200.3 Pa and the mea-

sured surface tension ranged from 0.1 to 0.3 N/m, and the

measured viscosity ranged from 0.01 to 0.02 Pa s. Obtaining

surface tension in this way is especially important given that

existing methods for measuring surface tension (e.g., the

DuNuoy ring method or Wilhelmy plate method) cannot be

used for gels since they would break the gel in the process

of measurement. This work extends that of previous

researchers who have used ultrasonic levitation of liquids to

obtain properties such as surface tension and viscosity. By

extending the work of these researchers to materials having

elasticity, this approach enables measurements of gel prop-

erties, an important step due to the significance of gels in

cell printing and tissue engineering which employs the basic

principles of inkjet printing adapted to bioinks. To our

knowledge, these are the first measurements of surface ten-

sion obtained for a hydrogel using ultrasonic levitation.
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APPENDIX: DERIVATION OF CHARACTERISTIC
EQUATION (5)

Consider a solid sphere of radius R whose surface is dis-

turbed by a small perturbation which generates a time-

dependent displacement field Uðx; tÞ within the sphere. We

assume a normal mode ansatz Uðx; tÞ ¼ uðxÞeixt with fre-

quency x, and define the displacement field u in a spherical

coordinate system,

uðxÞ ¼ urðr; h;uÞêr þ uhðr; h;uÞêh þ uuðr; h;uÞêu;

(A1)

where h and u refer to the polar and azimuthal angles,

respectively.

For a linearly elastic solid with Lame’ parameters k and

G, the displacement field u is governed by the Navier elasto-

dynamic equation

ðkþ GÞrðr � uÞ þ Gr2u ¼ �qx2u; (A2)

where q is the density. The stress-strain relation is given by

s ¼ 2Gþ kTrðeÞ; (A3)

where Tr is the trace of the strain field

e ¼ 1

2
ðruþruTÞ: (A4)

The governing equation (A2) is simplified by applying the

Helmholtz decomposition theorem and writing the displace-

ment field in terms of the potential functions ð/; T; SÞ,

u ¼ r/þr� ðTêrÞ þ r � ðSêrÞ: (A5)

Substituting Eq. (A5) into Eq. (A2) results in a set of

decoupled Helmholtz equations,

r2/þ a2/ ¼ 0; (A6a)

r2 T

r

� �
þ b2 T

r

� �
¼ 0; (A6b)

r2 S

r

� �
þ b2 S

r

� �
¼ 0; (A6c)

where a ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=ðkþ 2GÞ

p
and b ¼ x

ffiffiffiffiffiffiffiffiffi
q=G

p
.

The general solution of Eq. (A6) can be written by

expanding the potentials /; T; S in a spherical harmonic

Ym
l ðh;uÞ basis,

/ ¼
X1
l¼0

Xl

m¼�l

AlmjlðarÞYm
l ðh;uÞ;

T ¼
X1
l¼0

Xl

m¼�l

rBlmjlðbrÞYm
l ðh;uÞ;

S ¼
X1
l¼0

Xl

m¼�l

rClmjlðbrÞYm
l ðh;uÞ;

(A7)

where jl is the spherical Bessel functions of the first kind,

l the polar wavenumber, and m the azimuthal wavenumber.

Note that we suppress the spherical Bessel function of the

second kind in the solution, which diverges at the origin and

is nonphysical. The unknown constants Alm;Blm;Clm are

determined from the traction-free boundary conditions at the

free surface r¼R,

srrðRÞ ¼ srhðRÞ ¼ sruðRÞ ¼ 0: (A8)

Applying Eq. (A7) to Eqs. (A3) and (A4) allows us to

express the boundary conditions (A8) in terms of the

unknown constants A, B, and C, which satisfy

2G

R2
AlmT11 þ ClmT13½ � ¼ 0; (A9a)

2G

R2
AlmT31 þ ClmT33½ � ¼ 0; (A9b)

2G

R2
BlmT22 ¼ 0; (A9c)

where

T11 ¼ l2 � l� 1

2
g2

� �
jlðjgÞ þ 2jgjlþ1ðjgÞ;

T13 ¼ ðl� 1ÞjlðjgÞ � jgjlþ1ðjgÞ;
T22 ¼ ðl� 1ÞjlðgÞ � gjlþ1ðgÞ;
T31 ¼ lðlþ 1Þ ðl� 1ÞjlðgÞ � gjlþ1ðgÞ

� �
;

T33 ¼ l2 � 1� 1

2
g2

� �
jlðgÞ þ gjlþ1ðgÞ: (A10)

The solvability condition for Eq. (A9) gives

T11T33 � T13T31 ¼ 0; T22 ¼ 0; (A11)

which admits two classes of solution; spheroidal and tor-

sional modes. The spheroidal modes satisfy the following

characteristic equation:

� 1

2

2l2 � l� 1

g2
� 1

2

 !
jlðjgÞjlðgÞ

þ l3 þ l2 � 2l

g3
� 1

2g

 !
jlðjgÞjlþ1ðgÞ

þ l3 þ 2l2 � l� 2

g3
� 1

g

 !
jjlðjgÞjlþ1ðgÞ

þ 2� l� l2

g2
jjlþ1ðjgÞjlðjgÞ ¼ 0; (A12)

and the torsional modes satisfy

ðl� 1ÞjlðgÞ � gjlþ1ðgÞ ¼ 0: (A13)

Here we have scaled time with respect to the elastic shear

wave timescale which admits a dimensionless frequency

g ¼ xR
ffiffiffiffiffiffiffiffiffi
q=G

p
and a compressibility factor j ¼ G=ðkþ 2GÞ,
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which can be written with respect to the Poisson ratio � as

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2�Þ=2ð1� �Þ

p
. For an incompressible material

� ¼ 1=2 and j¼ 0.

These equations have an infinite number of roots which

correspond to the natural oscillation frequencies of the solid

sphere. For the purposes of this paper, we are interested in

the spheroidal or shape change modes and in particular the

l¼ 2 oblate-prolate mode which satisfies

1

2

1

2
� 5

g2

� �
j2ðgÞj2ðjgÞ þ 8

g3
� 1

2g

� �
j2ðjgÞj3ðgÞ

þj
12

g3
� 1

g

� �
j2ðgÞj3ðjgÞ � 4j

g2
j3ðgÞj3ðjgÞ ¼ 0:

(A14)

Setting j¼ 0 delivers Eq. (5).

For reference, the first five roots of Eq. (A14) plotted

against j is shown in Fig. 10.
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