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Asymmetric instability in thin-film flow down a fiber
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Thin-film flow down a vertical fiber gives rise to a number of instabilities that define
the bead-on-fiber morphology including Plateau-Rayleigh breakup, isolated bead forma-
tion, and convective instabilities. Experiments are performed that reveal an asymmetric
instability which depends upon the liquid surface tension and fiber diameter and exhibits
all the bead-on-fiber morphologies. The bead dynamics are described by the bead spacing
and bead velocity, with the asymmetric morphology displaying more regular dynamics
than the symmetric morphology. For the asymmetric morphology, the transition from the
Plateau-Rayleigh to convective regime agrees well with predictions for a free viscous jet,
indicating a minimal effect between the thin film and fiber. In addition, the dimensionless
bead velocity is shown to scale with the capillary number for all experimental data. These
observations for the asymmetric bead dynamics can be used as a design tool for heat and
mass transfer applications.
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I. INTRODUCTION

Thin-film flow down fibers can cause shape-change instabilities resulting in the bead-on-fiber
morphology with associated high surface area-to-volume ratios that are desirable in applications
where heat and mass transfer across a liquid-gas interface occurs, such as gas absorption [1–3],
heat exchangers [4,5], microfluidics [6], and desalination [7]. These beading patterns are driven
by surface tension and are the result of the well-known Plateau-Rayleigh hydrodynamic instability
(PRI) [8,9]. Recent research involving PRI includes investigations into nonlinear effects, the role of
viscosity on the breakup time [10], the stability of liquid bridges [11,12], and the role of liquid-solid
contact [13]. In this paper, we perform an experimental investigation of thin-film flow down fibers
and report an asymmetric beading instability and its dependence upon the liquid surface tension and
fiber diameter.

A thin liquid film coating a fiber similarly experiences PRI, but a nontrivial base flow generates
a more complex set of instabilities, including the emergence of a convective instability resulting in
both steady and unsteady temporal beading patterns. Kliakhandler et al. [14] performed experiments
and documented the three primary regimes: isolated, Plateau-Rayleigh, and convective. Recent work
by Sadeghpour et al. [15] and Ji et al. [16] has examined the affect of nozzle size on the observed
regime. Interestingly, it is seen that when the flow rate and fiber size are held constant, all three
regimes are observable simply by altering the nozzle diameter. Experiments performed by Smolka
et al. [17] explored the effects of altering the fluid properties and Haefner et al. [18] analyzed
the influence of slip on the Plateau-Rayleigh instability on a fiber, showing that the hydrodynamic
boundary conditions at the solid-liquid interface do not affect the dominating wavelength but do
affect the growth rate of the undulations.
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Volume effects on thin-film flows are also important and Quéré [19] showed the conditions
for which drops cease to form and how it depends upon the film thickness and fiber diameter.
Using scaling arguments presented by Frenkel [20], Kalliadasis and Chang [21] found solitary wave
solutions using a matched asymptotic analysis and determined a critical thickness hc, which must be
exceeded for beads to develop. Chang and Demekhin [22] further studied thin fluid films and showed
that for h > hc, where hc is the critical thickness, fluid films evolve into continually growing pulses
and become convectively unstable. Several proposed models, including a weakly nonlinear thin-film
model by Craster and Matar [23] and the creeping-flow, thick-film model proposed by Kliakhandler
et al. [14], have shown partial agreement with experiments but lead to slight discrepancies and an
inability to accurately predict the emergence of the convective regime. Several other models have
been developed in an attempt to reconcile these discrepancies by considering slip-enhanced drop
formation [24], different scalings [25], streamwise viscous diffusion [26], and disjoining pressure
effects [27]. A more comprehensive review of the models used to describe these thin-film flows is
found in [28].

A single drop placed on a fiber can spread into a film or can morph into either an asymmetric or
symmetric drop profile based on which is energetically preferred [29]. The transition of a symmetric
drop profile to one which is asymmetric has been extensively studied [30–34] and is referred to
as the “roll-up process.” Investigations into this process have highlighted the importance of both
the volume and surface tension of the liquid drop on the transition between profile symmetries.
Likewise, one would expect a similar dependence in thin-film flow down fibers with the fluid inertia
influencing the transition point. We report an experimental observation documenting the emergence
of this instability.

We perform experiments in thin-film flows down fibers, documenting the emergence of an
asymmetric instability and showing its critical dependence on fiber diameter D f and surface tension
σ . The bead dynamics are characterized by the bead velocity Vb and spacing Sb and we contrast
the dynamics for symmetric and asymmetric bead morphologies. The point where the flow regime
transitions from the Plateau-Rayleigh to convective regime is important and we show that the
transition point for the asymmetric morphology is more predictable, which is advantageous in
heat and mass transfer applications. These results can be used to improve novel water desalination
processes as described in the concluding remarks, which are critical in addressing global issues that
will continue to shape and define the next century of scientific endeavors [7].

II. EXPERIMENT

Beading patterns were investigated using the experimental setup shown in Fig. 1(a). Liquid is
pumped by a NE-1000 syringe pump at flow rate Q through a stainless-steel nozzle of diameter Dn

onto a nylon fiber of diameter D f . The range of Q explored is 5–650 mL/hr, Dn is 0.4–3.3 mm,
and D f is 0.101–0.5080 mm. Two pinning devices are located at the top and bottom of the testing
apparatus and hold the fiber in a vertical orientation. The length of the fiber is 550 mm, which is
sufficient for the beading patterns to become fully developed.

Three working liquids are used: (i) glycerol-water mixtures, (ii) silicone oil, and (iii) mineral
oil, with the liquid properties given in Table I. These liquids were selected to provide a large range
of viscosity and surface tension values. A surfactant was added to the glycerol-water mixtures to
change the surface tension, while the volume fraction of glycerol to water changes the viscosity of
the mixture. The density ρ, viscosity μ, and surface tension σ of each used liquid are determined
using an Anton Paar DMA 35 density meter, Anton Paar MCR 302 rheometer, and a Kruss K100
surface tensiometer with Wilhelmy plate, respectively.

The bead dynamics were recorded using a camera at 960 frames per second. MATLAB is used
for image processing to analyze the experiments. The beading pattern dynamics can be defined by
the bead velocity Vb, bead spacing Sb, and bead diameter Db, as shown in Fig. 1(b). Each of these
properties are measured at a significant distance down the fiber such that nozzle effects are no longer
observable and the pattern has become fully developed. It is worth noting that since asymmetric
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(a) (b)

FIG. 1. (a) Experimental setup and (b) sketch of the bead properties showing the bead spacing Sb, bead
velocity Vb, bead diameter Db, and fiber diameter Df .

beading patterns allow beads to rotate about the fiber, exact values for the bead diameter are much
harder to attain and, for this reason, we do not analyze bead diameters for asymmetric bead profiles.
Three bead patterns are observed: (i) isolated, (ii) Plateau-Rayleigh, and (iii) convective, consistent
with prior results [14]. These three regimes are shown in Fig. 3, where the isolated and Plateau-
Rayleigh regimes both exhibit a regular bead pattern with primary beads moving with constant
velocity and spacing. However, the isolated regime experiences a secondary breakup of the thin
liquid column between the primary beads which leads to smaller, secondary beads. The convective
regime is characterized by irregular bead patterns that result in random coalescence events between
primary beads. We focus on the isolated and Plateau-Rayleigh regimes, where the beading patterns
are steady and repeatable in experiment. In the convective regime, bead patterns have properties
that vary significantly from moment to moment due to coalescence events occurring at irregular
distances down the fiber.

Lastly, we scale our data and plot against several dimensionless numbers to provide insight into
the physics. The Reynolds number Re is defined as Re = ρQD f /Aμ, where the characteristic length
is the fiber diameter used in the experiment, A is the cross-sectional area of the nozzle, and Q is the
volumetric flow rate. The Reynolds number gives a comparison of inertial to viscous forces and the
use of the fiber diameter as the characteristic length allows scaling relationships that also account for
the fiber geometry. The capillary number Ca is defined as Ca = μQ/Aσ and provides a comparison

TABLE I. Liquid properties.

Fluid Density ρ (kg/m3) Viscosity μ (mPa s) Surface tension σ (mN/m)

Glycerol-water 1040–1243 85–787 30–60
Silicone oil 936–974 9.4–974 22
Mineral oil 848 17.3 25
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(a) (b) (c)

FIG. 2. (a) Phase diagram of the bead symmetry, as it depends upon the surface tension and fiber diameter
for the observed (b) symmetric and (c) asymmetric morphology.

between the viscous and capillary forces. We define a nondimensional bead velocity V ∗ = Vb/Vn

as the ratio of bead velocity to nozzle velocity, Vn = Q/A. Lastly, for experiments performed at the
transition point between absolute and convective instability, we define a nondimensional transition
velocity Ṽ = Vb/(σ/3μ), where Vb is scaled by the velocity U A/C

0 = σ/3μ at the transition between
absolute and convective instability for a free viscous jet [35].

III. RESULTS AND DISCUSSION

Experimental data have been collected, from which we observe an asymmetric instability in the
bead morphology. Our focus is on (i) the symmetric-asymmetric transition and (ii) characterizing the
associated bead dynamics over a large range of experimental parameters. We show that asymmetric
beading exhibits more predictable dynamics, similar to that of a free viscous jet, as measured at the
transition from the Plateau-Rayleigh to convective regime. Furthermore, the nondimensional bead
velocity V ∗ for all asymmetric patterns collapses upon scaling with the capillary number. Herein,
error bars correspond to two standard deviations.

A. Symmetry transition

Figure 2(a) plots the observed bead symmetry for the full range of fiber diameters and surface
tensions shown in Table I, with typical experimental images of the symmetric [Fig. 2(b)] and
asymmetric [Fig. 2(c)] morphology. Here, the viscosity μ, flow rate Q, and nozzle diameter Dn

are observed to each play a minimal role in determining the final symmetry of the flow and
thus the data points that are shown are approximately invariant to each of these experimental
variables. Interestingly, there exists a narrow range of values where the bead profile struggles
to reach a final configuration and transitions from symmetric to asymmetric morphologies in a
random fashion. Herein, we present data that clearly display symmetric or asymmetric morphology.
Note, in Fig. 2(a), the dependence of the bead symmetry on fiber diameter and surface tension.
We observe that (i) for fixed fiber diameter, the transition from symmetric to asymmetric occurs
as surface tension increases, and (ii) for fixed surface tension, the transition from symmetric to
asymmetric occurs as the fiber diameter increases. These results agree with intuition, as we expect,
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(a) (b)

FIG. 3. (a) Symmetric and (b) asymmetric bead morphology exhibit isolated (left), Plateau-Rayleigh
(middle), and convective (right) regimes. The bead diameters shown in the middle image of (a) and (b) are
2.38 and 2.245 mm, respectively.

for vanishingly small fiber diameters, only a symmetric morphology to occur, consistent with the
Plateau-Rayleigh instability of a liquid column.

No symmetry-breaking transition is observed when changing other experimental parameters.
Changing the nozzle diameter significantly affects the flow regime developed for both the asym-
metric and symmetric morphology, but no effect on the flow symmetry is observed. Changing
the viscosity affects the timescale of the symmetry transition, but not the final state. This is
readily observed when comparing various viscosity silicone oils and observing the transition to
a symmetric morphology occurring at different locations along the fiber. Low-viscosity silicone oils
quickly transition to the symmetric state, whereas high-viscosity silicone oils transition more slowly.
Pinching the fiber during an asymmetric flow obstructs the liquid flow and we observe a quick
buildup of liquid above the pinched point that causes the flow to wrap the fiber into a symmetric
configuration. Releasing the fiber allows the now symmetric morphology to flow freely, and a quick
transition back to the asymmetric configuration is observed. Lastly, we mention that a small set of
experiments was performed with a 3-meter-long fiber to demonstrate that no symmetry transitions
occur and our 550 mm fiber length is sufficient to characterize the bead morphology and dynamics.

B. Beading regime

Kliakhandler et al. [14] categorized fully developed symmetric beading patterns into three
primary regimes: isolated, Plateau-Rayleigh, and convective. We observe these same three primary
regimes for both the symmetric and asymmetric morphology, as shown in Fig. 3. The isolated
regime, shown in the left images in Figs. 3(a) and 3(b), is characterized by equally spaced primary
beads moving at a constant velocity that are separated by smaller secondary beads. Note that both
primary and secondary beads display the same morphology, either symmetric or asymmetric. The
Plateau-Rayleigh regime, shown in the middle images of Figs. 3(a) and 3(b), results in primary beads
which flow down the fiber with equal spacing and velocity. However, unlike the isolated regime,
the Plateau-Rayleigh regime is characterized by the absence of the secondary beads separating
the primary beads. Here, the thin film separating the primary beads does not have time for the
secondary Plateau-Rayleigh instability to develop. Lastly, the convective regime illustrated in the
far-right images of Figs. 3(a) and 3(b) is characterized by the coalescence of primary beads into
larger, dominant beads, which progress down the fiber with increasing volume and velocity as they
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(a) (b)

FIG. 4. Bead velocity Vb against flow rate Q, as it depends upon viscosity μ for the (a) symmetric and
(b) asymmetric morphology for a fixed nozzle diameter Dn = 1.2 mm and fiber diameter Df = 0.2032 mm.

coalesce with the smaller primary beads. Interestingly, we observe bead rotation about the axis of
the fiber for the asymmetric morphology and note that the average angular velocity of the beads
tends to increase with decreasing viscosity. The physical mechanism for this rotation has not been
investigated here.

The flow regime is influenced by each experimental parameter. The flow-rate effects are best
illustrated in Fig. 3, where flow rate increases from left to right in each subfigure. The isolated
regime is observed at low flow rates and increasing the flow rate results in a transition to the Plateau-
Rayleigh regime, with further increases leading to the convective regime. The effect of the fiber
diameter is similar to that described for the flow rate, where increases to the fiber diameter will result
in transitions from the isolated to Plateau-Rayleigh to convective regime. Unlike fiber diameter
and flow rate, the role of the nozzle diameter on the regime is much more complex and several
investigations have already explored this effect [15,16].

The transition between the regimes is often difficult to determine experimentally, especially
between the Plateau-Rayleigh and convective regimes. This is best observed by increasing the
flow rate until the point where the steady primary bead pattern observed in the Plateau-Rayleigh
regime exhibits its first coalescence event, at which point the convective regime is entered. We
note that the majority of applications which utilize these beading patterns benefit from maximal
surface area-to-volume ratios. This occurs in the Plateau-Rayleigh regime and is optimized just
below the transition to the convective regime, as the curvature increases with flow rate up until
this point. Once the convective regime is reached, coalescence events create large dominant beads,
which move with increasing velocity down the fiber, clearing out all previously existing primary
beads, and ultimately yield no benefit compared to the Plateau-Rayleigh regime. Accordingly, we
are particularly interested in this transition point and discuss relevant applications in the concluding
remarks.

C. Quantifying the beading properties

Figure 4 plots the bead velocity Vb against the flow rate Q, showing that increased viscosity leads
to decreased bead velocity, as could be expected. For similar viscosity liquids, the bead velocity for
the asymmetric morphology is much higher than for the symmetric morphology. This is due to the
smaller interaction between the liquid and fiber and associated reduction in viscous dissipation.
In Fig. 4, for each data set, the point with the highest flow rate corresponds to the boundary
between the Plateau-Rayleigh and convective regimes. We now focus on this transition point. A
stark contrast between the two morphologies is seen in Fig. 5, where the bead spacing Sb against
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FIG. 5. Bead spacing Sb against viscosity μ at the onset of the convective regime for nozzle diameter
Dn = 1.2 mm and fiber diameter Df = 0.2032 mm.

the viscosity μ is plotted for only transition points. Contrasting the two symmetries, we see a large
variation in the bead spacing for the symmetric morphologies and a near-constant bead spacing
for the asymmetric morphologies. The average bead spacing for the asymmetric morphology is
approximately 17.36 mm for this set of experimental conditions. The significant difference in
behavior at the transition shown in Fig. 5 motivates us to further explore the differences between
the two morphologies at their transition point.

The transition point between the Plateau-Rayleigh and convective regimes occurs at the point
when the flow transitions from absolutely to convectively unstable. We motivate our data analysis
by stating results from the literature for the bead-on-fiber geometry and free viscous jet. For the
bead-on-fiber geometry, Duprat et al. [36], Duclaux et al. [37] derived the dispersion relationship,

ω = kU0 + i
σh3

0

3μR4
f

[(kR f )2 − (kR f )4], (1)

where ω is the frequency, k is the wave number, h0 is the film thickness, and U0 is the base flow
velocity. The transition from absolute to convective instability is determined by locating the saddle
point k0 of the dispersion relationship, which yields the critical velocity at transition,

U A/C
0 = 1.62

σh3
0

3μR3
f

. (2)

We hypothesize that the behavior of the asymmetric morphology, which is inherently less affected
by the fiber, will behave similarly to a free viscous jet. To draw a physical comparison between the
two, we consider the dispersion relationship for a free viscous jet as derived by Eggers and Dupont
[35],

ω = kU0 + i
σ

6μR0
[1 − (kR0)2], (3)

where R0 is the initial radius of the jet. We again locate the saddle point k0 of the dispersion
relationship and determine the velocity at transition to be

U A/C
0 = 1

3

σ

μ
. (4)
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(a) (b)

FIG. 6. (a) Bead velocity against viscosity at the onset of the convective regime for nozzle diameter Dn =
1.2 mm and fiber diameter Df = 0.2032 mm. (b) Bead velocity Vb against fiber diameter Df at the onset of the
convective regime contrasting the symmetric (μ = 48 mPa s) and asymmetric (μ = 787 mPa s) morphology
for Dn = 1.2 mm.

The transition velocity U A/C
0 now provides us with a means to analyze the similarities of the

asymmetric morphology to that of the free jet.
Figure 6(a) plots the bead velocity against the viscosity at the onset of the convective regime,

contrasting the asymmetric and symmetric morphology. Here we see that the bead velocity rapidly
decreases with increased viscosity for both morphologies, but the asymmetric velocity is always
larger than the symmetric velocity for a fixed viscosity. The transition velocity for the bead-on-fiber,
given by Eq. (2), and free viscous jet, given by Eq. (4), both exhibit a 1/μ dependence, and we
overlay Eq. (2) onto our symmetric data and Eq. (4) onto our asymmetric data in Fig. 6(a). This
observation suggests that the asymmetric instability has physics governed by the free viscous jet
with minimal effects due to the liquid-fiber interaction. Figure 6(b) plots the bead velocity against
the fiber diameter at the onset of the convective regime, showing a significant decrease in velocity
with increased fiber diameter for the symmetric morphology and a constant velocity 26.6 mm/s for
the asymmetric morphology, irrespective of the fiber diameter. The dependence of the bead velocity
on fiber diameter agrees well with Eq. (2) (blue dashed line) for the symmetric morphology and
with Eq. (4) for the asymmetric morphology, which predicts a constant velocity Vb ≈ 25.4 mm/s
that is within 5% of the observed value (red dashed line).

Our results for the asymmetric morphology shown in Fig. 6 suggest a connection with the
free viscous jet, which we theorize is a more general result that holds for all values of the
experimental variables explored here. To investigate, we define a nondimensional transition velocity
Ṽ = Vb/(σ/3μ), with Ṽ ≈ 1 for flows similar to the free viscous jet. Figure 7 plots the transition
velocity Ṽ against Reynolds number Re for all of our data. The data are highly scattered for the
symmetric morphologies. However, the asymmetric transition points show good agreement with the
predicted transition velocity of a free jet and the average value Ṽ = 1.061.

D. Scaling the data

Earlier, we showed that the bead transition velocity closely followed that predicted by the theory
for a viscous free jet (cf. Fig. 7). This observation along with the regularity of the asymmetric
morphology suggests that we attempt to collapse all of our data upon scaling. Figure 8 plots the bead
velocity ratio V ∗ against the capillary number Ca for all of our data, showing a reasonable collapse
of the asymmetric data with power-law relationship V ∗ ∼ Ca−0.8. Recall that the data presented
in Fig. 8 were for the isolated or Plateau-Rayleigh regimes, where we observe Ca < 1, suggesting
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FIG. 7. Transition velocity ratio Ṽ against Reynolds number Re at the absolute-convective transition point
contrasting the symmetric and asymmetric morphology for all data.

that surface tension forces are dominant. This behavior again follows similarly to that predicted
for a viscous free jet. We can quantitatively compare our data to theory for the free viscous jet by
evaluating Eq. (3) at the maximum growth rate, γmax = Im[ω] = (1/6)(σ/μR0), and by defining
the characteristic velocity as Vch = γmaxR0 = (1/6)(σ/μ). Letting V ∗ = Vb/Vn ≈ Vch/U A/C

0 yields
V ∗ = (1/6)Ca−1. The dashed line in Fig. 8 shows a power-law fit V ∗ ∼ Ca−1 to our data, further
highlighting the similarities between the asymmetric morphology and a viscous free jet. Coupling
this relationship with the earlier observation that Ṽ ≈ 1 at the point of transition between absolute
and convective instability, we see that the capillary number Ca and Ṽ can be used as a design tool
for many applications where the transition point to the convective regime is needed. For example,
regular beading patterns are preferred in gas absorption [1,3], specifically in the Plateau-Rayleigh

FIG. 8. Bead velocity ratio V ∗ against capillary number Ca for all data.
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regime which exists just before irregular beading patterns emerge. The relationships that exist for
the asymmetric morphology require only that the fluid properties be known in order to determine
where the transition from the desired regular pattern to irregular ones will occur for a given flow
rate. Thus, gas-absorption devices utilizing the asymmetric morphology can be designed for optimal
performance.

IV. CONCLUSIONS

An experimental investigation into the bead morphologies that develop in the flow of thin
liquid films down a fiber was performed. We report an experimental observation of an asymmetric
instability and show how the symmetry of the instability depends upon the surface tension and fiber
diameter. The instability morphology is independent of viscosity and flow rate. For both the sym-
metric and asymmetric morphology, three flow regimes are observed: isolated, Plateau-Rayleigh,
and convective. We report how the bead velocity and bead spacing depend upon the experimental
parameters in the isolated and Plateau-Rayleigh regimes. In general, the asymmetric morphology
displays more predictable dynamics than the symmetric morphology. For example, the transition
from Plateau-Rayleigh to convective regimes is important and we show that the bead velocity
is nearly constant over a range of fiber diameters and the bead spacing is constant over a large
range of viscosity for the asymmetric regime. The data for the symmetric morphology show much
variability in these ranges. We show that the asymmetric morphology exhibits similar dynamics at
the absolute-convective transition point to that of a free jet and that the transition velocity Ṽ provides
a reliable means for predicting this transition point in asymmetric flows. Lastly, we show that all
asymmetric data collapse upon scaling the bead velocity ratio V ∗ with the capillary number Ca.

These observations provide insight into the underlying physics at play in thin-film flow down a
fiber. Features of the asymmetric morphology exploited through our experimentation show trends
and regularities that are advantageous for several application areas. The ability to accurately predict
the point of transition between regimes is a key advantage of the asymmetric morphology for inter-
facial heat and mass transfer processes. For example, Sadeghpour et al. [7] presented a desalination
process that utilizes thin-film flow down an array of fibers and showed that its optimal performance
occurs for regular beading patterns with maximal bead frequency. These flows occur prior to the
the transition between the Plateau-Rayleigh and convective regimes, which we have shown is both
more robust and predictable for the asymmetric morphology. Thus, the asymmetric morphology
can be taken advantage of for the design of optimal fluid patterns in this system that could provide
a lightweight, economic option for clean-water production in resource-constrained communities
around the globe. Although we have highlighted a few impactful applications, the breadth of
applications and physics which describe this asymmetric instability remain highly untouched by
the scientific community, and thus this work provides an initial investigation into a topic with many
fruitful areas yet to be explored.
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APPENDIX: FREQUENCY TRENDS

The bead frequency f = Vb/Sb is a critical property of thin-film flow down a fiber in determining
the heat and mass transfer rates across the fluid interface. Increasing the bead frequency produces
a higher total surface area in which mass and heat transfer can occur. In Figs. 5 and 6(b), we
showed that the asymmetric morphology exhibits near-constant values of bead spacing and velocity
at the transition between the Plateau-Rayleigh and convective regimes. Figure 9 plots the bead
frequency f against the flow rate Q for all of our data, encompassing changes in viscosity, nozzle
diameter, fiber diameter, and surface tension. As expected, a regularity emerges among the data for
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FIG. 9. Frequency f against flow rate Q for all data.

the asymmetric morphology, which is a drastic contrast from the large variance of the symmetric
data. The frequency for asymmetric morphologies collapses to a trend line, which has powerful
implications in applications where the frequency must be accurately predicted.
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