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Abstract 
A thin viscous film flowing down a fiber is subject to Plateau–Rayleigh instability leading to temporal beading patterns, 
characterized by the bead spacing Sb , bead velocity Vb , and bead diameter Db . In this study, experiments are performed to 
document the beading pattern as it depends upon the flow rate Q, nozzle diameter Dn , fiber diameter Df  and liquid viscosity 
� . The large experimental data set collapses upon scaling with the Nusselt solution for gravity-driven thin film flow with 
viscous time scale showing the dimensionless bead diameter scales with the capillary number. The dimensionless bead 
frequency and bead spacing are similarly related and characterize the dispersion relationship.

Graphic abstract

1  Introduction

A thin film flowing down a fiber will destabilize into a 
unique pattern that defines the bead-on-fiber morphology. 
Such flows experience a number of interfacial instabilities 
such as Plateau–Rayleigh breakup, Kapitza waves, isolated 
bead formation, and convective instabilities. These thin 
film flow instabilities play a critical role in microfluidics 
(Gilet et al. (2009)), heat and mass transfer applications 

(Sadeghpour et al. (2019), Zeng et al. (2018, 2017), Chinju 
et al. (2000), Grünig et al. (2012), Hosseini et al. (2014)), 
and coating processes (Mashayek and Ashgriz (1995), Tu 
and Ellen (1986), Lin and Liu (1975)). Previous experi-
mental investigations of thin film flows down fibers used 
intricate nozzle-fiber systems in order to keep the fiber 
concentric to the nozzle. These complex setups require 
the flow to be fed through the nozzle via an overhead tank, 
requiring the resulting flow rate to be measured during 
the experiment. In this work, we perform an experimental 
investigation of thin film flow down a fiber using a nozzle-
fiber system which provides a simpler, more robust setup 
where the flow rate can be set manually and is suitable for 
research applications and classroom demonstrations.

We focus our investigation on liquid beads formed via 
the Plateau–Rayleigh instability (PRI) (Plateau (1873), 

 *	 Joshua B. Bostwick 
	 jbostwi@clemson.edu
	 https://cecas.clemson.edu/~jbostwi/

	 Chase T. Gabbard 
	 cgabbar@g.clemson.edu

1	 Department of Mechanical Engineering, Clemson 
University, Clemson, SC 29631, USA

http://orcid.org/0000-0001-7573-2108
http://crossmark.crossref.org/dialog/?doi=10.1007/s00348-021-03234-3&domain=pdf


	 Experiments in Fluids          (2021) 62:141 

1 3

  141   Page 2 of 11

Rayleigh (1878)), a surface tension-driven phenomenon. 
The PRI is observed in numerous applications and contin-
ues to be heavily explored with recent studies evaluating 
the role of viscosity on breakup time (Javadi et al. (2013)), 
the stability of liquid bridges (Lowry and Steen (1995), 
Bostwick and Steen (2015)), and the role of liquid/solid 
contact (Bostwick and Steen (2010, 2018)). The PRI is 
also observed when a liquid film coats a fiber. Several 
investigations have documented the emergence of the PRI 
and the resulting bead profiles in this situation (Carroll 
(1984, 1986), McHale et al. (1999, 2001), McHale and 
Newton (2002)). The addition of a non-trivial base flow 
results in a unique variation of PRI where convective 
instabilities emerge, resulting in both steady and unsteady 
temporal beading patterns. Kliakhandler et al. (2001) doc-
umented three unique flow regimes based on the beading 
pattern: i) isolated, ii) Plateau–Rayleigh, and iii) convec-
tive. Analyzing the influence of slip between the liquid 
and fiber, Haefner et al. (2015) showed the hydrodynamic 
boundary conditions at the solid–liquid interface do not 
affect the dominate wavelength but do affect the growth 
rate of undulations. Alternatively, a thin fiber can be with-
drawn from a liquid bath, as is common in many coating 
applications. Quéré (1999) and Weinstein and Ruschak 
(2004) provide extensive reviews on this alternative prob-
lem and note the dependency of the film thickness on the 
withdrawal speed and fiber radius.

Assuming a small fiber radius and ignoring gravitational 
effects, Goren (1962) conducted a linear stability analysis 
on the Navier–Stokes equations for the limiting cases of 
Stokes flow and inviscid flow and found analytical expres-
sions for the growth rate of perturbations as a function of 
the wavelength. The inclusion of gravity allows the axial 
flow to affect the capillary instability, a scenario initially 
investigated by Goucher and Ward (1922) and Kapitza and 
Kapitza (1964). Their work on the interaction between 
gravity-induced flow and capillary instability was followed 
by experimental work by Quéré (1990) who determined 
a critical film thickness for surface undulations to appear. 
Kalliadasis and Chang (1994) adopted the scaling argu-
ments presented by Frenkel (1992) and determined a critical 
thickness hc for beads to develop and defined a dimension-
less saturation number � for which they showed that when 
𝛽 > 𝛽c = 1.41 unbounded growth occurs corresponding to 
experiments by Quéré (1990). Duprat et al. (2007) expand 
upon this by exploring the transition between convective 
and absolute instability in the inertialess limit and showed 
this transition occurs at a critical value �∗ = 1.507 where �∗ 
is a generalization of the saturation number � . Both � and 
�
∗ are a function of only the aspect ratio 𝛼̃ = hN∕(Df∕2) and 

the Goucher number Go = (Df∕2)∕lc where hN is the Nusselt 
flat film solution for the film thickness, Df  is the fiber diam-
eter, and lc is the capillary length defined by lc =

√

�∕(�g) . 

Furthermore, Duprat et al. (2009) identified two distinct, 
liquid-dependent regimes in the 𝛼̃ − Go parameter space, the 
drag-gravity and drag-inertia regime, where the behavior of 
the traveling beads is expected to be governed by gravity and 
inertia, respectively. Ruyer-Quil and Kalliadasis (2012) later 
identified a soliton-like regime corresponding to the balance 
of the nonlinearities with the dispersion induced by second-
order viscous effects. This additional regime may also be 
presented in the 𝛼̃ − Go space, resulting in four total insta-
bility regimes. We focus our work in the drop-like regime 
dominated by the PRI.

Several experimental investigations have been conducted 
to uncover the dependence of the bead properties on the 
relevant experimental parameters. Smolka et  al. (2008) 
performed experiments with three different liquids and 
documented how their properties affect the resulting bead 
properties. Nozzle diameter effects have been explored by 
both Sadeghpour et al. (2017) and Ji et al. (2020) where 
they show how the nozzle diameter is critical in determin-
ing the observed regime. Interestingly, their work shows 
that any of the three regimes is observable simply by alter-
ing the nozzle diameter. In each of these investigations, the 
nozzle-fiber system is constructed such that the fiber is con-
centric with the nozzle allowing the flow to start uniformly 
wrapped around the fiber but requiring the mass flow rate 
to be measured by collecting and weighing the fluid flowing 
down the fiber. Herein, we present a simple experimental 
setup that does not require such complex nozzle-fiber system 
and allows the flow rate to be set prior to the experiment, 
ensuring a constant flow rate throughout the duration of 
each test. We use this setup to perform a large experimental 
investigation in which we report how the i) bead diameter, 
ii) bead spacing, and iii) bead velocity, depend upon the noz-
zle diameter, fiber diameter, viscosity, and flow rate. Trends 
with the experimental parameters are reported, and we show 
that our experimental data collapse upon scaling with the 
Nusselt flat film solution with viscous time scale.

2 � Experiment

The experimental setup is shown in Fig. 1a. A NE-1000 
syringe pump is used to pump liquid at a flow rate Q through 
a stainless steel nozzle of diameter Dn onto a nylon fiber of 
diameter Df  . The nozzle is oriented perpendicular to the 
fiber allowing the exiting fluid to naturally wrap around 
the fiber which is set in a vertical orientation using a small 
weight and then secured into position using two pinning 
devices located at the top and bottom of the testing appa-
ratus. The length of the fiber is 550 mm, which is sufficient 
for the beading patterns to become fully developed. We note 
that, despite applying the liquid asymmetrically, the thin film 
wrapped symmetrically around the fiber within the first 50 
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mm and this gave rise to the symmetric beading patterns 
studied here. Recent observations by Gabbard and Bostwick 
(2021) have shown that an asymmetric instability emerges 
for liquids with larger surface tension (glycerol/water mix-
tures) and large fiber diameters. This is outside the scope 
of the current study which focuses on symmetric beading 
patterns.

The experimental variables we investigate include the 
flow rate Q, nozzle diameter Dn , fiber diameter Df  , and fluid 
properties: viscosity � and surface tension � . The range of 
Q was 5-300 mL/hr, Dn was 0.4-3.3 mm, and Df  was 0.101-
0.508 mm. Silicone oils and mineral oil were used as the 
working liquid and provided a density range � of 848-974 
kg/m3 , surface tension range � of 22-25 mN∕m and viscosity 
range � of 9.4-974 mPa ⋅ s . The density � , viscosity � and 
surface tension � of each liquid used were measured using 
an Anton Paar DMA 35 density meter, Anton Paar MCR 302 
rheometer and Kruss K100 surface tensiometer with Wil-
helmy plate, respectively. Experiments are recorded using 
a digital camera at 960 frames per second. During a typical 
experiment, a beading pattern develops like that shown in 
Fig. 1a. The pattern is defined by the bead spacing Sb , bead 
velocity Vb , and bead diameter Db , as shown in Fig. 1b. We 
also define the bead frequency as f = Vb∕Sb.

During experiments, the liquid is allowed ample time to 
flow onto and down the fiber prior to image recording to 

avoid any transient effects. The flow rate is held constant, 
and five videos are recorded for each experiment. The aver-
age of each bead property from the five videos is deter-
mined and used as the final value for that experiment. Three 
regimes are observed: i) isolated, ii) Plateau–Rayleigh, and 
iii) convective, consistent with prior results (Kliakhandler 
et al. (2001)). The isolated and Plateau–Rayleigh regimes 
both exhibit a regular bead pattern with primary beads mov-
ing with constant velocity and spacing. However, the iso-
lated regime experiences a secondary breakup of the thin 
liquid column between the primary beads leading to smaller, 
secondary beads. The convective regime is characterized by 
irregular bead patterns that result in random coalescence 
events between primary beads. In the convective regime, 
bead patterns have properties that vary significantly from 
moment-to-moment due to coalescence events occurring at 
irregular distances down the fiber. Thus, we are focused on 
the bead properties whenever the bead morphology falls into 
the isolated or Plateau–Rayleigh regime, where the beading 
patterns are steady and repeatable.

2.1 � Image analysis

The bead velocity Vb , spacing Sb , and diameter Db are 
obtained from video recordings of each experiment using 
image analysis. We use MATLAB to process and analyze the 

Fig. 1   a Experimental set-up and b sketch of the bead properties showing the bead spacing Sb , bead velocity Vb , bead diameter Db , and fiber 
diameter Df
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data. Custom lighting, a sturdy camera mount, and manually 
focusing the camera for each experiment are steps taken to 
optimize the image recordings and highlight the bead profile. 
We place an object of known size in place of the fiber before 
each set of experiments to allow for pixel-to-length calibra-
tion. The testing apparatus and camera mount are fixed to 
each other such that any change in the camera position keeps 
the vertical fiber orthogonal to the direction of imaging, a 
critical aspect to ensure the pixel-to-length calibration is 
valid for all locations in the image.

Five video recordings are taken per experiment with each 
recording consisting of 150 individual images. The images 
are analyzed in a three step process shown in Fig. 2a. First, 
the code extracts the individual images from the video. Sec-
ond, each individual image is converted into a binary image 
with the fiber and liquid bead represented by white pixels 
and the background by black pixels. This step often does 
not fully convert the interior of the liquid bead into white 
pixels, as seen in the middle image of Fig. 2a. Thus, a final 
step fills in the remaining portions of the bead using a series 
of built-in MATLAB functions. The resulting image consists 
of a binary matrix with 1’s representing white pixels and 0’s 
representing black pixels. Summing the number of 1’s across 
each row in the matrix allows for the thickness of the fluid at 
that position to be calculated. Performing this operation for 
all rows produces a vector containing the width of the fluid 
at each location along the fiber in terms of pixels. We plot 
the total pixel count (light intensity) at each location along 
the fiber and fit a smooth spline to the data where each peak 
in the spline is used to define the location of a liquid bead. 
The resulting curve and peaks are shown in Fig. 2b. We cali-
brate the light intensity from pixels to millimeters and define 
the bead diameter Db as the magnitude of the spline peaks. 
The bead velocity Vb is determined by tracking the peak 
from image-to-image, and the bead spacing Sb is simply the 
average distance between each peak. In the isolated regime, 
small secondary beads are also present and thus we set a 
minimum pixel intensity for any location to be considered a 
peak to avoid tracking the peak of a secondary bead.

3 � Results

3.1 � Regime transition

Kliakhandler et al. (2001) categorized beading patterns that 
emerge from thin film flow on a fiber into three primary 
regimes: isolated, Plateau–Rayleigh, and convective, and 
we also observe these three regimes, as shown in Fig. 3a. 
The isolated and Plateau–Rayleigh regimes are classified as 
absolute instabilities and differ from the convective instabil-
ity seen in the convective regime. We focus on categorizing 
the absolute instability and for that reason are interested in 

the boundary between absolute and convective instabil-
ity. Figure 3b shows a phase diagram in the 𝛼̃ − Go space 
which separates regions of absolute and convective instabil-
ity. Here, the Goucher number Go = (Df∕2)∕lc is defined as 
the ratio of the azimuthal curvature set by the fiber radius 
Df∕2 and the vertical curvature, set by the capillary length 
lc . The aspect ratio 𝛼̃ = hN∕(Df∕2) is defined using the Nus-
selt thickness hN and can be altered by varying the flow rate 
Q without affecting Go. The Nusselt solution for the film 
thickness hN and mean velocity uN arise as the solution to 
an ideal film flow scenario where the role of inertia and 
surface tension are suppressed. Thus, the flow is governed 
by a balance of viscosity and gravity, and the resulting film 
thickness and mean velocity are only functions of the flow 
rate, Reynolds number, and liquid properties,

(1)hN =

(

3�2

g�2
Re

)

= l
�
(3Re)1∕3

(a)

(b)

Fig. 2   a The original (left), black and white (middle), and final image 
(right) from image processing. b The pixel intensity is fitted to a 
spline function from which the bead spacing is obtained
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with the viscous-gravity length scale l
�
= (�2∕�2g)1∕3 and 

time scale t
�
= (�∕�g2)1∕3 defined in the scaling argu-

ments presented by Shkadov (1967). The Reynolds number 
Re = 4�QDf∕�D

2
n
� is defined using the flow rate Q with 

the fiber diameter Df  as the characteristic length. Note that 
the nozzle diameter appears implicitly in hN , uN through the 
Reynolds number Re.

A dimensionless parameter �∗ arises from a linear stabil-
ity analysis of the Nusselt solution in the inertialess limit and 
compares the time scale of growth for linear perturbations 

(2)uN =
gh2

N
�

3�
=

l
�

3t
�

(3Re)2∕3
�g to the advection time scale �a (Ruyer-Quil and Kalliadasis 
(2012)),

where ck is the kinematic wave speed defined using b = 1 + 𝛼̃

,

The dimensionless parameter �∗ is thus a saturation number 
and is a generalization of the parameter 𝛽 = 𝛼̃

2∕3(1∕Go)4∕3 
developed by Kalliadasis and Chang (1994) to explain the 
saturation of the Plateau–Rayleigh instability by the flow 
advection. The loci of the saturation number �∗ = 1 and �∗ = 
1.507 are plotted in Fig. 3b as a solid and dashed curve, 
respectively. Here, the solid curve �∗ = 1 separates the phase 
diagram into two regions. To the left of this curve, the PRI 
mechanism dominates over the flow advection, whereas the 
right side represents the dominance of the flow advection. 
The dashed curve �∗ = 1.507 represents the convective to 
absolute transition in the inertialess limit as determined 
by Duprat et al. (2007). Thus, the light green region of the 
phase diagram represents flows with an absolute instability 
dominated by the PRI mechanism. The light blue region rep-
resents flows with a convective instability dominated by the 
PRI mechanism, and the white region represents flows that 
are convectively unstable as advection saturates the emer-
gence of the PRI. The theoretical phase diagram can be fur-
ther refined by including the drag-inertia, drag-gravity, and 
soliton-like regions, but we omit these further distinctions. 
Our experiments fall within the region of absolute instability 
and vary over a large range of 𝛼̃ and Go.

Previous investigations have shown a unique relation-
ship between the nozzle diameter Dn and the resulting bead 
morphology (Sadeghpour et al. (2017), Ji et al. (2020)). 
We observe a similar relationship in our experiments as 
shown in a phase plot in the Dn − Q space in Fig. 4. We 
note that the nozzle diameter is a critical parameter in 
determining the flow regime, and we can observe all three 
of the primary regimes by merely changing the nozzle 
diameter for a fixed flow rate. When the nozzle diameter 
Dn is less than or approximately equal to the capillary 
length lc =

√

�∕�g all three primary regimes are observ-
able by varying the flow rate. Alternatively, when the 
nozzle diameter is much larger than the capillary length 
Dn > lc the Plateau–Rayleigh regime vanishes and only the 
isolated and convective regimes are observed irrespective 
of the flow rate. A less complex relationship between the 
other experimental parameters is observed. For example, 
decreasing the fiber diameter Df results in a transition from 

(3)𝛽
∗ =

(

𝜏a

𝜏g

)2∕3

=

(

𝛼̃

Go2ck(𝛼̃)(1 + 𝛼̃)4

)2∕3

(4)ck =
8(b − 1)(2log(b)b2 − b2 + 1)

3(4log(b)b4 − 3b4 + 4b2 − 1)
.

Fig. 3   a Bead morphology exhibit isolated (left), Plateau–Rayleigh 
(middle), and convective (right) regimes. b Phase diagram in the 𝛼̃
-Go parameter space separates regions where convective instabilities 
occur. The loci for �∗ =1 and �∗ = 1.507 are shown as the solid and 
dashed curves, respectively. Red crosses denote experiments
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the isolated to Plateau–Rayleigh to convective regime. 
This monotonic transition is also observed as the flow rate 
Q is increased or as the viscosity � is increased.

3.2 � Bead properties

We analyze liquid bead properties whenever the beading pat-
tern falls into the isolated or Plateau–Rayleigh regime. For 
each subsequent plot, the data point with the largest flow rate 
represents the transition point before entering the convective 
regime and thus signifies the transition from an absolute to 
convective instability. Figure 5 plots the critical bead prop-
erties, the bead velocity Vb , diameter Db , spacing Sb , and 
frequency f, as they depend upon the nozzle diameter Dn 
for fixed fiber diameter Df  , viscosity � , and surface tension 
� . Figure 5a shows a monotonic increase in bead velocity 
with increasing nozzle diameter. For each nozzle diameter, 
the bead velocity increases with flow rate, achieves a maxi-
mum value, and then decreases until the convective regime 
is reached. Figure 5b shows the bead spacing decreases with 
flow rate and increases with nozzle diameter. The bead diam-
eter remains approximately constant with respect to flow rate 
but does decrease as the convective regime is approached, as 
well as increase with increasing nozzle diameter, as shown 
in Fig. 5c. The behavior of the bead diameter as the flow 
rate is increased closely resembles those observed for the 
bead velocity in Fig. 5a where a dip in the bead diameter is 
observed as the flow rate causing transition to the convec-
tive regime is approached. This implies that either the drop 
shape is changing as the convective regime is approached, 

since the diameter is decreasing yet the volumetric flow rate 
is increasing, or the thin film between the primary beads 
is absorbing a higher portion of the liquid volume than the 
beads as the convective regime is approached. Lastly, Fig. 5d 
plots the bead frequency f against flow rate Q showing an 
increase in nozzle diameter decreases the bead frequency. 
Interestingly, the frequency trend for the smallest nozzle 
diameter Dn = 0.41 mm follows a drastically different trend 
than the linear trend followed by all other nozzle diameters 
suggesting new dynamics may emerge whenever the nozzle 
diameter is comparable to the fiber diameter. This should be 
explored further in future works.

Figure 6 illustrates how the fiber diameter Df  affects the 
bead properties. In Fig. 6a, the bead velocity Vb is plotted 
against the flow rate Q and we observe an increase in the 
bead velocity as the fiber diameter is decreased. This follows 
intuition as a thinner fiber reduces the amount of viscous 
dissipation between the fluid and fiber. In Fig. 6b, we plot 
the bead spacing Sb against the flow rate Q. For fixed flow 
rate, an increase in the fiber diameter leads to a decrease in 
the bead spacing. Here we see that while the fiber diameter 
can alter the bead spacing, the same bead spacing trend is 
followed as the flow rate is increased, irrespective of the 
fiber diameter. Figure 6c plots the bead diameter Db against 
the flow rate Q, and we observe that increasing the fiber 
diameter leads to a decrease in the bead diameter. Lastly, 
in Fig 6d we plot the bead frequency f against flow rate Q 
and observe that for a fixed flow rate, the bead frequency 
increases as the fiber diameter increases with the exception 
of our smallest fibers which overlay one another indicating 
the presence of the fiber is diminished.

Figure  7 plots the bead properties against flow rate 
and highlights the role of viscosity. Viscosity can greatly 
increase or decrease the bead dynamics, and thus, we pre-
sent our data on a logarithmic scale to allow the data to be 
compared in a meaningful way. Note that the bead diameter 
does not change with viscosity so we omit it from the bead 
properties being presented. In Fig. 7a the bead velocity Vb 
is plotted against flow rate Q for seven different viscosities. 
When the flow rate is fixed, the bead velocity increases as 
the viscosity decreases. Note the slight reduction in the bead 
velocity for the farthest right data point where the convec-
tive flow regime is being approached. Figure 7b plots the 
bead spacing Sb against the flow rate Q where we observe an 
increase in the bead spacing as the viscosity is decreased for 
a fixed flow rate. The bead frequency f against flow rate Q 
is reported in Fig. 7c. Interestingly, the frequency trends for 
each viscosity fall along a single trendline signaling a f − Q 
relationship that is independent of the viscosity. In heat and 
mass transfer applications, the bead frequency is a critical 
parameter for optimizing the system and having a f − Q 
relationship that does not depend upon the viscosity greatly 

Fig. 4   Phase diagram of the beading regime, as it depends upon the 
nozzle diameter Dn and flow rate Q for a fixed fiber diameter Df  
=0.101 mm, viscosity �=48 mPa⋅ s, surface tension �=22 mN/m, and 
density � =967 kg/m3 . Experiments are represented by solid shapes 
with shaded colors illustrating the approximate regions where the iso-
lated (blue), Plateau–Rayleigh (green) and convective regime (red) 
are observed. The capillary length for all experiments is lc =1.52 mm



Experiments in Fluids          (2021) 62:141 	

1 3

Page 7 of 11    141 

simplifies predicting how a fluids viscosity will affect its 
performance (Sadeghpour et al. (2019), Zeng et al. (2018)).

3.3 � Scaling the data

The monotonic trends with experimental parameters previ-
ously discussed suggest that our data will collapse upon scal-
ing, thus illuminating the physics associated with the bead 
dynamics. Revisiting the Nusselt flat film solution previ-
ously discussed, we define the dimensionless bead diameter 
D̃b = Db∕hN and dimensionless bead spacing S̃b = Sb∕hN 
where hN is the Nusselt film thickness. Recall that the fiber 
diameter appears implicitly in the Nusselt solution through 
the Reynolds number Re. The capillary number Ca is defined 
using the Nusselt mean velocity uN as Ca = �uN∕� and com-
pares the viscous and capillary forces. Lastly, we define our 

dimensionless frequency f̃ = fT
𝜇
 where T

�
= �Df∕� is the 

characteristic time of growth of the Plateau–Rayleigh insta-
bility in the viscous limit (Gallaire and Brun (2017)). The 
time scale T

�
 results from the suppression of surface ten-

sion due to viscous dissipation, a critical consideration for 
experimental data collected over a wide range of viscosity 
and fiber diameter.

Figure 8a plots the dimensionless bead diameter D̃b 
against the capillary number Ca for all of our data. We 
observe a collapse of the data with power law exponent 
n = −0.535 . The Nusselt thickness hN represents the mini-
mum film thickness observed when the PRI is not present; 
thus, we see that D̃b > 1 for all flows. Furthermore, the col-
lapse of all dimensionless bead diameters D̃b with the cap-
illary number Ca signifies that as the viscous dissipation 

(a) (b)

(c) (d)

Fig. 5   a Bead velocity Vb , b bead spacing Sb , c bead diameter Db , and d frequency against flow rate Q as it depends upon nozzle diameter Dn for 
a fixed fiber diameter Df=0.101 mm, viscosity �=48 mPa⋅ s, and surface tension �=22 mN/m
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becomes more significant, it suppresses the capillary-
driven growth of the PRI. Figure 8b plots the dimension-
less frequency f̃  against the dimensionless bead spacing 
S̃b for all of our data. We again observe a collapse of the 
data with power law exponent n = −1.257 . The dimen-
sionless frequency f̃  is scaled with a viscous time scale 
T
�
 that reflects the suppression of the surface tension, the 

driving mechanism for the PRI, due to the viscous dissi-
pation. Thus, an increasing f̃  signals the viscous dissipa-
tion becoming more prominent in the flow, and we show 
this results in a decreasing dimensionless bead spacing 
S̃b . The negative correlation between the dimensionless 
frequency f̃  and dimensionless bead spacing S̃b illustrates 
a decreasing spacing between the beads as the viscous dis-
sipation slows down the flow, allowing beads to produce 
at a higher frequency despite the decreased significance of 

surface tension. Consequently, while the Plateau–Rayleigh 
instability is suppressed by increasing viscous dissipation, 
the resulting decrease in bead velocity is greater, leading 
to increasing bead frequency. This is also predicted by 
the model of Ruyer-Quil and Kalliadasis (2012). These 
correlations provide insight into how bead dynamics of 
thin film flow down a fiber, where the dominant instability 
mechanism is the PRI, are affected by the suppression of 
surface tension as viscous dissipation is increased.

(a) (b)

(c) (d)

Fig. 6   a Bead velocity Vb , b bead spacing Sb , c bead diameter Db , and d frequency against flow rate Q as it depends upon fiber diameter Df  for a 
fixed nozzle diameter Dn=1.2 mm, viscosity �=48 mPa⋅ s, and surface tension �=22 mN/m
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4 � Conclusions

An experimental investigation into the bead dynamics of 
thin film flow down a fiber using a simplified nozzle-fiber 
system was conducted. The simplified experimental setup 
has numerous advantages, namely the ability to set the flow 
rate, ease of alignment, and could be used as a classroom 
demonstration on hydrodynamic instabilities. We focus on 
absolute PRI instabilities, as determined by the dimension-
less saturation number �∗ which is the ratio of the advection 
time scale to the linear instability time scale (cf. Figure 3b). 
We observe all three primary regimes reported in previous 
work (Kliakhandler et al. (2001)) showing a relationship 
between the viscosity � , fiber diameter Df  , and flow rate Q 
with the observed regime. We highlight a more unique and 
complex relationship between the nozzle diameter and the 
observed regime for our nozzle-fiber system, mirroring the 
complex relationships observed for other nozzle-fiber sys-
tems (Sadeghpour et al. (2017), Ji et al. (2020)). We report a 
large experimental data set for the bead velocity Vb , spacing 
Sb , diameter Db , and frequency f as it depends upon the flow 
rate Q, fiber diameter Df  , nozzle diameter Dn , and viscosity 
� . We observe unique relationships between the bead prop-
erties and independent variables not captured in previous 
experiments. Lastly, we scale our data using the Nusselt flat 
film solution for the film thickness hN with mean velocity uN 
using a viscous timescale T

�
 . We observe a collapse of the 

data with the dimensionless bead diameter D̃b scaling with 
the capillary number Ca and the dimensionless frequency f̃  
scaling with the dimensionless bead spacing S̃b.

Our comprehensive experiments document the bead 
properties over a large range of experimental parameters to 
an extent not previously documented. The viscosity, previ-
ously only investigated over a small range, is explored for 
a range spanning two decades allowing a comprehensive 
understanding of how viscosity affects the bead properties. 
The negative correlation between the dimensionless bead 
diameter D̃b and capillary number Ca illustrates the role 
that viscous dissipation plays in suppressing the surface 
tension-driven PRI and thus the bead diameter. The nega-
tive correlation between the dimensionless frequency f̃  and 
dimensionless bead spacing S̃b illustrates a decreasing spac-
ing between the beads as the viscous dissipation slows down 
the flow, allowing beads to produce at a higher frequency 
despite the decreased significance of surface tension. Lastly, 
while we limit this work to flows destabilized via the PRI 
mechanism, future work to investigate each flow regime will 

(a)

(b)

(c)

Fig. 7   a Bead velocity Vb , b bead spacing Sb , and c frequency against 
flow rate Q as it depends upon viscosity � for a fixed fiber diameter 
Df=0.2032 mm, nozzle diameter Dn=1.2 mm, and surface tension �
=22 mN/m
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prove critical for fully understanding how the dominating 
instability mechanism shapes the physics governing liquid 
beads traveling down a fiber.
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