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Abstract A capillary surface bound by a solid rectangular channel exhibits dynamic wetting effects characterized
by a constitutive law relating the dynamic contact-angle to the contact-line speed through the contact-line mobility
� parameter. Limiting cases correspond to the free (� = 0) and pinned (� = ∞) contact-line. Viscous potential
flow is used to derive the governing integrodifferential equation from a boundary integral approach. The spectrum is
determined from a boundary value problem where the eigenvalue parameter appears in the boundary condition. Here
we introduce a new frequency scan approach to compute the spectrum, whereby we scan the complex frequency
plane and compute the system response from which we identify the complex resonant frequency. Damping effects
due to viscosity and Davis dissipation from finite � do not attenuate signal response, but rather shift the response
poles into the complex plane. Our new approach is verified against an analytical solution in the appropriate limit. We
identify the critical mobility that maximizes Davis dissipation and the critical Ohnesorge number (viscosity) where
the transition from underdamped to overdamped oscillations occurs, as it depends upon the static contact-angle α.
Our approach is applied to a rectangular channel, but is suitable for a myriad of geometric supports.

Keywords Capillary waves · Contact lines · Eigenvalue problem · Integrodifferential equation

1 Introduction

Liquids mechanically driven into resonance by plane-normal forcing of the base substrate exhibit oscillations of
the bounding liquid/gas interface. The resonant frequencies and interfacial mode shapes are affected by the wetting
properties of the solid substrate through the static contact-angle α and mobility of the contact-line (CL). Disturbances

J. McCraney and P. Steen acknowledge support from NASA Grant NNH17ZTT001N-17PSI D. J. Bostwick acknowledges support
from NSF Grants CMMI-1935590.

J. McCraney (B)
School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
e-mail: jm2555@cornell.edu

J. Bostwick
Department of Mechanical Engineering, Clemson University, Clemson, SC, USA
e-mail: jbostwi@clemson.edu

P. Steen
School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10665-021-10150-2&domain=pdf
http://orcid.org/0000-0001-5593-479X


   10 Page 2 of 13 J. McCraney

Fig. 1 Dynamic
contact-line (CL) law
relating the contact-angle
α + �α to the CL speed
uCL with (solid) and
without (dashed) hysteresis.
Here, αa and αr are the
advancing and receding
static contact-angles
(uCL → 0), respectively

to the interface displace the CL, though for the CL to move it must appear to violate the no-slip condition. This
quandary has lead to the empirical development of numerous dynamic CL models [1–5], including the CL models by
Bracke [6,7] and Kistler [8,9]. Saha and Mitra [10] compare many of the aforementioned models in 3D microfluidic
channel simulations. Here we model the CL via the Hocking condition [11], originally introduced by Davis [12],
which assumes the CL dynamics obey the general CL law relating the linearized deviation in contact-angle �α

from its static value α to the CL speed uCL depicted in Fig. 1:

�α = �uCL. (1)

Positive (negative)UCL implies liquid displaces gas (gas displaces liquid), which is controlled through the homotopy
parameter � ∈ [0,∞). The limit � = 0 implies a free CL (constant contact-angle) and � = ∞ implies a pinned
CL. Rare space experiments of surface tension-dominated flows have been analyzed and numerically reported for
free CLs in wedge geometries [13] as well as pinned CLs for cylindrical support geometries [14,15]. Here we
consider non-limiting �, where the system undergoes damping from the CL, even if the liquid is inviscid, and this
has come to be known as Davis dissipation [12,16,17]. While other approaches model viscosity directly through
stress balances [18,19], here we analyze viscous dissipation through viscous potential flow [20,21] and CL damping
from �. More complicated models incorporating CL hysteresis [22] are incompatible with the linear analysis of
this work [12].

In low-g environments and micro-terrestrial systems, geometric support influences the fundamental frequencies
of liquids such as droplets [16,23] and rivulets [24] on planar substrates, belt supports [25], pinned circle of contacts
[26], toroidal supports [27], spherical bowl supports [28], and bubbles within containers [29]. Herein we consider
liquid partially filling a rectangular channel, Fig. 2. The hydrodynamic equations associated with small disturbances
to the fluid interface compose a differential eigenvalue problem with unusual differential structure: the interfacial
boundary condition is of higher differential order than the governing partial differential equation. Several solution
methods exist to address the pinned CL including a variational approach using a Lagrange multiplier [30,31], the
introduction of a singular pressure at the CL [32], and a Rayleigh–Ritz minimization procedure over a constrained
function space [25,33]. We use the latter approach in our theoretical development. In this manner, the differential
eigenvalue problem can be reduced to an algebraic eigenvalue problem with similar structure to a damped harmonic
oscillator

M + iλτ + λ2K = 0. (2)

Here M is a positive definite matrix representing channel inertia (mass), K is a matrix representing capillarity
(spring constant), and τ is a matrix representing bulk viscosity. Equation (2) is typically solved via an eigenvalue
Rayleigh–Ritz method [16,24,27], where the CL is assumed free or pinned (� = 0,∞). A comprehensive review of
the technique is outlined by Bostwick and Steen [17]. However, non-limiting mobility values imply the eigenvalue
λ appears in the CL boundary condition associated with (2), and the method fails. We subvert this complication by
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Fig. 2 Definition sketch
illustrating the perturbed
free surface driven by
sinusoidal pressure
p = F0ei�t of amplitude F0
and frequency �

introducing forcing through channel bulk pressure via a pressure field [34], structurally changing (2) to

M + iωτ + ω2K = ωF, (3)

where F is a forcing vector at frequency ω. With ω an input parameter, (3) is reduced from an algebraic eigenvalue
problem to a linear system of equations, from which the system response can be determined from the frequency
response diagram. Recent frequency scan implementations assume ω ∈ R, thereby only resolving oscillatory
modes [35,36]. We introduce a new computational technique by scanning the entire complex plane ω ∈ C resolving
the complex spectrum through identification of resonance peaks in the complex frequency plane. This technique
involves solving a linear system as opposed to an eigenvalue problem, and thus is computationally efficient for
fundamentals with small damping modes (all results shown herein). However, since we scan the entire complex
plane, as opposed to only the real number line, the computations can become expensive, which one can mitigate by
preselecting a neighborhood near resonance. This is especially true for modes with large damping, i.e., maximal
Davis dissipation. Nevertheless, the proposed approach is computationally cheaper than full CFD simulations. We
verify the computational approach on the limiting case with analytical solution. The utility of the procedure is that
it resolves all dissipative characteristics and is computationally efficient and robust.

2 Mathematical formulation

Consider an incompressible fluid with density ρ and viscosity μ that is subject to a time-dependent pressure field
p(t) = P0ei�t . The fluid occupies domain D bounded by a liquid–gas interface ∂Df with surface tension σ in a
rectangular channel ∂Ds with half-width l, shown in Fig. 2. The equilibrium surface is defined parametrically as

X (s;α) = sin(s cos α)

cos α
, Y (s;α) = 1 − cos(s cos α)

cos α
, Z(z) = z, (4)

using s ∈ [−s0(α), s0(α)] and z ∈ [−∞,∞] as generalized surface coordinates, with equilibrium contact-angle α.
Here s0 and the cross-sectional liquid area A are calculated as

s0 = arcsin (cos α)

cos α
,

A

2
= h +

∫ s0

0
Y (s)X ′(s) ds, (5)

where h > 0 is the center (x = 0) channel depth. Gravitational effects have been neglected. The interface is given
a small perturbation η(s, z, t). No domain perturbation is necessary for linear problems.
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2.1 Field equations

The velocity field u = −∇ for this interfacial-driven flow can be expressed using the velocity potential . The
potential  satisfies the following Neumann boundary value problem,

∇2 = 0[D], ∇ · n̂ = 0[∂Ds], n = −ηt [∂Df ], (6)

where n̂ is the unit outward normal vector to the prescribed surface and subscripts denote partial derivatives with
respect to that independent variable. The inertial pressure field is given by the unsteady linearized Bernoulli equation

p = ρt + P0ei�t [D]. (7)

The normal stress balance at the interface ∂Df is given by the Young–Laplace equation

p − μn̂ · (∇ ⊗ ∇) · n̂ = −σ
((

κ2
1 + κ2

2

)
η + �∂Df η

)
[∂Df ], (8)

where κ1,2 are the principal curvatures. Note the potential flow assumption made here assumes that no-slip condition
cannot be satisfied on ∂Ds, yet viscosity μ enters the equations through the normal stress balance. This is what
is described as viscous potential flow (VPF) [34]. The Laplace–Beltrami operator �∂Df , or surface Laplacian, is
defined as [37]

�∂Df η ≡ 1√
g

∂

∂uμ

(√
ggμν ∂η

∂uν

)
(9)

(summation notation implied) with the surface metric gμν ≡ ∂μx · ∂νx, g = 1 acting on surface coordinates
μ, ν = 1, 2. The CL dynamics obey the contact-line speed law (Appendix A from Bostwick and Steen [16])

∂sη(s0) + cot α cos αη(s0) = −�n(s0). (10)

Equations (6)–(10) together compose the hydrodynamic equations of motion for a small disturbance in the absence
of gravity.

2.2 Normal mode reduction

Variables are non-dimensionalized with the vessel half-width l

η̄ = η/ l, t̄ = t/

√
ρl3

σ
, ̄ = /

√
σ l

ρ
, p̄ = p/

σ

l
(11)

and we drop the overbars hereafter with the understanding that all variables are dimensionless. Normal modes are
assumed via the scaled temporal frequency ω ≡ �

√
ρl3/σ and axial wave-number ξ ,

(x, y, z, t) = φ(x, y)eiωteiξ z, η(x, y, z, t) = ψ(x, y)eiωteiξ z (12)

and substituted into (6)–(10) to yield the boundary value problem for the potential φ:

∇2φ = 0[D], (13a)
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φn = 0[∂Ds], (13b)∫ s0

0
φn ds = 0[∂Df ], (13c)

φ′
n + cos α cot αφn = iω�φn[∂Df ∩ ∂Ds], (13d)

ω2φ − iεωn̂ · (∇ ⊗ ∇φ) · n̂ − φ′′
n −

(
cos2 α − ξ2

)
φn = ωF0[∂Df ], (13e)

where ε ≡ μ/
√

ρlσ is the Ohnesorge number and F0 ≡ P0l2/σ the scaled forcing amplitude. Here ′ = d/ds and
the interface deformation η is related to φn through the kinematic condition (6).

3 Solution method

The boundary value problem (13) can be viewed as either (1) a forced oscillation problem where F0 �= 0 and ω is a
known parameter or (2) a natural oscillation (or eigenvalue) problem (F0 = 0) where the frequency ω is unknown
and must be determined as part of the solution. For the natural oscillation problem, the presence of the eigenvalue in
the boundary condition (13d) is known to lead to computational instability [38]. To resolve this issue, we introduce
a new technique whereby we scan the frequency over the complex plane and identify resonances, i.e., maxima in
the system response, from which we identify the complex eigenvalue.

Our solution procedure is a boundary integral approach whereby the problem is mapped to the boundary and the
dynamic pressure balance there (13e) is recast as an integral equation that we apply the Ritz method to a function
space which satisfies (13a)–(13d). The resulting set of algebraic equations are parameterized by the frequency ω,
contact-angle α, CL mobility �, Ohnesorge number ε, and forcing amplitude F0.

3.1 Green’s function

To begin, we rewrite the dynamic pressure balance at the interface (13e) as an integral equation

φn − iεω
∫ s0

0
Gn̂ · ∇ ⊗ ∇φ · n̂ ds − ω2

∫ s0

0
Gφ ds = F0ω

∫ s0

0
G ds, (14)

using the Green’s function G for the curvature operator

K [ f ](x) = − f ′′(x) −
(

cos2 α − ξ2
)
f (x). (15)

Solutions can be decomposed according to their symmetry about the symmetry plane x = 0 into odd

f (0) = 0 (16)

and even

f ′(0) = 0 (17)

extensions. These are combined with the dynamic CL condition

f ′(s0) + cos α cot α f (s0) = iω� f (s0). (18)
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The Green’s function is built via variation of parameters

G(x, y) =
{

− Lm (x)R(y)
W : 0 ≤ x ≤ y ≤ s0,

− Lm (y)R(x)
W : 0 ≤ y ≤ x ≤ s0,

(19)

where superscripts m = {o, e} denote odd or even symmetry conditions, respectively. Here the left-hand solution
L satisfies boundary condition (16) or (17),

Lo(x) = sin
(√

cos α − ξ2x
)

, Le(x) = cos
(√

cos α − ξ2x
)

, (20)

the right-hand solution R satisfies boundary condition (18)

R(x) =
√

cos2 α − ξ2 cos
(
(s0 − x)

√
cos2 α − ξ2

)
+ (cos α cot α − iω�) sin

(
(s0 − x)

√
cos2 α − ξ2

)
. (21)

The Wronskian W is determined via standard techniques.

3.2 Volume conservation constraint

Symmetry arguments can be used to show that odd solutions naturally satisfy the volume conservation condition
[39]. For the even problem, we can modify the integral form of the dynamic pressure balance [16] by introducing
a constant term C to the velocity potential φ,

φn − iεω
∫ s0

0
Gn̂ · ∇ ⊗ ∇φ · n̂ ds − ω2

∫ s0

0
Gφ ds = ω2C

∫ s0

0
G ds. (22)

Here we have set F0 = 0 without loss of generality since forced vibrations do not affect volume conservation.
Integrating (22) over ∂Df and enforcing the volume conservation constraint (13c) yields an expression for C

C = − iε
∫ s0

0

∫ s0
0 Gn̂ · ∇ ⊗ ∇φ · n̂ dx dy + ω

∫ s0
0

∫ s0
0 Gφ dx dy∫ s0

0

∫ s0
0 G dx dy

. (23)

We can then write the even extension of the dynamic pressure balance as

φn − iεω
∫ s0

0
Gn̂ · ∇ ⊗ ∇φ · n̂ ds − ω2

∫ s0

0
(φ + C) ds = F0ω

∫ s0

0
G ds. (24)

3.3 Reduction to matrix equation

A solution is constructed from basis functions φ j , where

� =
N∑
j=1

a jφ j (25)

is applied to the odd (14) and even (24) problems, and inner products are taken to generate a set of algebraic
equations

N∑
j=1

(
mi j − iεωτi j − ω2ki j

)
a j = F0ωγi , (26)
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where

mi j ≡
∫ s0

0
φn i (x)φ j (x) dx, (27a)

ki j ≡
∫ s0

0

∫ s0

0
Gφi (x)φ j (y) dx dy, (27b)

τi j ≡
∫ s0

0

∫ s0

0
G

(
n̂ · ∇ ⊗ ∇φi (x) · n̂)

φ j (y) dx dy, (27c)

γi ≡
∫ s0

0

∫ s0

0
Gφi (x) dx dy. (27d)

Here the unit normal n̂ to ∂Df is given by

n̂ = 〈−Y ′(s), X ′(s), 0〉√
Y ′(s)2 + X ′(s)2

. (28)

We normalize the basis functions such that mii = 1

φ j = c jψ j , c j =
(∫ s0

0
ψ j ψn j ds

)−1/2

. (29)

The basis functions ψ j are the analytic solutions to (13) for α = 90◦, � = 0, ε = 0, and are decomposed according
to their symmetry

ψo
j = sin(μo

j x) cosh
(
(y + h)

√
(μo

j )
2 + ξ2

)
, (30a)

ψe
j = cos(μe

j x) cosh
(
(y + h)

√
(μe

j )
2 + ξ2

)
, (30b)

with associated constants

μo
j = π( j − 1/2), μe

j = π j, j = 1, 2, 3 . . . . (31)

Since ψo and ψe are Fourier modes (in x), they are complete orthogonal systems in two mutually orthogonal
subspaces (odd and even) and together form a Hilbert space and are thus admissible basis functions. The natural
frequencies λ j for this special case are given by

λ j (ξ = 0) = 1

8

(√
π3 j3

(
8 tanh

(
πhj

2

)
− π jε2

)
− iπ2 j2ε

)
. (32)

4 Results

For fixed ω,�, ε, A(h), α, ξ, the solution a j to (26) is readily computed with the associated fluid response �,�n

then obtained by applying a j to (25). Figure 3 shows typical solutions for free � = 0 (Fig. 3a) and pinned � = ∞
(Fig. 3b) CL conditions. To identify resonance frequencies for any �, the frequency ω is varied through C, all other
parameters held constant, and the response |a| computed. The location of the peaks in the complex frequency plane
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(a) (b)

(c) (d)

Fig. 3 Solutions for a j = 2, ω = 5.54, α = 110◦,� = 0 and b j = 3, ω = 12.46, α = 60◦,� = ∞. a, b The equilibrium interface
(blue, dashed) is disturbed (red, solid) and streamlines (black arrows) are plotted over the scaled pressure field (color). The first four
resonant modes for c � = 0, α = 110◦, ε = 0 and d � = ∞, α = 60◦, ε = 0. (Color figure online)

Fig. 4 Frequency response
for the first two odd
j = 1, 3 modes with
α = 110◦, ε = 0,
contrasting � = 0.1 and
� = 0.5, in a
three-dimensional, b
projected, and c traced in
the Im(ω) = 0 plane

yield the resonant frequencies (complex eigenvalues). Fig 4a shows a typical system response using this approach
for � = 0.1, 0.5. Here Re(λ) corresponds to the oscillation frequency and Im(λ) the decay rate.

In what follows, we compute the natural frequencies using our frequency scan approach focusing on the role of
CL mobility � and viscosity ε. Hereafter we set A = 2, ξ = 0 and the truncation N = 5 which is sufficient to
provide iterative convergence < 1%.

4.1 CL damping

Figure 5 plots the resonant frequencies λ for an inviscid ε = 0 fluid with hydrophobic α = 110◦ wetting conditions.
The oscillation frequency Re(λ) is minimal at � = 0 corresponding a free CL and maximal at � = ∞ corresponding
to a pinned CL, as shown in Fig. 5a. For finite � there is a small range over which the frequency increases from the
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Fig. 5 Natural frequency
against mobility parameter
� plotting a oscillatory
frequency Re(λ) and b
decay rate Im(λ) for
α = 110◦, ε = 0

10 -2 10 -1 10 0 10 1
0

5

10

15

20

10 -2 10 -1 10 0 10 1
0

1

2

3

(a)

(b)

lower plateau (free) to higher plateau (pinned) and the width of this transition region increases with mode number
j . The decay rate Im(λ) → 0 in both free � → 0 and pinned � → ∞ limits, as shown in Fig. 5b, implies no
dynamic wetting effects. However, for non-limiting �, CL dissipation leads to underdamped motions.

Recent frequency scan procedures scan only the real number line [35,36,40]. As such, increased dissipative effects
(CL or viscous) are incorrectly reported to attenuate the signal. Signal attenuation is then incorrectly interpreted to
imply increased damping. In what follows, we explain this misunderstanding. In Fig. 4 we increase the mobility
from � = 0.1 to 0.5 for j = 1, 3 modes, which increases the CL damping for both modes, Fig. 5b. Figure 4c plots a
frequency response for a scan of only the real number line (the Im(ω) = 0 plane), where increasing � = 0.1 to 0.5
appears to attenuate the signal, evidenced by the smaller peaks. However, scanning the entire complex plane (not
only the real number line) and projecting response |a| onto the Im(ω) = 0 plane Fig. 4b, it is clear the increased CL
dissipative signals do not attenuate. Rather, the signal poles shift further into the complex plane, Fig. 4a. While the
poles appear to be different heights, they are all infinite, as required by (26), though finite sampling of ω implies
finite signal response |a|. Note shifts into the complex plane imply Im(ω) increases in magnitude, which increases
system damping as implied by the temporal normal mode assumption (12). This recognition corrects the current
interpretation ‘increased damping attenuates signal response’ to ‘increased damping does not attenuate response,
but shifts the response further into the complex plane.’ Then signal response height |a| in the Im(ω) = 0 plane is
not immediately related to system damping, only an artifact of signal shifts.

Inducing damping, i.e., retarding fluid motion, can be desirable in application, such as switchable wettability in
systems aboard spacecraft [41], surface wrinkles [42] found in insects, geckos, and plants [43–45], micro-structure
fabrication via capillary origami [46], inkjet sprays [47], electrowetting [48], and energy harvesting via liquid metal
CL motions [49]. Then identifying the mobility parameter that maximizes CL dissipation is important. Each mode
shown in Fig. 5b exhibits a single maximum at a critical CL mobility �∗. Figure 6a shows �∗ exhibits a single
minimum near α = 90◦, which corresponds to a maximal decay rate Im(λ) as shown in Fig. 6c. Figure 6 can be
used as a guide in selecting substrates with prescribed wettability that generates a desired CL dissipation.

4.2 Viscous damping

For viscous ε �= 0 liquids, the total dissipation is due to both viscous and CL effects. Figure 7 plots the resonant
frequency λ against the CL mobility �, as it depends upon viscosity ε. Recall that in the inviscid limit ε = 0,
the oscillation frequency Re(λ) monotonically increased with �. Figure 7a shows a non-monotonic dependence of
Re(λ) with � for a range of ε �= 0, which illustrates a complex interaction between viscosity ε and CL mobility
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Fig. 6 a Critical mobility
parameter �∗

j and
corresponding b, c
frequency as it depends
upon contact-angle α for the
first four inviscid ε = 0
modes
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Fig. 7 Complex frequency
λ j , a Re(λ) and b Im(λ),
against mobility parameter
� for the j = 3 mode, as it
depends upon viscosity ε

for α = 70◦. Solid and
dashed lines correspond to
the free (� = 0) and pinned
(� = ∞) eigenvalue
solutions, respectively
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 = 0.3

 = 0.5
 = 0.7
 = 0.8

�. When compared with the inviscid case, the decay rate Im(λ) also shows a much different dependence on � for
larger viscosities ε. Figure 7b shows that for small epsilon the decay rate still has a single maximum, but as the
viscosity increases that single maximum disappears, i.e., ε = 0.8.

The computations can be validated against the analytical solution (32) for the special case � = 0. Figure 8
contrasts the computed and analytical frequencies λ for the first two j = 1, 2 resonant modes and shows an error
< 1%. For each mode j there is a range of ε where the motion is underdamped Re(λ) �= 0. The transition from
underdamped to overdamped motion Re(λ) = 0 occurs at a critical viscosity ε∗. For ε > ε∗, the complex solution
bifurcates into two branches, as shown in Fig. 8b. Note the critical viscosity ε∗ for j = 2 is smaller than that for
j = 1, consistent with increased dissipation for higher order modes.

Figure 9 plots ε∗ as a function of contact-angle α for free (� = 0, solid) and pinned (� → ∞, dashed)
disturbances. Note for all α, ε∗

j decreases with increasing mode number j , an expected result owing to the increased
surface distortion for the higher modes, Fig. 3. The non-monotonic α dependence could not have been predicted a
priori and presumably results from the interactions between adjacent modes.
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Fig. 8 Complex
frequencies for the first two
j = 1, 2 resonant modes
contrasting the computed
(red, dashed) and analytical
(black, solid) for
α = 0◦,� = 0. (Color
figure online)
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Fig. 9 Critical Ohnesorge
number ε∗ against
contact-angle α for a free
� = 0 and b pinned
� = ∞ disturbances
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Fig. 10 a The third oscillatory resonant frequency as a function of � plotted for three different methods: the inverse eigenvalue
procedure (flat black lines), the Hybrid Ritz approach (red), and the frequency scan technique introduced here. b Relative error for λ1−4
as the number N of Ritz terms is increased. All results for α = 90◦, ε = 0. (Color figure online)

4.3 Convergence and comparisons

Several alternative techniques exist to compute fundamental frequencies. Figure 10a shows the results for three
approaches for the third eigenvalue. The flat black lines represent the eigenvalue approach [24], where the free
result is coincident with the analytic solution (32). As mentioned above, the eigenvalue approach fails for non-
limiting �. Also shown is the hybrid Ritz approach, the details of which are beyond the scope of this work, though
the reader can consult Bostwick and Steen [16] for holistic documentation. Unlike the eigenvalue approach, this
technique considers non-limiting �, demonstrating the appropriate frequency shift as mobility transitions from a
free to pinned CL. However, it is inconsistent with the eigenvalue approach, yielding a nearly 8% overshoot at
� → ∞. Also shown is our frequency scan method, which converges to the eigenvalue technique within 1% error.
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Figure 10b plots relative convergence error for the first four fundamentals, as the number of Ritz terms in (25)
increases from N = 1 to N = 5. The first two fundamentals for the odd and even problems are shown to be well
converged, where the percent change from N = 4 to N = 5 is < 1%, denoted in the plot as N = 4.

5 Conclusions

We have introduced a new frequency scan approach to compute the spectrum of capillary surfaces with dynamic
wetting effects, characterized by a contact-line law that relates the contact-angle to contact-line speed. It is well
known that for finite contact-line mobility �, Davis dissipation damps the oscillations even for inviscid liquids.
Current techniques fail for this regime, as the eigenvalue parameter appears in the boundary condition. The proposed
technique subverts this issue by treating the eigenvalue as an input forcing parameter. For this reason, the proposed
technique is unique in resolving the full oscillatory and damped spectrum. The main limitation is computational
expense, which only appears when identifying higher harmonics with a large damping component (larger plane to
scan).

We have applied this technique to a partially wetting liquid in a rectangular channel. In doing so, we (i) verify
our method, (ii) compute the oscillatory and damped spectrum, including contact-line damping, and (iii) correct
a misunderstanding in the literature, namely, frequency response magnitude is not indicative of damping. The
approach can be readily adapted to other interesting problems involving capillary surfaces, i.e., drops, rivulets,
toroids, and liquid bridges.
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