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Abstract: Having a basic understanding of non-Newtonian fluid flow through porous media, which
usually consist of series of expansions and contractions, is of importance for enhanced oil recovery,
groundwater remediation, microfluidic particle manipulation, etc. The flow in contraction and/or
expansion microchannel is unbounded in the primary direction and has been widely studied before.
In contrast, there has been very little work on the understanding of such flow in an expansion–
contraction microchannel with a confined cavity. We investigate the flow of five types of non-
Newtonian fluids with distinct rheological properties and water through a planar single-cavity
microchannel. All fluids are tested in a similarly wide range of flow rates, from which the observed
flow regimes and vortex development are summarized in the same dimensionless parameter spaces
for a unified understanding of the effects of fluid inertia, shear thinning, and elasticity as well as
confinement. Our results indicate that fluid inertia is responsible for developing vortices in the
expansion flow, which is trivially affected by the confinement. Fluid shear thinning causes flow
separations on the contraction walls, and the interplay between the effects of shear thinning and
inertia is dictated by the confinement. Fluid elasticity introduces instability and asymmetry to the
contraction flow of polymers with long chains while suppressing the fluid inertia-induced expansion
flow vortices. However, the formation and fluctuation of such elasto-inertial fluid vortices exhibit
strong digressions from the unconfined flow pattern in a contraction–expansion microchannel of
similar dimensions.

Keywords: polymer solution; viscoelasticity; shear thinning; inertia; microfluidic model; porous media

1. Introduction

As the earth’s conventional oil and gas resources are steadily running out, effective
processes such as hydraulic fracturing to enhance the productivity of unconventional
reservoirs are attracting interest lately [1]. However, in order to reduce the associated
filtration loss in the process, it is necessary to comprehend the flow through a series of pore-
throat structures and thus contractions and expansions [2]. Understanding the behavior of
fluids with different rheological properties through such pores is also important for a wide
range of other applications such as environmental remediation, extrusion, mold filling,
inkjet print heads, industrial drag-reducing, and cooling processes. [3,4]. A channel (of
either planar, axisymmetric, or square geometries) with an expansion and/or a contraction
is one of the simplest models of these naturally occurring or industrially fabricated pores (of
either nano-, micro-, or mini-sized) [5,6]. Such channels are also commonly employed in lab-
on-a-chip systems to facilitate flow control [7,8], fluid mixing [9,10], particle manipulation,
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etc. [11–13]. The applications pertain to the areas of point-of-care technologies, chemical
synthesis, microfluidic rheometry, etc. [14–18].

The expansion–contraction microchannel, referred to herein as a cavity microchannel,
has been recently demonstrated to focus and isolate particles (both biological and synthetic)
in a heterogeneous sample, as well as to extract pure fluids clear of particles [19–21]. In
particular, Hur et al. [22] proposed a decade ago a high-throughput technique to enrich
and isolate larger particles using the inertially formed vortices in a cavity microchannel.
Since then, a number of theoretical [23,24] and experimental [25,26] studies have been
reported on both the fundamentals of particle dynamics inside the cavity [27–29] and
the biomedical applications of this microfluidic technique [30–32]. In a recent paper,
Raihan et al. [33] demonstrated a similar vortex-based trapping and separation (by size)
of particles in the flow of shear-thinning xanthan gum (XG) solution through a cavity
microchannel. The operating range of Reynolds numbers in these shear-flow induced
force-based methods is above a critical point, at which the flow separation occurs in the
expansion–contraction region of the cavity channel because of the fluid inertial and/or
shear thinning effects [23,33,34]. It is thus essential to recognize the flow regimes for fluids
with different rheological properties in a cavity microchannel for a better understanding of
the particle motion inside the cavity and as well for potentially broadened applications of
any undisclosed interesting flow phenomena.

There have been many previous studies on the flow behaviors of different types of
non-Newtonian fluids through pure contractions or expansions and contraction–expansion
channels [35–39]. Investigations on various factors have revealed that the geometrical
parameters influencing the flow patterns in such flows include the contraction (or expan-
sion) ratio (i.e., the width of the contraction or expansion part to that of the main channel),
channel aspect ratio (i.e., the width to depth ratio of the main channel), etc. [40–45]. The
flow patterns of various polymer solutions such as polyethylene oxide (PEO) [46–50],
polyacrylamide (PAA) [51–53], polyvinylpyrrolidone (PVP) [35], XG [35,54], DNA [55,56],
and surfactant [57,58] solutions have been investigated in contraction and/or expansion
microchannels to recognize both the sole and combined effects of fluid rheological proper-
ties (namely elasticity and shear thinning [59]) and inertia. Moreover, the ionic contribution
has been identified through the study of elastic instabilities in the flow of hyaluronic acid
(HA) sodium salt solution [60], as well as the hydrolyzed PAA solution with and without
salt [61,62].

In contrast, there have been very limited studies on the understanding of non-
Newtonian fluid flow in cavity microchannels. de Souza Mendes et al. [63] investigated the
flow of yield stress Carbopol solutions through axisymmetric expansion–contraction ducts.
They also developed a finite volume model to simulate the viscoplastic flow behavior via
the generalized Newtonian liquid model. The unyielded region was found near the channel
wall of the larger diameter portion with the size being a strong function of the geometrical,
rheological, and flow parameters. Later, Varges et al. [64] presented an experimental study
of the inertialess flow of Carbopol aqueous dispersions through annular abrupt expansions–
contractions. Their observed flow patterns reveal both yielded and unyielded regions,
where the yield surfaces were found to exhibit a fore-aft asymmetry in all tests because of
the elastic effects. Hong et al. [65] proposed an efficient microfluidic mixer based on the
inertio-elastic flow instability in PEO solution through a straight microchannel with side
wells. They demonstrated an enhanced mixing via the chaotic vortices appearing in the
side wells when the inertia and elasticity of the polymer solution are balanced with the
Reynolds and Weissenberg numbers being both on the order of 10. The same group [66]
later utilized such inertio-elastic mixing for the continuous synthesis of silica nanoparticles
in a gear-shaped microchannel. Sasmal [67] conducted an extensive numerical study of the
flow characteristics of a wormlike micellar solution through a long micropore with a step
expansion and contraction. A special Vasquez–Cook–McKinley constitutive model [68] was
used to predict the rheological behavior. Different flow regimes were identified, including
the Newtonian-like, lip vortex formation, unsteady, and vortex merging regimes. More
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recently, Browne et al. [69] investigated the dependence of the spatial and temporal charac-
teristics of the inertialess flow of PAA solution on the spacing between pore constrictions in
a one-dimensional ordered array. They observed unstable eddies in the expansion before
each constriction when the pore spacing is large. Surprisingly, the flow was observed
to exhibit bistability when the pore spacing is sufficiently small. This unusual behavior
was attributed to the interplay between elongation and relaxation of polymers as they are
advected through the pore space.

To date, however, no work has been reported on the flow of fluids with varying
rheological properties through the same cavity microchannel, thus providing a basis for
a direct comparison amongst different flow parameters. Moreover, nearly none of the
reported works [63–69] have emphasized the effect of confinement along the primary
flow direction that is imposed by the expansion and contraction. Especially looking at
the heavy geometric dependence of the non-Newtonian flow instabilities through the
existing works mentioned above, it is essential to underline how the flow pattern in a
confined geometry differs from the unconfined flow reported in single contraction and/or
expansion microchannels [35–60]. We test in this work five different polymer solutions,
namely PVP, XG, HA, PEO, and PAA, in their dilute/semi-dilute regimes along with
Newtonian deionized (DI) water as the control experiment. The goal is to obtain a unified
understanding of the effects of fluid inertia, shear thinning, and elasticity, as well as
confinement. It is important to note that our tested fluids have been commonly used in
microfluidic applications [13,16–18,70], rendering them useful to be studied directly. These
fluids possess different elastic and shear thinning properties, though their infinite-shear-
rate viscosity values are comparable. They are tested in a similarly wide range of flow rates
to cover the effect of fluid inertia. The obtained flow regimes and vortex developments are
cast into the same dimensionless parameter spaces for a quantitative comparison among
the different fluids. The observed flow patterns are also compared with those of the same
fluids through a planar contraction–expansion microchannel of similar dimensions [35] for
a further understanding of the confinement effect.

2. Experiment
2.1. Materials

Figure 1 shows a photo of the sudden expansion–contraction microchannel that was
fabricated with polydimethylsiloxane (PDMS) using the standard soft lithography method.
The detailed procedure is describe in our previous paper [35]. The microchannel is overall
1 cm long (excluding the inlet and outlet sections for filtration purposes) with a measured
width of 60 µm and height of 45 µm. It has a square-shaped cavity in the middle whose
measured width is 506 µm as highlighted on the inset of Figure 1. Five types of polymer so-
lutions were prepared from the granular powder by dissolving them into DI water (Thermo
Fisher Scientific, Waltham, MA, USA) at higher weight concentrations than needed. Prior
to the test, they were each diluted with DI water to the desired concentration, including:
10,000 ppm (i.e., 1 wt%.) PVP solution (with a molecular weight, Mw = 0.36 MDa, Sigma–
Aldrich), weakly elastic and negligibly shear thinning (i.e., Boger fluid [71]); 2000 ppm XG
solution (Mw ≈ 2 MDa, Tokyo Chemical Industry, Chuo-ku, Japan), negligibly elastic and
strongly shear thinning [72]; 3000 ppm sodium HA solution (Mw = 0.357 MDa, Lifecore
Biomedical LLC, —Chaska, MN, USA), weakly elastic and mildly shear thinning [73];
1000 ppm PEO solution (Mw = 2 MDa, Sigma-Aldrich, St. Louis, MI, USA), mildly elastic
and weakly shear thinning [47]; 200 ppm PAA solution (Mw = 18 MDa, Polysciences, War-
rington, PA, USA), strongly elastic and strongly shear thinning [74]. The control experiment
was conducted with DI water.
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Figure 1. Isometric view of the fabricated cavity microchannel with the expansion–contraction
dimensions displayed on the inset. The block arrows indicate the flow directions.

The dynamic viscosities of the prepared non-Newtonian fluids were each measured
over a wide range of shear rates with a cone-plate rheometer (Anton Paar, MCR 302, cone
diameter −50 mm/angle −1◦) at room temperature. The imposed duration for each value
of the shear rates was kept at around 6 s. The experimental data are shown in Figure 2.
The measurement was noticed to have relatively large errors for low viscosity fluids under
shear rates smaller than 10 s−1. To quantify the shear-thinning effect of the XG, HA, and
PAA solutions, we used the Carreau model [59] to curve-fit the experimental data with the
smallest standard deviation,

η − η∞

η0 − η∞
=
[
1 +

(
λC

.
γ
)2
](n−1)/2

(1)

where η is the fluid viscosity, η∞ is the infinite-shear-rate viscosity, η0 is the zero-shear-
rate viscosity, λC is a time constant,

.
γ is the fluid shear rate, and n is the power-law

index. The curve fitting values of these parameters along with the rheological properties of
other fluids are presented in Table 1. The relaxation times, λ, of the PVP, HA, PEO, and
PAA solutions were all extracted from the literature because we were not able to obtain
consistent and accurate measurements using our rheometer. Specifically, the relaxation
time of 10,000 ppm PVP solution was estimated from the reported experimental value of
2.2 ms for 5% (i.e., 50,000 ppm) PVP (of equal molecular weight to the one used in this
work) solution from Liu et al. [75] using the concept of effective relaxation time based upon
the Zimm theory [76],

λ ∝ [η]Mw(c/c∗)3v−1 ∝ M3v+(3v−1)2

w c3v−1 ∝ c0.8 (2)

where [η] ∝ M3v−1
w is the intrinsic viscosity, v = 0.6 is the quality index of a good solvent,

c is the polymer concentration, and c∗ = 1/[η] ∝ M1−3v
w is the overlap concentration

for dilute polymer solutions. The relaxation time of 3000 ppm, Mw = 0.357 MDa, HA
solution was estimated from the reported experimental value of 0.11 ms for 700 ppm,
Mw = 0.9 MDa, HA solution from Haward [77] using the molecular-weight and concentra-
tion scaling suggested by the author and v = 0.6,

λ ∝ Mw
1.8c3v−1 ∝ Mw

1.8c0.8 (3)
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Figure 2. Shear viscosity data of the prepared non-Newtonian fluids, where the symbols represent
experimentally measured values and the dashed lines show the fitted curves using the Carreau model
for the shear thinning XG, HA, and PAA solutions.

Table 1. Rheological properties of the prepared fluids. The elasticity number, El, was estimated at a
flow rate of 10 mL/h for all the fluids.

Solution η0 (mP·s) η∞ (mPa·s) λC (s) n λ (ms) El

DI Water 1 1 − 1 0 0
10,000 ppm PVP 2.1 2.1 − ∼=1 0.61 0.83

2000 ppm XG 1740 1.8 6.6 0.33 ~0 ~0
3000 ppm HA 16 1.5 0.0018 0.62 0.067 0.20
1000 ppm PEO 2.18 2.18 − ~1 1.5 * 2.12
200 ppm PAA 4900 2.1 151 0.25 95 ** 123.64

* Rodd et al. 2005 [46]; ** Poole and Escudier 2004 [74].

We did not consider the thixotropy [78] of the prepared non-Newtonian fluids as these
polymer solutions have been commonly treated as shear thinning and viscoelastic fluids in
the literature [11–13,16–18,70]. However, the occurrence of low-inertia instabilities in the
flow of thixotropic fluids [79] may be an interesting direction for future work.

2.2. Methods

The flow in the cavity microchannel was visualized by seeding 1 µm diameter fluores-
cent particles (Bangs Laboratories, Fishers, IN, USA) into the prepared fluids at a volume
ratio of 0.05%. A syringe pump (KD Scientific, Holliston, MA, USA) was used to drive
the fluids through the channel. Plastic tubes were inserted in the inlet and outlet holes of
the channel (see Figure 1). The inlet tube was connected to the pump, and the outlet tube
led the fluids to a vial away from the channel. The streaklines of the tracing particles at
the expansion–contraction region were recorded through an inverted microscope (Nikon
Eclipse TE2000U, Nikon Instruments, Lewisville, TX, USA) with a CCD camera (Nikon
DS-Qi1Mc, Lewisville, TX, USA). The exposure time of the camera was varied from 3 s at
low flow rates to 0.5 s at high flow rates. The purpose of this change was to ensure that
continuous streamlines can be captured in snapshot images at the expansion–contraction
region of the channel. It also fulfilled the condition of keeping the number of particles
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tracked during the exposure time roughly similar among different flow rates. The obtained
images were post-processed using the Nikon imaging software (NIS Elements AR 3.22).
The fluid inertia effect on the flow pattern is characterized using the Reynolds Number,

Re =
ρVDh

η
( .

γ
) =

2ρQ

η
( .

γ
)
(w + h)

(4)

where ρ is the fluid density (assumed to be the density of the solvent, DI water, for our
dilute solutions), V is the average fluid speed in the main channel, Dh is the hydraulic
diameter of the main channel, η

( .
γ
)

is the fluid viscosity at the characteristic shear rate,
.
γ = 2V/w, across the width, w = 60 µm, of the main channel, Q is the volumetric flow
rate, and h = 45 µm is the channel height. The fluid elasticity effect on the flow pattern is
characterized by the Weissenberg number,

Wi = λ
.
γ =

2λQ
w2h

(5)

The relative impact of the fluid elasticity over inertia is measured by the elasticity number,

El =
Wi
Re

=
λη
( .

γ
)
(w + h)

ρw2h
(6)

which is independent of fluid kinematics except for shear-thinning fluids. Note that the
values of dimensionless Re, Wi, and El (at 10 mL/h, see Table 1) presented in this work
were all estimated under the inlet conditions for each prepared solution. For the ease of
description, a fluid is regarded here as weakly elastic for 0 < El < 1, mildly elastic for
1 ≤ El < 10, and strongly elastic for El ≥ 10. The fluid shear-thinning effect on the flow
pattern is characterized by the power-law index, n, in Table 1, where n < 0.5 is regarded
here as strongly shear thinning, 0.5 ≤ n < 0.75 as mildly shear thinning, and 0.75 ≤ n < 1
as weakly shear thinning.

3. Results
3.1. Fluid Rheological Effects on the Cavity Flow
3.1.1. DI Water: Effects of Fluid Inertia

Since water is an inelastic fluid with a constant viscosity, it provides a good base to
investigate only the inertial effect. We tested the water flow in the cavity microchannel
with Re spanning nearly two orders of magnitude from 2.4 (at 0.5 mL/h) to 216.5 (at
45 mL/h). As viewed from the particle streaklines in Figure 3, the flow is symmetric
about the channel centerline without any bending or vortices at the flow rates smaller than
5 mL/h. A pair of small-lip vortices forms on the expansion walls of the channel as the flow
rate reaches around 7 mL/h (Re = 33.7). With the increase in flow rate, these vortices grow
to extend to the side walls of the cavity at about 15 mL/h, yielding the so-called corner
vortices whose size increment then gets restricted to only the channel length direction. At
20 mL/h, the symmetric corner vortices touch the contraction walls as their cores move
downstream throughout the process, which matches well with the numerically predicted
fluid streamlines from a three-dimensional model in COMSOL®. Each vortex assumes the
entire half-cavity (i.e., cell vortex) at 30 mL/h confining the bounds of the primary flow
to be almost the same as that in the main channel. Further increasing the flow rate shifts
the cores of the vortices further towards the contraction walls because of the enhanced
fluid inertia. However, the size of the cavity places an upper limit upon the vortex length.
Note that the tracer particles failed to follow the streamlines and enter the inertial vortices
in some of the cases (e.g., 10 mL/h and 15 mL/h), leaving dark spots on the images of
Figure 3. We attribute this phenomenon to the potential separation of particles at the re-
entrant corners of the expansion part because of perhaps the combined influence of inertial
and centrifugal effects.
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3.1.2. PVP Solution: Effects of Fluid Elasticity Along with Inertia

The prepared PVP solution is a weakly elastic Boger-like fluid (i.e., n ∼= 1) with
El = 0.83. We tested this solution for the flow rate of up to 35 mL/h (Re = 88.2) to
study both the sole effect of fluid elasticity and its combined effect with fluid inertia. We
were unable to reach values of Re comparable to those in the water flow because of the
greater fluid resistance in the PVP solution. Figure 4 shows the flow development at the
expansion–contraction region of the cavity microchannel. The presence of fluid elasticity
does not apparently affect the flow pattern as the inertia-induced fluid streamlines in DI
water (Figure 3) are visually similar to those in the PVP solution, except for the slightly
earlier formation of vortices in the latter at approximately Re = 30. This observation
appears to be consistent with our previously reported similarity between the inertial flows
of water and 5% PVP solution (El = 17.2, strongly elastic) in a contraction–expansion
microchannel of similar dimensions, which was attributed to the short-chain structure of
PVP molecules [35]. The confinement does not induce any disturbances to the cavity flow
other than just restricting the growth of the vortices, similar to that in the water flow in
Figure 3. A comparison of the channel lengthwise dimensions of the corner vortices, Lv
(highlighted on the image in Figure 4), between water and the PVP solution as well as
other tested fluids, is presented in Section 3.3.
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Figure 4. Flow of weakly elastic and negligibly shear thinning PVP solution (downward) at the
expansion–contraction region of the cavity microchannel. Fluid vortices (with a measured length, LV ,
to be used in Figure 10) are developed only in the expansion flow (highlighted by the dashed-line
arrows on bottom-middle image), and no disturbances are observed in the contraction flow for the
span of the flow rates tested. The scale bar represents 100 µm.

3.1.3. XG Solution: Effects of Fluid Shear Thinning Along with Inertia

The prepared XG solution (n = 0.33) is a strongly shear-thinning fluid with a minimal
elasticity [80]. It therefore serves as a good fluid to demonstrate the effect of shear thinning
and its combined effect with inertia on the cavity flow. We can see in Figure 5 that small
symmetric lip vortices are already developed on the contraction walls of the cavity at a
flow rate of 0.1 mL/h (Re = 0.04 � 1), which is likely a consequence of the fluid shear
thinning effect. These lip vortices soon turn into corner vortices before Re reaches the
value of Re = 0.5 at 0.5 mL/h. The secondary flow inside the vortices is, however, much
slower than the primary flow passing through the centerline region of the microchannel.
The growth in the circulation size along the channel length continues until Re ∼ 10 at
5 mL/h while maintaining the symmetry about the channel centerline. After this point,
the intensity of the secondary flow rises without further increment in the vortex length.
The cores of the fluid vortices shift upwards, and this state is maintained until Re reaches
32.8 at 15 mL/h. The fluid inertia takes effect at this point as small symmetric lip vortices
are formed at the re-entrant corners on the expansion walls. Simultaneously, each of the
shear thinning-induced contraction flow vortices extends to the expansion walls on their
respective sides and then merges with the small inertia-induced expansion flow vortices
at 20 mL/h. The shape of these merged vortices as a result of the combined fluid shear
thinning and inertial effects is different from that of the inertially formed vortices in the
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Newtonian water (Figure 3) or PVP solution (Figure 4). Further increasing the flow rate
causes the relocation of the cores to near the expansion walls at 30 mL/h (Re = 69.0). The
flow becomes chaotic afterward because of perhaps the strongly interacted contraction
and expansion flows in a confined cavity. This is different from the maintained symmetric
vortices surrounding the unconfined primary flow in a constriction microchannel even at
Re > 100 [35].
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Figure 5. Flow of negligibly elastic and strongly shear thinning 2000 ppm XG solution (downward)
at the expansion–contraction region of the cavity microchannel. Fluid vortices are developed in
a creeping contraction flow (Re < 1, highlighted by the dashed-dotted-line arrows on the top-
row image) because of the fluid shear thinning effect and later also in the inertial expansion flow
(highlighted by the dashed-line arrows on the bottom-row image). The scale bar represents 100 µm.

3.1.4. HA Solution: Effects of Weak Elasticity and Mild Shear Thinning Along with Inertia

The prepared HA solution is a weakly elastic (El = 0.20) and mildly shear thinning
(n = 0.62) fluid. As viewed from the images in Figure 6, the low Re (≤ 4.9) flow of HA
solution exhibits symmetric cavity-shape conforming streamlines with no sign of fluid
bending or vortices. At the flow rate of 8 mL/h, a pair of small-lip vortices develop at
the re-entrant corners on the contraction walls because of the fluid shear thinning effect.
They do not seem to arise from the fluid elasticity effect as no such vortices are observed in
the viscoelastic PVP (Figure 4) or PEO (Figure 7) solution with a negligible-to-weak shear
thinning effect. The corresponding value of Re = 8.8 is, however, more than two orders of
magnitude higher than that observed in the XG solution (Figure 5). This phenomenon may
indicate a strong influence of both the shear thinning extent and the polymer structure
because the HA polymer has a much shorter chain than the XG polymer and hence causes
less extensional stretching and reorientation. The flow separation at Re = 31.1 (22 mL/h)
initiates the onset of Newtonian-like lip vortices on the expansion walls, which grow on
to reach the sidewalls of the cavity and become corner vortices at Re = 45.4 (30 mL/h).
In contrast, the contraction-wall lip vortices grow very slowly with the increase of flow
rate after formation because of perhaps the short chain of HA polymers. Only at the flow
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rate of 40 mL/h with Re = 64.4 do the shear-thinning-induced contraction-wall vortices
finally reach the salient corners. Concurrently, the inertia-induced expansion-wall vortices
further extend downwards and almost merges/interacts with the contraction-wall vortices
because of the confinement. Such a nearly independent existence of the expansion and
contraction flow vortices exhibits a similarity to the unconfined flow of HA solution in a
constriction microchannel [50].
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Figure 6. The flow of weakly elastic and mildly shear-thinning 3000 ppm HA solution (downward)
at the contraction–expansion region of the cavity microchannel. Fluid vortices are first developed in
the inertial contraction flow (highlighted by the dashed-dotted-line arrows on the top-row image)
because of the dominant shear thinning effect over the elasticity effect and then also in the inertial
expansion flow (highlighted by the dashed-line arrows on the bottom-row image). The scale bar
represents 100 µm.

3.1.5. PEO Solution: Effects of Mild Elasticity and Weak Shear Thinning Along with Inertia

The prepared PEO solution is a mildly elastic (El = 2.12) and weakly shear thinning
fluid with a similar viscosity to the weakly elastic and negligibly shear thinning PVP
solution. One key difference between these two fluids lies in the longer polymer chain of
the PEO molecule and hence the stronger elasticity effect of its solution. Figure 7 shows
the flow of the PEO solution through the cavity microchannel for flow rates ranging from
5 mL/h (Re = 12.1) to 30 mL/h (Re = 72.8). No apparent deviations from the symmetric
Newtonian flow streamlines (Figure 3) are observed at 5 mL/h. A diverging flow pattern
appears in the contraction part of the cavity at 8 mL/h (Re = 19.4) and becomes significantly
stronger with the increase of flow rate. In the expansion part of the cavity, bending
streamlines start taking the form of two small vortices at the re-entrant corners at 14 mL/h.
The corresponding value of Re = 34.0 is close to that in the flow of water and PVP solution
for the onset of inertial expansion-flow vortices. However, the vortices in the PEO solution
are not laminar in nature like in the other two fluids. The chaotic behavior of the contraction
flow increases with flow rate as the lip vortices of the expansion flow evolve to approach
the salient corners of the expansion walls at 20 mL/h (Re = 48.5). The chaos completely
takes over the flow pattern, and any shape of vortices become visually unrecognizable
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when the flow rate reaches 30 mL/h. Despite having a similar viscosity and a similar order
of fluid elasticity ( El ∼ 1) to that of the PVP solution (Figure 4), the streamline images
are completely different in the PEO solution (Figure 7). The reason perhaps lies in other
rheological parameters than just the relaxation time such as the extensional viscosity or the
wall adsorption/depletion dynamics of the polymers here, which in turn would affect the
wall shear rate and thus the overall rheological response of the flow. More interestingly,
we have previously encountered single or asymmetric vortices in the contraction flow and
no vortices in the expansion flow of PEO solutions in a constriction microchannel [35,50],
which is opposite to the flow patterns in the cavity microchannel (Figure 7). The question
that ensues from these observations is whether the flow of non-Newtonian fluids through
a cavity or constriction microchannel can be each viewed as a simple superposition of the
contraction and expansion flows.
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Figure 7. Flow of mildly elastic and weakly shear thinning 1000 ppm PEO solution (downward) at
the contraction–expansion region of the cavity microchannel. Fluid circulations are formed on the
expansion walls (highlighted by the dashed-line arrows on the top-right image) at a similar value of
Re to that in the flow of water (Figure 3) and PVP solution (Figure 4). They grow and become chaotic
with the increase in flow rate. The scale bar represents 100 µm.

3.1.6. PAA Solution: Effects of Strong Elasticity and Strong Shear Thinning and Inertia

The prepared PAA solution is a strongly elastic ( El ∼ 123.64) and strongly shear-
thinning (n = 0.25) fluid with a non-negligible second normal stress difference that can
induce a secondary flow even in a straight uniform microchannel [81]. The cavity flow of
the PAA solution is shown in Figure 8 for Re spanning over four orders of magnitude. Large
symmetric corner vortices are observed on the contraction walls under a nearly inertialess
flow condition of Re = 0.005 � 1 (0.01 mL/h), significantly lower than the value of
Re = 0.5 in the XG solution with a roughly equal power-law index. This phenomenon
may indicate a much stronger influence of the polymer structure than the fluid elasticity as
PAA molecules have much longer chains than the XG solution. An increase in flow rate to
1 mL/h (Re = 2.2) only extends slightly the length of the still symmetric vortices inside
the cavity while the secondary flow therein is intensified. Further increasing the flow rate
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to 5 mL/h (Re = 12.8) renders the circulations to become asymmetric. Moreover, the two
vortices are observed to oscillate without any apparent period at this flow rate (see, for
example, the sequential images in Figure 9) and 10 mL/h (Re = 26.3) as well. The fluid
inertia-induced expansion wall vortices at around the value of Re = 30, which appear in
the flow of both XG (Figure 5) and HA (Figure 6) solutions, are unable to differentiate from
the unstable contraction flow. Progressing to higher flow rates seems to diminish the fluid
oscillations, which is counterintuitive and opposite to the observation in the constriction
microchannel [35]. Such a phenomenon could be the result of a combined effect of local
shear rate and polymer gelation under certain conditions enacted by the confinement.
However, a thorough investigation is in order in this direction.
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Figure 8. Flow of strongly elastic and strongly shear thinning 200 ppm PAA solution (downward)
at the expansion–contraction region of the cavity microchannel. Fluid vortices are developed in a
nearly inertialess contraction flow (Re � 1, highlighted by the dashed-dotted-line arrows on the
top-row image) because of the strong shear thinning and the long polymer chains. No inertia-induced
expansion flow vortices are observed for the tested flow rates because of the suppression of the strong
fluid elasticity. The scale bar represents 100 µm.
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3.2. Summary of the Cavity Flow Pattern

A summary of the observed flow regimes for the prepared fluids is plotted in the
Re − Wi space (with a log-log scale) and shown in Figure 10. The Weissenberg number
for the DI water is assigned to a constant small value, Wi = 0.0001 for the purpose of
plotting in the logarithmic scale. This same value of Wi is also assigned to the XG solution
at 0.01 mL/h, based on which Wi at higher flow rates can be estimated using Equation (5).
For the contraction flow (see the filled symbols in Figure 10), the strongly shear-thinning
XG and PAA solutions both exhibit large symmetric stable vortices in the creeping flow
regime (Re < 1), which grow significantly with the increase in flow rate and become
chaotic or unstably asymmetric under large flow rates. The contraction flow of the mildly
shear-thinning HA solution also shows vortices, which, however, develop at a much greater
value of Re = 10 (approximately) and with a much smaller circulation size. At an even
larger value of Re = 20 (approximately), the contraction flow of weakly shear-thinning
PEO solution displays diverging streamlines, which grow into chaos under high flow rates
and never convert into vortices. In contrast, the contraction flow of constant-viscosity water
and PVP solution do not demonstrate any sign of flow separation or streamline bending
for all the tested Re values.

For the expansion flow, all the prepared fluids except the PAA solution demonstrate
flow separation from the cavity walls at around a similar value of Re = 30. We thus
highlight this Re on the plot in Figure 10 (see the vertical dashed line) as the onset of fluid
inertia-induced expansion flow vortices and hence the transition to the flow regime that
inertia plays an important (and even dominant in some fluids) role. For water and PVP
solution, the expansion flow remains stable in the whole range of tested Re values. Fluid
vortices appearing from the re-entrant corners of the expansion walls reach the salient
corners and then completely occupy each side of the cavity. A similar development is
observed for the expansion flow of HA solution as well, but the tested Re is not high
enough for the fluid inertia-induced expansion-flow vortices to reach the fluid shear-
thinning induced contraction-flow vortices in our tests. The expansion flow vortices in
the PEO and XG solutions are different from those in the water, PVP, or HA solution as
they remain as lip vortices and do not grow much in size before the contraction flow in
the cavity turns chaotic at a moderate value of Re ∼ 60. This is because the contraction
flow of these two fluids becomes very strong with the increase of fluid inertia inside the
confined cavity as mentioned above. No vortices are observed in the expansion flow of
PAA solution as the contraction flow vortices almost occupy individually both side wells
of the cavity and become unstable at Re ∼ 10.
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Figure 10. Summary of flow regimes in the Re−Wi space for the cavity flow of Newtonian water and
non-Newtonian polymer solutions. Filled and hollow markers are, respectively, for the contraction
and expansion flows through the microchannel: circles for no bending streamlines or vortices;
rectangles for bending streamlines; triangles for stable lip vortices; squares for stable corner vortices;
diamonds for stable symmetric vortices completely extended between the expansion and contraction
walls (i.e., cell vortices); crosses are for unstable asymmetric vortices; asterisks are for unstable chaotic
cell vortices. The vertical dashed line at Re = 30 marks the transition to the flow regime that fluid
inertia plays an important role as the inertia-induced vortices start occurring at the re-entrant corners
of the expansion flow. Note that the Weissenberg number has been assumed to be 0.0001 for pure
water (at any flow rates) and XG solution (at 0.01 mL/h) for the purpose of graphing.

3.3. Summary of the Vortex Development

The vortex development is characterized by the vortex length, Lv (see the high-
lighted dimension in Figure 4), which can be measured from the experimental images
(i.e., Figures 3–8) at the contraction and/or expansion parts of the cavity microchannel.
Figure 11 shows the growth of the normalized vortex length, χL = Lv/w, with the increase
in Re in each of the prepared fluids. Vortices form at very small values of Re � 1 in the con-
traction flow of strongly shear thinning XG and PAA solutions. Their curves in the Re − χL
plot show similar patterns, with an incremental trait at the beginning followed by a plateau
of no apparent growth with change in Re. They regain their incremental aspects after that
and reach the maximum, where the vortices are inhibited from any further growth as the
size of the cavity is met in length (see the horizontal dashed line, χL = 8.4, in Figure 11),
at Re = 12.8 in the PAA solution and Re = 32.8 in the XG solution, respectively. The
contraction flow vortices in the mildly shear thinning HA solution commence at a much
higher value of Re = 8.8 and have a much smaller size than in the XG and PAA solutions.
These observed trends appear to be consistent with the decreasing shear thinning effect (as
well as the decreasing polymer molecular weight) of the PAA, XG, and HA solutions in
that order.
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Figure 11. Summary of the vortex length (normalized by the microchannel width), χL = Lv/w,
against the Reynolds number, Re, in the cavity microflow of Newtonian water and non-Newtonian
polymer solutions. Filled and hollow markers are for the vortices in the contraction and expansion
parts of the microchannel, respectively. The horizontal dashed line at χL = 8.4 marks the maximum
vortex length as the size of the cavity is met by the vortices (i.e., cell vortices). The vertical dashed
line at Re = 30 marks the onset of the fluid inertia-induced vortices at the re-entrant corners of the
expansion flow. Note that only the size of the stable vortex (either symmetric or asymmetric) is
shown in this plot.

The vortices developed from the expansion part of the cavity originate at a similar
value of Re = 30 in all the prepared fluids except for the PAA solution, as seen from the
vertical dashed line in Figure 11. The increasing pattern of χL with Re that follows is
steeper and more straightforward than that of the fluid shear thinning-induced contraction
flow vortices. Noticeably, the curves for these cases fit closely together in the plot. Since the
expansion flow vortices are typical in the inertial flow of Newtonian fluids, the overlapping
of the curves confirms that such vortices in the polymer solutions here are also (primarily)
consequences of inertial effects in the cavity flow. At high values of Re > 75, the fluid
inertia-induced expansion-flow vortices can reach the size limit of the cavity (see the
horizontal dashed line, χL = 8.4, in the plot) in water, PVP, and HA (if the flow rate is
further increased) solutions. They are, however, absorbed by the strong chaotic contraction
flows in both the PEO and XG solutions and disappear before Re reaches the order of
60. No expansion flow vortices are observed in the PAA solution as the contraction-flow
vortices occupy the entire cavity well ahead of Re = 30.

4. Conclusions

We have experimentally studied the flow of five types of non-Newtonian polymer
solutions and compared them with that of water in a planar expansion–contraction mi-
crochannel. The tests were performed with a wide range of Reynolds and Weissenberg
numbers, from which the sole and combined effects of fluid inertia, shear thinning, and
elasticity are demonstrated under the confined condition in the cavity. The results are
plotted in the non-dimensional Re −Wi and Re − χL spaces for the flow regime and vortex
development, respectively. We have also compared the experimental observations with
the unconfined flow of the same fluids in a planar contraction–expansion microchannel
of similar dimensions. In sum, fluid inertia induces circulations in the expansion flow of
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water, which is trivially impacted by the confinement as the expansion flow circulations
are merely restricted from growing at the contraction walls without showing any other
significant event or instability. Fluid shear thinning causes the formation of stable symmet-
ric vortices in the contraction flow of the XG solution, which interact with the expansion
flow vortices inside the cavity destabilizing the flow. Fluid elasticity does not draw any
disturbances to the contraction or expansion flow of the PVP and PEO solutions unless the
polymer has long chains and the fluid inertia takes effect. The flow in the PEO solution
becomes chaotic without showing any contraction flow vortices, which deviates from the
unconfined constriction flow. The weak presence of shear thinning and elasticity in the HA
solution barely affects the independent existence of the contraction and expansion flow
vortices. In contrast, the combination of strong shear thinning and strong elasticity in the
PAA solution surprisingly stabilizes the fluctuations of the contraction flow vortices at
high inertia. Such stabilization is not observed in the unconfined flow of the same fluid
through a constriction microchannel. Hence, confinement plays a key role in determining
the extensional flow instabilities of polymer solutions. In future work, we will study the
flow of various non-Newtonian fluids [82,83] through microfluidic porous media models
with a 1D [84,85] or 2D [61,86] array of cavities and constrictions. The goal would be to
see how a flow through several cavities, both in rows/columns/arrays and randomly
disposed, would behave. This would allow us to see how they interact or interfere with
each other and if any of the effects presented here are confirmed on a larger scale or if other
new dynamics come up. It is hoped that our experimental results in this and future work
will provide useful data for the validation of theoretical studies on such flows in terms of
appropriate constitutive models (e.g., Oldroyd-B [87] and FENE-P [88,89] models).
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