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Oscillations of a partially wetting bubble
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We study the linear stability of a compressible sessile bubble in an ambient fluid that
partially wets a planar solid support, where the gas is assumed to be an ideal gas that
obeys the adiabatic law. The frequency spectrum is computed from an integrodifferential
boundary value problem and depends upon the wetting conditions through the static
contact angle α, the dimensionless equilibrium bubble pressure Π , and the contact-line
dynamics that we assume to be either (i) pinned or (ii) freely moving with fixed contact
angle. Corresponding mode shapes are defined by the polar-azimuthal mode number pair
[k, �] with k + � = Z

+
even. We report instabilities to the (i) [0, 0] breathing mode associated

with volume change, and (ii) [1, 1] mode that is linked to horizontal centre-of-mass
motion of the bubble. Stability diagrams and instability growth rates are computed, and
the respective instability mechanisms are revealed through an energy analysis. The zonal
� = 0 modes are associated with volume change, and we show that there is a complex
dependence between the classical volume and shape change modes for wetting conditions
that differ from neutral wetting α = 90◦. Finally, we show how the classical frequency
degeneracy for the Rayleigh–Lamb modes of the free bubble splits for the azimuthal modes
� /= 0, 1.

Key words: bubble dynamics, contact lines, wetting and wicking

1. Introduction

The motion of bubbles on a partially wetting substrate is important in application
and includes, for example, bubble detachment in nucleate boiling for heat transfer
(Douglas et al. 2012; Pereiro et al. 2019; Ardron & Giustini 2021), bubble collapse that
affects solder joint quality in ultrasonic-assisted soldering (Shaffer et al. 2019; Maassen
et al. 2020), bubble detachment via coalescence in catalytic or electrochemical gas
evolution reactions in liquids (Lv et al. 2021), microstreaming from oscillating bubbles
in micro-electromechanical systems (Marmottant et al. 2006), bubble generation on
biological matter (Kawchuk et al. 2015), and the sound generated by the collapse of a rising
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bubble at the surface of a lava column (Vergniolle & Brandeis 1996). Here, the bubble
dynamics may involve translation (detachment), volume change (collapse or growth),
liquid/gas surface shape change (oscillations), or some combination thereof, and these are
often affected by the wetting conditions on the solid substrate. In this paper, we analyse
the canonical case of the sessile bubble by performing a hydrodynamic stability analysis
to predict the frequency spectrum, showing how volume and shape-change motions are
coupled.

Free spherical bubbles can undergo volume oscillations with frequency (Plesset &
Prosperetti 1977)

ω2
0 = 3γ pg0

ρR2 − 2σ
ρR3 , (1.1)

where γ is the adiabatic exponent, pg0 is the equilibrium gas pressure, R is the
equilibrium bubble radius, and σ is the liquid/gas surface tension. Here, the bubble radius
r(t) is independent of the surface coordinates, and the bubble undergoes pure radial
oscillations. Shape-change oscillations of a bubble are a limiting case of the more general
Rayleigh–Lamb (RL) spectrum for an immiscible liquid drop when ρi = 0 (Rayleigh 1879;
Lamb 1924):

ω2
k,� = λ2

k,�
k(k − 1)(k + 1)(k + 2)

(k + 1)ρi + kρe

σ

R3 k, � = 0, 1, . . . , and � ≤ k, (1.2)

where ρi and ρe are the internal and external fluid densities, respectively. Here, the
shape-change modes are defined by a polar k and azimuthal � mode number associated
with the spherical harmonics Y�k . Note that the RL spectrum is degenerate with respect to
azimuthal mode number �. Extensions to the RL spectrum include, but are not limited to,
the effects of (i) a viscoelastic medium (Allen & Roy 2000; Yang & Church 2005; Hua &
Johnsen 2013), (ii) large-amplitude perturbations (Keller & Miksis 1980; Marmottant et al.
2005), or (iii) constrained geometries (Bostwick & Steen 2009; Maksimov & Polovinka
2013; Anna 2016).

Coupling between the purely radial (volume) oscillations and one or more of the shape
modes is a vital feature in bubble dynamics, and this has been recognized by researchers
since the 1980s. Longuet-Higgins (1989) demonstrated that nonlinear coupling between
axisymmetric shape-change modes can induce the volume mode. Mei & Zhou (1991)
used multiple time scale analysis to study the resonant interactions between an isotropic
volume mode and multiple axisymmetric shape-change modes. The review by Feng & Leal
(1997) discusses how the shape-change oscillation amplitude is controlled by nonlinearity,
and that energy is exchanged in a continuous, periodic way between the shape-change
and volume modes. Notably, Shaw (2006) considered nonlinear interactions between the
axisymmetric shape modes, axial translational motion and volume oscillation of a bubble,
with more recent work focused on the effects of viscosity and weak compressibility on
the non-spherical gas bubble oscillation (Shaw 2017). Related experiments have been
performed by Guédra et al. (2017, 2020). For the sessile bubble, the coupling between
volume and shape-change modes comes from the inherent wetting interactions that are
coupled through the free boundary (liquid/gas interface).

The RL spectrum has been used in cases where the bubble is not completely free,
as for a levitated bubble (Asaki & Marston 1995) or a supported bubble (Prosperetti
2012; Vejrazka, Vobecka & Tihon 2013; Maksimov 2020). Notably, Shklyaev & Straube
(2008) consider both the natural and forced oscillations of a hemispherical bubble with
contact-line dynamics prescribed by the Hocking condition (Hocking 1987), which lead to
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Oscillations of a partially wetting bubble

non-trivial interactions between the volume and shape-change modes. Fayzrakhmanova,
Straube & Shklyaev (2011) investigated the oscillations of a hemispherical sessile bubble
subject to transverse substrate vibrations, focusing on the interplay of the compressibility
of the bubble and the contact-angle hysteresis, which leads to stick-slip motions. Bubble
oscillations can also be induced by other means, such as electrowetting (Ko, Lee & Kang
2009) or ultrasonic fields, as seen in experiment (Marin et al. 2015; Volk & Kähler 2018)
and theoretical works (Rallabandi, Wang & Hilgenfeldt 2014).

Viscous effects enter the bubble dynamics through bulk and boundary layer dissipation
that can dampen the bubble oscillations e−γ t, where γ is the decay rate. Gelderblom
et al. (2012) contrasted models of viscous potential flow and unsteady Stokes flows to
estimate the damping rate for the oscillations of a gas pocket, showing that the latter
is a more accurate method, as it includes both boundary layer and bulk dissipation.
Wang, Rallabandi & Hilgenfeldt (2013) investigated microbubble streaming flows using
a matched asymptotic analysis, which included viscous effects in the limit of the thin
boundary layer region, and found that axial oscillations could induce fast-decaying flow
fields compared to purely azimuthal modes. There is a considerable literature on viscous
corrections to the inviscid oscillations of bubble; for example, Vejrazka et al. (2013)
considered the case of a supported bubble or drop for irrotational flow, using a viscous
dissipation approximation that goes back to Lamb (1924), who predicted the decay rate
γ = ν/R2(2k + 1)(k + 2), where ν is the kinematic viscosity. For a partially wetting
bubble, the problem is complicated by the incompatibility of the no-slip condition with
a freely moving contact line, which is resolved typically by introducing a modified Navier
slip boundary condition at the solid support. We choose to not focus on these complex
issues in our analysis, and instead focus on how the wetting properties affect the oscillation
spectrum, by assuming an inviscid fluid in our analysis.

Here, we consider a sessile bubble resting on a planar solid support, as shown
in figure 1(a). The wetting interactions are defined by the static contact angle α, as
determined by the Young–Dupré equation σ cosα = σsg − σls (Young 1805; Dupré &
Dupré 1869). Note that the contact angle α convention is defined by the angle measured
from the solid through the liquid to the liquid/gas interface. In this case, α < 90◦ and
α > 90◦ correspond to super-hemispherical (drop-like) and sub-hemispherical (lens-like)
base states, respectively. Dynamic wetting effects associated with the Hocking condition
are neglected, and we assume that the three-phase contact line either (i) moves freely with
fixed contact angle (free disturbance), or (ii) is pinned. We note that these are limiting
cases of the more general Hocking condition. Finally, we remark that pinned contact-line
conditions are generally the more physically relevant boundary condition due to finite
contact-angle hysteresis, but that free contact-line motions have been observed recently on
slippery liquid-infused porous surfaces (Zhang et al. 2021) and hydrophobic surfaces in
microgravity (McCraney et al. 2022).

Drops and bubbles are closely related and we note that there has been a lot of recent
research on sessile drop oscillations, including theoretical analysis (Bostwick & Steen
2014; Sharma & Wilson 2021) and experimental observations (Sharp, Farmer & Kelly
2011; Sharp 2012; Chang et al. 2013, 2015; Sakakeeny et al. 2021). The sessile drop
frequency spectra computed by Bostwick & Steen (2014) exhibits a rich structure that
includes features such as splitting of the Rayleigh drop degeneracy, spectral reordering
and mode mixing, all of which have been verified experimentally. Notably, Steen, Chang
& Bostwick (2019) have produced an organizational structure for the sessile drop spectrum,
introducing the ‘periodic table of droplet motions’. In contrast, studies of sessile bubble
oscillations are comparably smaller, yet we might expect the dynamics to be somewhat
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Figure 1. Definition sketch. (a) Equilibrium spherical-cap surface of base radius r and static contact angle
α defined by the Young–Dupré equation σ cosα = (σsg − σls), with interface perturbed by η in (b) polar
cross-sectional and (c) three-dimensional perspective views.

richer given that gas compressibility adds an additional degree of freedom to the
dynamics.

We begin this paper by defining the hydrodynamic disturbance equations associated
with small disturbances to the spherical-cap–bubble interface, whose three-phase contact
line either (i) is pinned or (ii) moves freely with a fixed contact angle. Normal modes
are applied to the governing equations, and a boundary integral approach is applied to
derive the governing integrodifferential boundary value problem, from which the spectrum
is computed by recasting as a functional eigenvalue problem on linear operators. Here,
inverse operators are utilized, and a Rayleigh–Ritz procedure is used to reduce the problem
to a standard linear algebra eigenvalue problem. Solutions are defined by the mode number
pair [k, �], and we show how the frequency spectrum depends upon the static contact angle
α and dimensionless equilibrium bubble pressure Π . We report instabilities to the [0, 0]
and [1, 1] modes, and highlight the respective instability mechanisms. We illustrate how
volume and shape-change modes are coupled via the wetting properties, and show how the
spectrum splits from the RL spectrum for α /= 90◦. Finally, some concluding remarks are
offered.

2. Mathematical formulation

Consider the sessile bubble, comprised of a compressible, non-condensable gas
surrounded by an ambient liquid, shown in figure 1. Under equilibrium conditions and
when the effects of gravity are neglected, the liquid/gas interface shape is a spherical cap
that can be defined parametrically as

X(s, ϕ;α) = sin(s)
sin(α)

cos(ϕ), Y(s, ϕ;α) = sin(s)
sin(α)

sin(ϕ),

Z(s, ϕ;α) = cos(s)+ cos(α)
sin(α)

,

⎫⎪⎪⎬
⎪⎪⎭ (2.1a–c)

using arclength-like s ∈ [0,π − α] and azimuthal angle ϕ ∈ [0, 2π] as surface
coordinates. The free surface

∂D f ≡ {(x, y, z) | x = X(s, ϕ;α), y = Y(s, ϕ;α), z = Z(s;α)} (2.2)

is endowed with surface tension σ and separates the bubble domain

Dg ≡ {(x, y, z) | 0 ≤ x ≤ X(s, ϕ;α), 0 ≤ y ≤ Y(s, ϕ;α), 0 ≤ z ≤ Z(s;α)} (2.3)
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from the ambient liquid

Dl ≡ {(x, y, z) | x ≥ X(s, ϕ;α), y ≥ Y(s, ϕ;α), z ≥ Z(s;α)}. (2.4)

The bubble wets a planar surface-of-support ∂Ds ≡ {(x, y, z) | z = 0}.
The interface is given a small deformation η(s, ϕ, t), as shown in figures 1(b,c). We will

assume that the three-phase contact line either (i) moves freely with fixed contact angle,

dη
ds

− cos(π − α)η = 0|s=π−α, (2.5)

or (ii) is pinned,
η = 0|s=π−α. (2.6)

2.1. Hydrodynamic field equations
Disturbances to the equilibrium surface induce a capillary-driven flow in the inviscid and
incompressible ambient liquid, which can be defined by an irrotational velocity field v =
∇ψ using the velocity potential ψ that satisfies Laplace’s equation on the domain Dl, a
kinematic condition on the free surface ∂D f , and the no-penetration condition on the solid
support ∂Ds:

∇2ψ = 0 [D],
∂ψ

∂n
= ∂η

∂t
[∂D f ], ∇ψ · z = 0 [∂Ds], (2.7a–c)

with ∂/∂n ≡ n · ∇. The pressure field in the liquid is given by the linearized Bernoulli
equation

pl = −� ∂ψ
∂t

[D], (2.8)

where � is the fluid density and pl is the pulsation part of the pressure in the liquid phase.
The pressure jump across the free surface ∂D f is given by the Young–Laplace equation

pg − pl = − σ

R2

(
2η + 1

sin(s)
∂

∂s

(
sin(s)

∂η

∂s

)
+ 1

sin2(s)

∂2η

∂φ2

)
[∂D f ], (2.9)

where pg is the pulsation part of the bubble pressure.
For the bubble, we assume an ideal gas that obeys the adiabatic law

[pg0 + pg(t)] Vγ (t) = pg0Vγ0 , (2.10)

where γ is the adiabatic exponent, pg0 is the equilibrium value of gas pressure, and
V0 = (π/3)R3(2 + 3 cosα − cos3 α) is the static bubble volume. This assumption implies
that the pulsations of the gas pressure in the bubble are spatially homogeneous and the
dissipative processes are negligible over a period of oscillation, as described by Shklyaev
& Straube (2008). The instantaneous bubble volume is given by

V(t) = V0 + ΔV, ΔV = R2
∫ 1

cos(π−α)

∫ 2π

0
εη dx dϕ, (2.11a,b)

where dx = d cos(s), and ΔV is the linearized volume change. This gives the linearized
gas pressure

pg = − 6γ pg0

R(2 + 3 cosα − cos3 α)

∫ 1

− cosα
η dx. (2.12)
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2.2. Normal-mode reduction
Dimensionless variables are introduced:

ρ∗ = ρ/r, η∗ = η/r, t∗ = t
√
σ

�r3 , ψ∗ = ψ

√
�

σ r
, p∗ = p

( r
σ

)
, λ = ω

√
�r3

σ
,

(2.13a–f )
where r is the base radius. Normal modes

ψ∗(ρ, θ, ϕ, t) = ξ(ρ, θ) eiλt∗ ei�ϕ, η∗(s, ϕ, t) = y(s) eiλt∗ei�ϕ, (2.14a,b)
are assumed with dimensionless frequency λ and azimuthal mode number �, written in a
spherical coordinate system (ρ, θ, ϕ). We apply a boundary integral approach in which
(2.7a–c)–(2.9) are mapped to the free surface,

λ2

sin2 α
ξ + 2Π

sinα(2 + 3 cosα − cos3 α)
δ�,0

∫ 1

− cosα

∂ξ

∂n
dx

=
(

2 − �2

sin2(s)

)
∂ξ

∂n
+ cot(s)

(
∂ξ

∂n

)′
+
(
∂ξ

∂n

)′′
, (2.15)

where Π = 3γ pg0r/σ is the dimensionless equilibrium bubble pressure, ′ indicates d/ds,
and δ�,0 is the Kronecker delta with δ0,0 = 1, δ� /= 0,0 = 0. Here, ξ is a harmonic function
that solves Laplace’s equation on the domain and the no-penetration condition on the
surface-of-support.

2.3. Reduction to generalized eigenvalue problem
Equation (2.15) is an integrodifferential eigenvalue problem that can be written in linear
operator form as

M−1[ξ ] = λ̂2K−1[ξ ; �], (2.16)

with λ̂ ≡ λ/ sinα,

M−1[ξ ] = ∂ξ

∂n
− 2Π

sinα(2 + 3 cosα − cos3 α)
δ�,0

∫ 1

− cosα

∂ξ

∂n
( y) dy

∫ 1

− cosα
G(x, y; �) dy

(2.17)
and

K−1[ξ ; �] =
∫ 1

− cosα
G(x, y; �) ξ( y) dy. (2.18)

Here, G(x, y; �) is the Green’s function or fundamental solution of the differential operator
(right-hand side of (2.15)).

2.4. Green’s function
We use the following representation of the Green’s function:

G(x, y; �) =

⎧⎪⎨
⎪⎩

1
1 − y2

U(x; �)V( y; �)
W( y; �) , b < y < x < 1,

1
1 − y2

U( y; �)V(x; �)
W( y; �) , b < x < y < 1,

(2.19)

where x ≡ cos(s) and b ≡ cos(π − α) = − cosα. Here, U and V are the homogeneous
solutions of the curvature operator K that satisfy the left-hand and right-hand boundary
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conditions, respectively,

U = y1(x; �), V = y2(x; �)− τ2(�)

τ1(�)
y1(x; �), (2.20a,b)

and W is the Wronskian of the solutions U and V . Also,

y1(x; 0) = P1(x), y2(x; 0) = Q1(x), y1(x; 1) = P1
1(x), y2(x; 1) = Q1

1(x),

y1(x; � ≥ 2) = (x + �)

(
1 − x
1 + x

)�/2
, y2(x; � ≥ 2) = x − �

2�(�2 − 1)

(
1 + x
1 − x

)�/2
,

⎫⎪⎬
⎪⎭

(2.21)

where P1, Q1 and P1
1, Q1

1 are the associated Legendre functions, and the parameters τ1 and
τ2 are related to the contact-line boundary conditions:

τ
p
1 = y1(b; �), τ

p
2 = y2(b; �) (2.22a,b)

for the pinned contact-line disturbance (superscript p), and

τ
f

1 = y′
1(b; �)+ b√

1 − b2
y1(b; �), τ

f
2 = y′

2(b; �)+ b√
1 − b2

y2(b; �) (2.23a,b)

for the fixed-angle disturbance, sometimes referred to as the free disturbance
(superscript f ).

2.5. Solution of the generalized eigenvalue problem
We use a Rayleigh–Ritz procedure to compute the eigenvalue spectrum of

∂ξ

∂n
(x)− 2Π

sinα(2 + 3 cosα − cos3 α)
δ�,0

∫ 1

b

∂ξ

∂n
( y) dy

∫ 1

b
G(x, y; �) dy

= λ̂2
∫ 1

b
G(x, y; �) ξ( y) dy (2.24)

from a truncated set of linear algebraic equations that result from minimization of the
functional

λ̂2 = (M−1[ξ ], ξ)
(K−1[ξ ; �], ξ) , ξ ∈ S, (2.25)

over a predetermined function space S, which is chosen to satisfy Laplace’s equation and
the no-penetration condition on ∂Ds.

We begin by assuming a solution series

ξ =
N∑

j=0

aj ξ
(�)
j (ρ, θ) (2.26)

constructed from basis functions ξ�j (ρ, θ). These functions are applied to (2.24), evaluated
on the undisturbed surface (2.1a–c), and inner products are taken to generate a set of linear
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algebraic equations
N∑

j=0

(m(�)ij − λ̂2k(�)ij )aj = 0, (2.27)

with

m(�)ij =
∫ 1

b

(
∂ξ

(�)
i
∂n

− 2Π
sinα(2 + 3 cosα − cos3 α)

δ�,0

×
∫ 1

b

∂ξ
(�)
i
∂n

(y) dy
∫ 1

b
G(x, y; �) dy

)
ξ
(�)
j dx (2.28)

and

k(�)ij =
∫ 1

b

∫ 1

b
G(x, y; �) ξ (�)i ξ

(�)
j dx dy. (2.29)

Allowable solutions of the generalized eigenvalue problem (2.24) must satisfy Laplace’s
equation ∇2ξ = 0, and this can be accomplished through proper selection of the basis
functions (e.g. Prosperetti 2011)

ξ
(�)
j (ρ, θ) = ρ−j−1 P�j (cos θ), (2.30)

written here in spherical coordinates, ρ and θ , and chosen to be harmonic. Here, P�j
is the Legendre function of degree j and order �, with j + � = Z

+
even to ensure that the

no-penetration condition is satisfied. Additionally, a consistency condition requires � ≤ j
in order to make sure that the Legendre function is non-singular at cos θ = ±1.

For reference, the normal derivatives of the basis function (2.30), evaluated on the
equilibrium surface (X(s), Y(s), Z(s)) as defined in (2.1a–c), are expressed as

∂ξ
(�)
j

∂n
= ∇ξ (�)j · n = (−j − 1)P�j (cos θ) (sin s sin θ + cos s cos θ)ρ−j−2

+ sin θ
(

P�j (cos θ)
)′
(sin s cos θ − cos s, sin θ)ρ−j−2 (2.31)

using mixed coordinates for efficiency in presentation.

3. Results

The eigenvalues λk,� of (2.27) have been computed using a resolution of N = 10 basis
functions in the solution series (2.26) for both free and pinned disturbances. This produces
relative eigenvalue convergence of 0.0064 % for the first five modes. The eigenfunction
ξk,� associated with the eigenvalue/eigenvector pair λk,�, a(k,�)j is given by

ξk,�(x) =
N∑

j=0

a(k,�)j ξ
(�)
j (x), (3.1)

with corresponding interface deformation

yk,�(x) =
N∑

j=0

a(k,�)j

∂ξ
(�)
j

∂n
(x). (3.2)

Here, k indexes the eigenvalues and can be viewed as a polar mode number.
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

(i) ( j) (k) (l )

(m) (n) (o) ( p )

Figure 2. Mode shape [k, �] classification plotting the interface shape in two-dimensional polar view (a–d),
and three-dimensional side (e–h) and top (i–l) views, with associated fields (m–p, streamlines and pressure
contours) for typical (a,e,i,m) zonal [6, 0], (b, f, j,n) sectoral [4, 4], (c,g,k,o) lateral [3, 1], and (d,h,l,p) tesseral
[7, 3] modes, for α = 105◦.

3.1. Mode-shape terminology
Mode shapes can be classified by their mode number pair [k, �] into zonal [k, 0],
lateral [k, 1], sectoral [k, k], and tesseral [k, � /= k], using spherical harmonic terminology
(MacRobert 1967). Figure 2 shows typical mode shapes (perspective view and top view)
with corresponding gradient fields (streamlines and pressure field) for a sub-hemispherical
bubble (α = 105◦) with free disturbance. Zonal � = 0 modes are axisymmetric and have
a polar mode number k that can be determined by the number of intersections of the
disturbed and undisturbed shapes, which occur along latitudinal lines. Sectoral k = �

modes have only longitudinal crossings and can be decomposed into k symmetric sectors.
Tesseral modes k /= � have both latitudinal and longitudinal crossings. Lateral � = 1
modes are unique in that their motion is predominantly horizontal or side-to-side within
the plane of the substrate. Here, we note that sectoral modes display primarily horizontal
motions, while zonal modes have strongly vertical motions. Chang et al. (2013) have
introduced an alternative classification scheme based on ‘layers’ n and ‘sectors’ �, with
n = (k − �)/2 + 1, that is useful for identifying drop modes in experiment. For example,
the mode [3, 1] has one sector and two layers, yielding (n, �) = (2, 1). Sectoral modes
have one layer, n = 1, and zonal modes have zero sectors, � = 0.

3.2. Zonal (� = 0) modes

3.2.1. Breathing mode ([0, 0])
The [0, 0] breathing mode is the only mode that exhibits instability λ2 < 0 for both free
and pinned disturbances, with Π = 0 being the most unstable case. For each α, there is a
range of values of Π that gives rise to instability, with the boundary between stability and
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Figure 3. Stability diagram for the [0, 0] mode, plotting equilibrium bubble pressure Π against contact angle
α for free and pinned disturbances, separating stable and unstable regions. Typical instability mode shapes are
inset.

instability defined by λ2
0,0 = 0. Figure 3 plots the stability diagram for the breathing mode

in the α −Π parameter space (with typical instability mode shapes inset). Here, instability
corresponds to bubble collapse. Increasing the equilibrium bubble pressureΠ can stabilize
this collapse. The instability window for the pinned disturbance is smaller than that for
the free disturbance, implying that pinning the contact line (i.e. restricting motion) has a
stabilizing effect (cf. figure 3). This is also seen in vertical liquid bridges (columns) (Vogel
1982; Bostwick & Steen 2010; Benilov & Cummins 2013). The free mode is unstable for
all α (figure 3), whereas the pinned mode is unstable for super-hemispherical α < 90◦ base
states (figure 3). The latter is related to the pressure turning point in the pressure–volume
response curve for a pinned spherical-cap shape (Bostwick & Steen 2015, figure 1c).

Insight into the instability mechanism for the [0, 0] breathing mode can gained by
evaluating the disturbance potential energy F for the mode shape y0,0:

F = Ui + Ug = σlgAlg + σlsAls + σsgAsg − Pg ΔV, (3.3)

where Ui is the interfacial energy,

Ui = σlgAlg + σlsAls + σsgAsg, (3.4)

and Ug is the potential energy of the gas phase, or work done by the gas pressure on the
ambient liquid,

Ug = −Pg ΔV. (3.5)

Given that the spherical cap is an equilibrium surface, the first variation of energy δF =
0, and the second variation δ2F, will provide information about stability: δ2F > 0 for
stability, and δ2F < 0 for instability. The second variation of potential energy (3.3) can be
written in non-dimensional form as

δ2F = −
∫ 1

b

[
((1 − x2)y′)′ + 2y

]
y dx + 2Π

sinα(2 + 3 cosα − cos3 α)

∫ 1

b
y dx

∫ 1

b
y dx,

(3.6)
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Oscillations of a partially wetting bubble

which we can decompose as
Et = E1 + E2, (3.7)

where the interfacial energy is

E1 = −
∫ 1

b

[
((1 − x2)y′)′ + 2y

]
y dx, (3.8)

and the gas pressure energy is

E2 = 2Π
sinα(2 + 3 cosα − cos3 α)

(∫ 1

b
y dx

)2

. (3.9)

Here, E2 is positive definite, and the effect of equilibrium gas pressure Π is stabilizing,
whereas the interfacial energy E1 is destabilizing. The instability lowers energy by
reducing interfacial area, which can be suppressed by a sufficiently high gas pressure Π .

Figure 4 plots the total Et, interfacial E1, and gas E2 energies against contact
angle α, as it depends upon the equilibrium pressure Π . Here, states with Et < 0
are unstable. For pinned disturbances (cf. figure 4a), the super-hemispherical α < 90◦
base states are unstable for a range of Π values provided that Π < 1.34, whereas all
the sub-hemispherical α > 90◦ base states are stable, irrespective of Π . For the free
disturbance (cf. figure 4b), all base states can be unstable provided that Π < 2. For both
pinned and free disturbances, the instability mechanism is the same; energy is lowered
by decreasing interfacial area, and it happens that free disturbances are more efficient at
decreasing this area, i.e. have a larger instability window, as shown in figure 3.

3.2.2. Shape-change zonal modes [k /= 0, 0]
Figure 5(a) plots the zonal frequencies Re(λk,0) against the contact angle α for the limiting
case Π = 0, contrasting the free (F ) and pinned (P) modes. For fixed mode number
[k, 0], the pinned frequencies are always larger than the free frequencies. Increasing Π
is stabilizing (i.e. increases the frequency), as shown in figure 5(b), which plots the [0, 0]
pinned frequency against Π for the hemispherical α = 90◦ base state. This special case
has been investigated previously by Shklyaev & Straube (2008), and our computations
reproduce those results.

Recall that the zonal � = 0 modes are the only modes in which the bubble volume
changes. The partitioning of that excess volume amongst the modes is interesting. Figure 6
plots the oscillation frequency Re(λk,0) against Π for α = 70◦, contrasting free and
pinned disturbances. For each mode, there are a low-frequency plateau region and a
high-frequency plateau region separated by a region where the frequency grows rapidly.
Interestingly, these regions of rapid growth form a singular curve related to the volume
oscillation mode λv0, which for a free spherical bubble was given by Plesset & Prosperetti
(1977) as ω2 = Π − 2. For contact angles α /= 90◦, we can estimate λv0 by using only
one term N = 1 in our expansion (2.27), which by construction should encompass the
volume oscillations of the sessile bubble. This highlights the interaction between the
volume and shape-change modes for the sessile bubble, as shown in figure 7, which plots
the mode shapes and flow fields as these curves are traversed by increasing Π from the
low-frequency plateau through the rapid-growth region into the high-frequency plateau
region. Here, it is clear that volume change occurs within the rapid-growth region, as seen
by comparing the mode shapes for varying Π with fixed [k, 0]. In addition, the mode has
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Figure 4. Energy decomposition for the [0, 0] mode plotting the interfacial energy E1, gas energy E2, and
total energy Et, for (a) pinned and (b) free disturbances, against contact angle α.

changed its spatial character from the low-frequency plateau to the high-frequency plateau
by adding a node or increasing its mode number k. In both plateau regions, volume is
conserved through the bubble oscillation. For example, the [2, 0] mode at Π = 0 has the
expected spatial structure, but at Π = 800 it has the spatial structure of a [4, 0] mode,
despite the fact that it is still the second smallest numerical eigenvalue. That is, there
can be some discrepancy in the classical definitions of modal ordering of (i) numerical
ordering of eigenvalues, or (ii) nodal (zeros) structure of the eigenmodes. Typically, these
definitions are equivalent, but in this case they are not.

3.3. Lateral (� = 1) modes
Figure 8(a) plots the oscillation frequency Re(λk,1) for the lateral modes � = 1 against
the contact angle α, contrasting free (F ) and pinned (P) disturbances. Here all modes are
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Figure 5. Zonal � = 0 modes. (a) Frequency Re(λk,0) against contact angle α forΠ = 0, contrasting free (F )
and pinned (P) disturbances. Here, the [0, 0] free mode is unstable (λ2 < 0) for all α, and the pinned mode for
α < 90◦. (b) Breathing mode [0, 0] frequency λ0,0 for the hemispherical α = 90◦ base state against equilibrium
bubble pressure Π compared with predictions of Shklyaev & Straube (2008).
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Figure 6. Zonal mode frequency Re(λk,0) against equilibrium bubble pressure Π for α = 70◦, contrasting
pinned (P) and free (F ) disturbances. For each k (pinned or free), there are two plateaus separated by an
increasing region where volume change occurs, as related to λv . Here, Im(λ) = 0 except for the range of Π
where the pinned and free [0, 0] modes are unstable.

stable (λ2 > 0) with the exception of the [1, 1] free mode for super-hemispherical α < 90◦
base states. Recall that for � /= 0, there is no effect ofΠ on the frequency spectrum. For the
special case of the hemisphere α = 90◦, the free modes are precisely the Rayleigh–Lamb
modes, as required by symmetry extension, and the [1, 1] mode is a zero-frequency motion
that is related to translational invariance in the horizontal direction, which according to
Noether’s theorem, requires a first integral of motion, equivalently a zero-frequency mode.
Deviations in α from α = 90◦ break this symmetry and result in non-zero frequency. This
is the bubble analogue of the sessile drop ‘walking instability’ predicted by Bostwick &
Steen (2014). Figure 8(b) plots the instability growth rate −Im(λ1,1) in the unstable range
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Figure 7. Variation in mode shape and gradient field (streamlines and velocity potential) with increasing Π
for the [2, 0] free mode with α = 70◦.
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Figure 8. Lateral modes (l = 1). (a) Frequency λk,1 against contact angle α, contrasting free (F ) and pinned
(P) modes, with Im(λ) = 0 except for the unstable [1, 1] free mode with α < 90◦. (b) Instability growth rate
−Im(λ) for the [1, 1] free mode against contact angle α. (c) Typical unstable mode shape for α = 70◦.

α < 90◦, exhibiting a maximal growth rate at α = 52.5◦. A typical instability mode shape
is shown in figure 8(c). The instability mechanism is identical to the walking instability
from Bostwick & Steen (2014, § 7.2.1), where the potential energy of the system is lowered
through reduction in (i) liquid/gas and (ii) solid/gas interfacial areas, resulting in horizontal
centre-of-mass motion. A more thorough illustration can be found in Bostwick & Steen
(2014).

3.4. Azimuthal (� /= 0, 1) modes
Figures 9 and 10 show how the azimuthal modes (� /= 0, 1) break the hemispherical
base state degeneracy for free and pinned disturbances, respectively. Recall that there is
no effect of the equilibrium bubble pressure Π whenever � /= 0. The free modes with
α = 90◦ are precisely theRayleigh–Lamb modes, since these sessile bubble modes can
be extended smoothly to the full bubble by symmetry extension, i.e. reflection. Here,
for fixed polar mode number k, frequencies split lower (higher) for super-hemispherical
α < 90◦ (sub-hemispherical α > 90◦) base states with increasing azimuthal mode number
� (cf. figure 9). The degeneracy centre shifts to higher α for pinned disturbances, as
shown in figure 10. Each curve, irrespective of pinned or free disturbance, increases
monotonically with increasing α because of the higher fluid inertia (volume) associated
with sub-hemispherical α > 90◦ base states, which biases towards lower frequency.
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Figure 9. Oscillation frequency λ for the free modes against contact angle α, as it depends upon azimuthal
mode number �, for polar mode number (a) k = 2, (b) k = 3, (c) k = 4, (d) k = 5, (e) k = 6, and ( f ) k = 7.

For fixed k, the slope of the curve increases with decreasing �, suggesting that the
sectoral modes k = � are less affected by base-state volume, because their motion is
primarily horizontal. In contrast, modes with lower �, i.e. the zonal � = 0 modes, have
predominantly vertical motion and have a stronger effect with α. Frequency splitting is
more prevalent for the free disturbances, as they are less constrained.

4. Concluding remarks

We have analysed the hydrodynamic stability of a sessile bubble, showing how the
frequency spectrum depends upon the wetting properties through the static contact
angle α, equilibrium bubble pressure Π , and contact-line dynamics, for either pinned
or freely moving (free) disturbances. Solutions have been computed by a Rayleigh–Ritz
procedure and yield modes that can defined by the mode number pair [k, �] using an
identification scheme inherited from the spherical harmonics k + � = Z

+
even. Most motions

are oscillatory. However, we do identify two instabilities: the [0, 0] breathing mode
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Figure 10. Oscillation frequency λ for the pinned modes against contact angle α, as it depends upon
azimuthal mode number �, for polar mode number (a) k = 2, (b) k = 3, (c) k = 4, (d) k = 5, (e) k = 6, and
( f ) k = 7.

associated with volume change through gas compressibility, and the [1, 1] mode with
instability mechanism analogous to the walking instability for the sessile drop (Bostwick
& Steen 2014). The instability mechanisms are described and stability diagrams mapped
out in the parameter space. For a free bubble, volume-change and shape-change modes are
decoupled typically, but for a sessile bubble, we show that these modes can interact in a
complex manner. Finally, we show how the degeneracy of the Rayleigh–Lamb spectrum
splits for the azimuthal � /= 0, 1 modes, and how this is related to the symmetry extensions
of the sessile bubble modes.

The [0, 0] breathing mode instability results in bubble collapse, and for the free
disturbance this involves a dynamic receding motion of the contact line. Instability results
because this motion decreases the potential energy of the system. Dynamic contact-line
behaviour is often more complex, and often invokes constitutive laws relating the contact
angle to the contact-line speed, α = g(uCL). One example is the Davis–Hocking model
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α = ΛuCL, where Λ is the contact-line mobility parameter, with limiting cases as the
free Λ = 0 and pinned Λ = ∞ disturbances that we consider here (Davis 1980; Hocking
1987). For finiteΛ, it has been shown that contact-line dissipation occurs even for inviscid
fluids (Bostwick & Steen 2016). In this case, the energy budget would change, and this
would modify the instability properties for the breathing mode.

Finally, we highlight the coupling between the volume-change and shape-change modes
for sessile bubbles, and how this might facilitate preferred motions, as seen in acoustically
enhanced heat transfer in pool boiling (Douglas et al. 2012). Here, acoustic fields induce
shape oscillations in sessile bubbles, which makes bubble detachment from the heated
surface easier, thus improving heat transfer rates. Our linear model does not predict bubble
detachment, but could be extended in this direction. Finally, we note that there have been
numerous recent experimental observations of sessile drop oscillations (Sharp et al. 2011;
Sharp 2012; Chang et al. 2013, 2015), but comparatively few observations of sessile bubble
oscillations, and this should be pursued further to verify the theory proposed here, which
is applicable for bubbles of size r smaller than the capillary length �c = √

σ/ρg, r < �c,
with negligible viscous effects as defined by the Ohnesorge number Oh ≡ ν/

√
σR/ρ � 1.
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