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Corner universality in polygonal hydraulic jumps
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Steady polygonal hydraulic jumps have a complex flow structure and are formed when
a circular jump loses stability through an increase in the downstream liquid height beyond
a critical value. We report the experimental observation of a universal corner shape in
polygonal hydraulic jumps over a wide range of experimental conditions that include the
flow rate, weir geometry, and flow history, as defined by the tip radius of curvature and the
corner angle. The tip radius of curvature is nearly constant over all experimental conditions,
whereas the corner angle weakly depends on gravitational effects. Knowledge of the corner
angle allows one to determine the global jump shape, as defined by a dimensionless
geometry number related to the isoperimetric inequality, thus giving a complete description
of the jump shape.
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Hydraulic jumps are well-known phenomena in classical fluid mechanics, occurring whenever
a flowing liquid layer undergoes an abrupt change in its vertical height, and can be observed over
a large range of length scales, from the microfluidic flows used to sort red and white blood cells
[1] to large-scale turbulent tidal bores [2,3]. Sustained scientific interest in hydraulic jumps can
perhaps be linked to the fact that they are readily observed in everyday life as a “kitchen sink flow”
[4–7]. Of particular note is the observation by Ellegaard et al. [8,9] of beautiful, steady polygonal
hydraulic jumps with associated flow structure including a toroidal roller vortex located along
the circumference of the jump that deforms and eventually breaks as the corner of the polygon
is approached, resulting in a local vortex dipole there. Here the physics of pattern formation is
complex, yet occurs over a small parameter range, and is often hysteretic [10]. Despite these
complexities, we show in this Letter that the corner shape in polygonal hydraulic jumps is universal,
as defined by the nearly constant tip radius of curvature and the corner angle that depends weakly
upon gravitational effects.

The structure of a polygonal hydraulic jump is inherently multiphysics and involves the com-
petition of surface tension, gravitational, inertial, and viscous forces. The connection with the
well-known Plateau-Rayleigh instability of the circular jump base-state has been made by Bush
et al. [11], thus highlighting the role of capillarity. However, the presence of the roller vortex in the
downstream region makes this analogy complicated and few models have been proposed to analyze
its role [12–14]. To further complicate matters is the fact that multiple polygons can be observed
for the same experimental conditions, with this hysteresis highlighting the inherent nonlinearity
in the problem [9,10,15]. Corners are formed where the roller vortex breaks up, giving rise to our
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FIG. 1. (a) Schematic of the experimental setup used by Nichols and Bostwick [10] to generate (b) polyg-
onal hydraulic jumps, shown here with n = 6 sides in perspective and bottom views. (c) The outline of the
jump shape is determined through image processing and is defined by both the microscopic (corner tip) and
macroscopic geometry (perimeter and area).

observation of a universal tip shape that is independent of flow rate, flow history, and weir geometry,
thus suggesting a simpler description of the physics there.

Deformed interfaces often exhibit a local universal structure that is independent of the
global physics governing the entire system that often result from a singularity in the
governing equations and exhibit some degree of self-similarity [16,17]. Universality is defined
by a local shape that remains invariant over large changes in the macroscopic system properties.
Examples include the pinch off of liquid jets [18,19] and the formation of a sharp corner at
a viscous fluid interface when fluid is drained from a bath [20,21], where the corner shape is
regularized by a micron-sized tip curvature determined by a balance between surface tension and
viscous forces only [22,23]. Universality can similarly be found in soft polymeric materials, such
as the triangular-shaped “wetting ridge” which forms at the contact line of a partially-wetting
drop/substrate system and remains invariant for static drops [24], as well as moving droplets [25].

In the case of polygonal hydraulic jumps, the local corner shape is universal but the global jump
shape is not, i.e., the area A, the perimeter P, and the number of corners n change with experimental
parameters. Nevertheless, we find that normalized global geometry, as defined by the geometry
number G ≡ P/

√
A, has a universal feature that can be understood through an analogy with the

shape of two-dimensional bubbles in dry foams. The shape of a bubble in a two-dimensional (2D)
foam is determined by free energy minimization (isoperimetric problem) with boundary conditions
enforced from Plateau’s laws of foams that dictates the angle between adjoining interfaces should
be 120◦, with Graner et al. [26] having computed G against n for this case showing that G → 3.73
as n → ∞. For polygonal hydraulic jumps, our normalized experimental data are strikingly close
to those of 2D bubbles in dry foams with the difference being explained by the observation that
our corner angle deviates slightly from 120◦. This further highlights the role of surface tension in
determining the jump shape and suggests that the entire polygonal jump shape (local and global
geometry) can be determined from the tip geometry through patching.

Experiment. Polygonal hydraulic jumps are made using the experimental setup shown in
Fig. 1(a). Fluid flows through a nozzle of radius a = 0.45 cm at a flow rate of Q = 30–110 mL/s
and vertically impinges upon a circular glass plate of radius rw = 12.7, 15.24, and 17.78 cm, which
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FIG. 2. Overlaid hydraulic jump shapes exhibit a hierarchy of corner universality, as illustrated for (a) fixed
flow rate Q = 55.5 mL/s and weir geometry rw = 12.7 cm and hw = 2.84 mm (n = 5–8); (b) fixed weir
geometry rw = 15.2 cm and hw = 2.84 mm, and varying flow rate Q (n = 3–10); and (c) varying both flow
rate and weir geometry (n = 3–10). The units on the axes are centimeters with corner tips located at the origin
(0,0).

has a weir of height hw = 2.67, 2.84, and 3.12 mm affixed to the outer edge so as to increase the
external fluid height [H in Fig. 1(a)] and create the “free-fall effect.” The fluid spreads radially
outward from the central jet in a rapid, shallow (“supercritical”) layer until it reaches the jump
region, where the fluid height abruptly increases resulting in a hydraulic jump like that shown in
Fig. 1(b). Ethylene glycol was the working fluid with the following material properties: viscosity
ν = 13.7 mm2/s, density ρ = 1.12 g/cm3, and surface tension σ = 44 mN/m. Polygonal hydraulic
jumps are characterized by the number of corners (equivalently, sides) n and the macroscopic
geometry through the area A and the perimeter P [cf. Fig. 1(c)], which are computed using the
image-processing techniques described in Nichols and Bostwick [10]. The jump shape is sensitive
to both the material and experimental parameters, as well as the experimental protocol. We use two
distinct protocols: (i) upscale-downscale and (ii) natural state. For fixed weir geometry hw and rw,
the upscale-downscale protocol involved slowly increasing the flow rate Q in increments of 1 mL/s
and observing the changes in polygonal shape from n → n + 1 until the maximum flow rate was
reached (upscale), after which Q was decreased in increments of 1 mL/s, resulting in n → n − 1
transitions (downscale). This protocol exhibits hysteresis and it is possible to observe shapes with
different n for the same flow rate. The natural state protocol is similar except the jump shape was
destroyed at each flow rate increment and allowed to relax to its preferred state by eliminating
the effect of flow history. More details on the experimental method can be found in Nichols and
Bostwick [10].

Results. Polygonal jumps show a remarkable universality in the corner shape, which we illustrate
in Fig. 2 by overlaying jump shapes and aligning them on a common corner. The choice of which
corner to align was inconsequential due to the high degree of symmetry of each polygonal shape.
We define the different universality classes. Figure 2(a) exhibits the strongest universality obtained
for a fixed flow rate Q and the weir geometry hw and rw showing polygonal jumps with n = 5–8
have the same corner geometry in a region that spans a width of approximately 0.6 cm from the
tip of the corner. Note that these shapes were data mined from both upscale-downscale protocols
and natural state protocols. Figure 2(b) shows the corner universality for fixed weir geometry with
the natural state protocol, over a range of flow rates for 41 different polygons with n = 3–10 sides.
In this case, the similarity tends to persist for up to a width of 0.4 cm from the tip of the corner.
Here, the higher-order polygons, i.e., those with n � 6, show much stronger universality compared
to lower-order polygons. Finally, Fig. 2(c) plots all of our data from the natural state protocol with
variations in both the flow rate and the weir geometry, for a total of 335 jump shapes with n = 3–10
sides. For this large data set, the corner universality is slightly reduced from the previous cases, as
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FIG. 3. Universal corner shape is defined by the radius of curvature rc and the corner angle φ, as defined by
the intersection of the tangent lines along the straight edges of the corner, as shown here for the weir geometry
rw = 12.7 cm and hw = 2.84 mm with best fits rc = 3.7 mm and φ = 114◦.

might be expected given the larger range of experimental parameters, but is still clearly apparent.
We quantify this corner universality through the tip radius of curvature rc and the corner angle φ, as
shown in Fig. 3. Here rc essentially defines the local corner geometry and φ the global geometry of
the polygonal jump; the connection between them we discuss later. Figure 3 shows a case of fixed
weir geometry and varying flow rate for 29 shapes with n = 3–10, where rc is nearly constant with
a best fit of rc = 3.7 mm and the corner angle is φ = 114 ± 2◦. We find that rc = 3.5 ± 0.2 mm
over our entire data set. Hysteresis has some effect on rc for lower-order polygons n � 4 which
can become strongly curved and deviate from this universal value. In contrast to the tip radius of
curvature, the corner angle φ defines the intermediate (or matching) region between the tip and
the global jump shape, and we might expect it to depend weakly on the experimental parameters.
This is summarized in Table I. For fixed weir geometry and variation in flow rate, φ remains nearly
constant with a deviation of 4◦ between protocols at worst and indistinguishable at best. For a fixed
weir radius rw, increasing the weir height hw tends to decrease the corner angle φ. As increases in the

TABLE I. Corner angle φ[◦], as it depends upon experimental parameters rw and hw and the protocol
(natural, upscale, and downscale), shown as an average value with a maximum deviation of ±3◦ over each
respective data set.

rw (cm) hw (cm) Natural Upscale Downscale

12.7 2.67 114 114 114
12.7 2.84 114 114 114
12.7 3.17 110 114 113
15.24 2.67 118 118 118
15.24 2.84 118 118 118
15.24 3.17 110 111 111
17.78 2.67 118 120 119
17.78 2.84 118 119 118
17.78 3.17 110 113 110
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FIG. 4. Analogy between macroscopic geometry of polygonal jumps and bubbles in 2D foams by plotting
the geometry number G = P/

√
A against the side number n for polygonal jumps (circles, all data) and 2D

bubbles (triangles) [26]. Error bars represent the 95% confidence interval for average over all different data
sets.

weir height lead to increases in the downstream jump height, this indicates that gravitational effects
may play a role in selection of the corner angle. Given the universality of the corner shape defined
by rc and φ, one can further speculate that the global jump geometry, as defined by the area A and
the perimeter P, also exhibits some universality. The global shape geometry can be normalized into
a dimensionless geometry number G ≡ P/

√
A related to the isoperimetric inequality. Figure 4 plots

the geometry number G against n for all of our data which exhibit a decreasing trend that plateaus
to G ≈ 3.73 for large n. The connection to the isoperimetric problem suggests an analogy between
the polygonal hydraulic jump shapes and the theoretical shapes of two-dimensional bubbles in dry
foams, where each bubble shares its corners with neighboring bubbles [27]. It is well-known from
Plateau’s law that the bubble edges of a dry foam meet at an angle of 120◦ [28] and that the interfaces
are circular arcs. With these rules Graner et al. [26] computed the bubble shapes for the corner
angle 120◦, as it depends upon the number of corners n, and we compare the normalized geometry
G with polygonal hydraulic jumps in Fig. 4. Here we note the qualitative trends are similar but the
value of G for polygonal jumps is always larger than that for 2D bubbles, although they approach
similar values for large n (G ≈ 3.73 for foams). This difference is presumably due to the respective
corner angle that is enforced. The corner angles φ for polygonal jumps are always lower than the
Plateau angle φ = 120◦ and this difference can be as large as 10◦ (cf. Table I). It is, therefore,
reasonable to expect some difference in the respective geometry numbers G, especially whenever
the number of corners is small. For example, G = 3.82 for n = 3 polygons, whereas G = 3.74
for n = 3 bubbles. The similarity in G increases for higher-order polygons, e.g., n � 8, and we
note this is also within the range of n which shows the strongest corner universality (cf. Fig. 2).
This global feature also appears in mode number n selection by defining the instability wavelength
λ = P/nH , which assumes a constant value at large n (cf. Nichols and Bostwick [10, Fig. 10]).
This is similar to the Plateau-Rayleigh instability, suggesting the formation of polygonal jumps is a
primarily capillary-driven instability, at least for cases with n � 6 where the sides are highly curved.

Discussion. In this work we have experimentally revealed a universality in the corner shape of
polygonal hydraulic jumps over a large range of parameters, as defined by the radius of curvature
rc = 3.5 ± 0.2 mm and the corner angle φ = 115 ± 5◦. There is a matching region that connects
the local corner geometry (inner region) to the global polygonal geometry (outer region), which is
largely determined by the geometry number G related to the isoperimetric inequality that enables
us to reconstruct the entire polygonal jump shape.

Polygonal jumps are formed when the downstream toroidal roller vortex undergoes a varicose
instability that is too large to sustain a uniform toroidal shape and destabilizes with corners
appearing in the region where vortex breakup occurs [12,29]. We find that variation in the upstream
flow velocity does not affect the corner geometry, even though it has a significant effect on the
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geometry of circular hydraulic jumps [6]. The process is qualitatively similar to Plateau-Rayleigh
breakup of liquid toroids which is known to give rise to a self-similar shape near the pinchoff region
[30–33]. Our observations also show a self-similar corner region, although without collapse as with
a fluid torus or vortex ring [34]. In a somewhat related study, universality has been observed in the
corner shape of solitonlike waves on the surface of a Leidenfrost-levitated toroid with the curvature
depending upon the mode number n (Perrard et al. [35, Fig. 4c]), which is markedly different from
our observations where the curvature is independent of n. Free surface cusp singularities have
been observed in low Reynolds number flows and are dominated by a balance between surface
tension and viscous forces [22,23,36]. The presence of a vortex dipole is often associated with
such flows where the convergence of two vortices corotating at a sufficiently high speed generates
the cusp and the same is true for polygonal hydraulic jumps, as clearly shown in Bush et al. [11,
Fig. 5]. Jeong and Moffatt [22] have used a theoretical analysis to show that the tip curvature on a
free surface cusp scales logarithmically with the capillary number due to the vortices. Similarly,
in polygonal hydraulic jumps, vortex dipoles appear spontaneously near the corners where the
toroidal roller breaks. The hydraulic jumps we report here are distinguished by a large Reynolds
number Re ≡ Q/νa = 450–1350 and a small Ohnesorge number Oh ≡ ν/

√
σh/ρ = 0.028–0.031,

indicating small viscous effects and nontrivial inertial effects from this vastly different flow regime
[37]. We note Bush et al. [11, Fig. 6] were able to suppress the corner shape through the addition
of surfactant into the flow, further highlighting the prominent role of surface tension in determining
the corner shape. The Bond number for our system Bo ≡ ρg(�h)2/σ = 7.5–10.5 is order one such
that the surface tension and gravitational forces are of similar magnitude and this balance defines
the capillary length �c = √

σ/ρg = 2 mm, which is of similar size to rc.
We can give a very rough estimate of the size of rc by considering an extension of the Rayleigh-

Bélanger jump condition treating the jump as a stationary shock and equating flux and momentum
flux across the shock. The momentum flux density is

∫ h
0 [p(r, z) + ρu2(r, z)] dz, with the pressure

p(r, z) and the flow velocity u(r, z), and the extended Rayleigh-Bélanger condition is obtained by
assuming the pressure is the sum of the hydrostatic pressure pg = ρg[h(r) − z] and the capillary
pressure from the curved outer surface pσ ≈ −σ/rc, such that p(r, z) = pg + pσ . If we replace the

velocity u(r, z) by its mean value v(r) = 1
h(r)

∫ h(r)
0 u(r, z)dz, we get

1

2
ρgh2

1 + ρh1v
2
1 = 1

2
ρgh2

2 + ρh2v
2
2 − σh2

rc
, (1)

which is the standard Rayleigh-Bélanger condition when σ = 0, with h1 being the upstream height,
h2 the downstream height, v1 the upstream mean velocity, and v2 the downstream mean velocity,
respectively. The change in the fluid height can be defined as �h ≡ h2 − h1. Note this is different
from the jump condition with surface tension for a circular hydraulic jump derived by Bush and
Aristoff [38]. Since h1 � h2 ≈ �h we can approximate Eq. (1) as

�h

rc
= 1

2

(
�h

lc

)2

− ρ

σ

(
h1v

2
1 − h2v

2
2

) = 1

2
Bo − (We1 − We2) (2)

where We = ρhv2

σ
is the local Weber number. The inner flow is axially symmetric such that

We1 = ρ

σ

h1Q2

(2πrJh1)2
= ρQ2

(2πrJ )2σh1
, (3)

where r j is the radius of the jump in the corner. For example, when Q ≈ 50 mL/s, h1 ≈ 0.5 mm,
and r j ≈ 2 cm, then We1 ≈ 8. If the outer flow retained the axial symmetry, we would have a
similar expression for We2; however, the flow on the outer side is far from axially symmetric and
is strongly concentrated near the corners in “jets” as clearly shown in Fig. 5, reproduced from
Ref. [12]. Accordingly, we do not know how to give an accurate value of rc from Eq. (2), but we
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FIG. 5. Hydraulic triangle n = 3 on a glass plate seen from below, reproduced with permission from
Ref. [12], with the outgoing jets at the corners clearly shown.

can provide a lower bound on rc (since We2 < We1) by neglecting the kinetic terms:

rc >
2�h

Bo
= 2l2

c

�h
≈ 0.58lc − 0.74lc. (4)

Including the kinetic terms could substantially increase this estimate, but why rc determined in this
way would be independent of flow rate remains a mystery. Here, presumably, the viscosity plays a
large role in determining the structure of the vortices meeting at the corner, and thereby the strength
of the jets. In fact, the Reynolds number in the jump region ReJ ≈ v2�h/ν ≈ Q/(2πrJν) is around
50, suggesting we have a complex flow between the solid substrate and strongly deformed surface,
where gravity, inertia, viscosity, and surface tension are all important.

Lastly, we note the strong analogy made between the theory of 2D bubble shapes in foams
and the global geometry of polygonal jumps and how this is intimately related to knowledge of
the corner shape. This is important because whenever the corner shape is fixed, the rest of the
jump structure is determined through simple geometry. Therefore, understanding of the physical
mechanism underlying the corner shape should provide key insights about the complex physics of
polygonal hydraulic jump formation. Our experiments can be viewed as simple kitchen sink flows,
yet these hydraulic jumps could potentially be used as a test bed for analyzing similar large-scale
systems, i.e., gas dynamic shock waves [39] and open channel flows [40], or can simply be used as
an educational tool to introduce and describe universality and singularities in a macroscopic system.

Acknowledgments. The idea of the corner universality and the use of the Geometry number G
originated many years ago, in the Ph.D. thesis [41] by one of us (J.L.H.).
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