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ABSTRACT

Recent experiments by Shao et al. [“Surface wave pattern formation in a cylindrical container,” J. Fluid Mech. 915, A19 (2021)] have revealed
complex wave dynamics on the surface of a liquid bath in a vertically vibrated cylindrical container that are related to the presence of a
meniscus on the container sidewall. We develop a corresponding theoretical model for this system by detuning the driving acceleration of the
container, which results in an inhomogeneous Mathieu equation that governs the wave dynamics whose spatial structure is defined by the
mode number pair ðn;mÞ, with n and m the radial and azimuthal mode numbers, respectively. Asymmetric m 6¼ 0 modes are unaffected by
the detuning parameter, which is related to the meniscus shape and satisfy a homogeneous Mathieu equation with the shape of the instability
tongues computed by the Floquet theory. The Poincar�e–Lindstedt method is used to compute the instability tongues for the axisymmetric
m ¼ 0 modes, which have a lower threshold acceleration and larger bandwidth that depend upon the detuning parameter. Our model results
explicitly show how the shape of the meniscus and spatial structure of the wave determine the temporal response and are in good agreement
with prior experimental observations for both pure modes and mixed modes.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0235421

I. INTRODUCTION

Faraday waves have been synonymous with pattern formation
since their discovery by Faraday2 and have been used in application to
redistribute particles3 and surfactants4 on thin liquid films, for drop
atomization,5–7 and for the assembly of multiple cell types or organoids
into highly complex in vitro tissues,8 to name a few. As summarized by
Benjamin and Ursell,9 there was some dispute in the literature on the
temporal response of the interfacial waves formed at the interface of a
vertically vibrated liquid bath; Faraday2 observed that these waves
oscillated at a frequency f that was one half of the driving frequency fd ,
f ¼ fd=2, or exhibited a subharmonic response, which was later con-
firmed by Rayleigh,10 whereas Matthiessen11,12 reported a harmonic
response f ¼ fd . This dispute was resolved by the theoretical analysis
of Benjamin and Ursell,9 who showed that Faraday waves obey a
Mathieu equation, which can exhibit both a subharmonic and har-
monic response, as well as superharmonic response. Recent experi-
ments by Shao et al.1 in a cylindrical container have shown that the
temporal response of the wave is largely determined by its spatial
structure, as demonstrated by the observation of (i) harmonic axisym-
metric edge waves,13 (ii) subharmonic asymmetric waves, and (iii)
mixed modes which consist of simultaneous excitation of a harmonic

axisymmetric mode with a subharmonic asymmetric mode at a single
driving frequency, as shown in Fig. 1. Shao et al.14 have shown that the
geometry of the meniscus formed at the container sidewall is critical in
determining the temporal wave response; harmonic edge waves are
observed at small driving amplitudes with a non-trivial meniscus, but
are not observed for a perfectly flat interface with no meniscus. In this
paper, we develop a theoretical model of Faraday waves in a cylindrical
container that recovers the complex experimental observations of Shao
et al.1 described above. This is accomplished by detuning the driving
acceleration, which we show is related to the shape of the meniscus.

In general, theoretical analysis of Faraday waves leads to a gener-
alized Mathieu equation

€y þ c _y þ ðP � 2AQ cos fdtÞy ¼ 0; (1)

where P, Q are real-valued parameters, A is the driving amplitude, c is
the damping coefficient, and fd is the driving frequency, as seen in the
analysis of Benjamin and Ursell9 for an inviscid liquid bath, which was
later extended by Kumar15,16 to include viscous effects showing that
the resulting system did not give rise to a simple damped Mathieu
equation and that this model showed better agreement with the experi-
ments of Edwards and Fauve17 than the phenomenological-based
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damped Mathieu equation. We note that it is challenging to adapt this
full theory to the case of a non-trivial meniscus with pinned contact-
line. Both of these studies assumed a free contact line condition and
resulted in uncoupled equations, whereas Kidambi18 showed that for
an inviscid liquid in a brimful cylinder with pinned contact line condi-
tion leads to a coupled Mathieu equation and the phenomena of com-
bination resonance. Typically, the Floquet theory is invoked to solve
(1) and gives rise to the instability tongues shown in Fig. 2, which plots
the driving amplitude A against the normalized driving frequency
fd=f . In the absence of damping c ¼ 0, the subharmonic (fd=f ¼ 2)
and harmonic (fd=f ¼ 1) tongues emanate from the frequency axis
and have threshold acceleration A ¼ 0 at resonance. For parameters
(A; fd) inside the instability tongues, one then observe dynamics with
that respective temporal response. Weak damping c ¼ 0:1 leads to a
non-trivial threshold acceleration A 6¼ 0 that is larger for the harmonic
tongue than the subharmonic tongue, which is perhaps the reason why
a subharmonic response is more readily observed in experiment, in
addition to having a larger bandwidth. However, there are exceptions
including the case of thin viscous fluid layers,16,19 and the previously
discussed axisymmetric modes in a cylindrical container.1 We note

that a similar observation occurs in sessile drops, where the axisym-
metric modes also exhibit a harmonic response.20

In experiment, one typically attempts to enforce a prescribed con-
dition at the contact line, either (i) pinned or (ii) free. To create a
pinned contact line requires the liquid to completely fill the container
in the “brimful” condition resulting in a contact line that is affixed to
the sharp container edge.1,21 This is a standard approach. However, to
create a free contact line requires either the use of high concentrations
of soluble surfactants22 or two or more carefully chosen immiscible
liquids.23 In both cases, the presence of a meniscus can induce har-
monic edge waves unless the interface is perfectly, as previously dis-
cussed.14 For large containers (relative to the wavelength)24 or highly
viscous fluids,25 the edge waves are quickly damped out and do not
affect the Faraday wave. In contrast, for small containers the surface
wave conforms to the container geometry leading to the coupling of
edge waves with parametric waves.21 Douady21 suggested that the
parametric waves are coupled to the edge waves at second order in a
weakly nonlinear analysis, which was recently performed by
Bongarzone et al.26 to predict the onset of viscous Faraday waves in
both brimful and nearly brimful cylindrical containers. Bongzarone
et al.26 assumes the additional forcing term appears at second order
and, therefore, couples with the parametric waves at third order in a
weakly nonlinear analysis focused on the onset of viscous subharmonic
standing waves. Our approach is different in that we introduce menis-
cus effects by “detuning” the driving acceleration, which are readily
incorporated into a linear theory, to explain the onset of viscous har-
monic waves. This leads to an inhomogeneous Mathieu equation,

€y þ c _y þ ðP � 2AQ cos fdtÞy ¼ F cos fdt; (2)

for the axisymmetric modes, where F is the amplitude of periodic forc-
ing, as suggested by Batson et al.,23,27 that is distinguished by an addi-
tional linear forcing term on the right hand side. For asymmetric
modes, the governing equation reduces to the standard homogeneous
Mathieu equation (1). Floquet theory is appropriate for homogeneous
systems but may not work for inhomogeneous systems, and, to our
knowledge, no one has analyzed the coupled inhomogeneous Mathieu
equation, with the exception of Younesian et al.28 who suggests a mul-
tiple timescale or Poincar�e–Lindstedt method. Here, we compute the
shape of the instability tongues using the Poincar�e–Lindstedt method.

Damping is important, as this affects the threshold acceleration
in Faraday waves. Here, damping manifests itself through bulk viscous
dissipation, dissipation in the Stokes boundary layer at the container

FIG. 1. Experimentally observed modes of Shao et al.1 including (a) harmonic axisymmetric mode, (b) subharmonic asymmetric mode, and (d) and (e) mixed mode (right)
which corresponds to an axisymmetric harmonic mode (c) that mixes with a subharmonic asymmetric mode (d) and (e) upon increasing the driving amplitude (left to right).
Reproduced with permission from Shao et al., J. Fluid Mech. 915, A19 (2021). Copyright 2021 Cambridge University Press.

FIG. 2. Instability tongues of the Mathieu equation plotting the driving amplitude A
against normalized driving frequency fd=f contrasting the undamped c ¼ 0 case
with small damping c ¼ 0:1.
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boundary, and contact line dissipation, each of which has been studied.
Henderson and Miles29 introduced a first order approximation for
damping in the Stokes boundary layer and the bulk liquid, which was
later extended to higher orders by Martel et al.,30 and considered in a
more rigorous way by Muller et al.19 A dynamic contact line can
induce dissipation,31,32 except in the limiting cases of a pinned contact
line and free contact line. Kidambi33 considers the moving contact line
case with a meniscus. Here, we consider both free and pinned contact
line conditions with a meniscus and introduce linear damping through
the viscous potential flow approximation34 for bulk viscous dissipation,
which we feel is a reasonable approximation as our focus is on the cou-
pling between the meniscus wave and parametric wave.

Finally, we note that there is a large volume of literature devoted
to complexity in Faraday waves including the experimental observa-
tion that two modes, which share nearly the same frequency may inter-
act chaotically35–37 and quasi-patterns that result when there are
multiple driving frequencies in the system.17,38–40 The complexity we
are focused on is the relationship between the meniscus and the spatio-
temporal response of the surface wave for a system with a single driv-
ing frequency.

We begin this paper by describing our mathematical model of sur-
face waves in a vertically vibrated cylindrical container, which incorpo-
rates force detuning that we show is related to the shape of the meniscus
and gives rise to a coupled inhomogeneous Mathieu equation. Our anal-
ysis explicitly shows how the spatial wave structure and meniscus shape
enter the governing equation, allowing us to very easily show that our
model recovers essential features of prior experimental results. We then
compute the shape of the instability tongues using (i) standard Floquet
theory for the homogeneous case and (ii) the Poincare–Lindstedt
method for the inhomogeneous case, showing how it depends upon the
relevant dimensionless parameters in the problem. We focus on relating
our theoretical predictions to the experimental observations described
above to both validate our model and better understand the associated
physics. The agreement in general is good.

II. MATHEMATICAL FORMULATION

Consider a circular cylinder of radius R filled with a liquid of
given volume V that is bound by a static free surface z ¼ gsðrÞ,
endowed with a surface tension r, that forms a static contact angle h0

with the container sidewall, as shown in Fig. 3. Here, we consider the
large Bond number Bo ¼ qgR2=r � 100 regime, with q the density,
and g the gravitational acceleration. The shape of the static interface
gsðrÞ for large Bond number Bo � 100 is described in Ref. 41, which is
given by

gsðrÞ ¼ nd
5
2
expðr=dÞ
ð2pÞ1=2

1þ 1
2
ð1� rÞ þ d

8
þ Oðd2Þ

� �
; (3a)

where

d ¼ Bo�1=2; n ¼ e�1=dd�
3
2k0ð1þ dk1 þ oðdÞÞ; (3b)

with

k0 ¼ 4ð2pÞ1
2 tan

1
4
w1 exp �2 1� cos

1
2
w1

� �� �
;

k1 ¼ 35
24

� cos
1
2
w1 �

2
3
sin 2 1

2
w1 �

1
6

1þ cos
1
2
w1

� �� ��1 (3c)

and w1 ¼ 1
2p� h0. We note that in the large Bond number limit, the

interface is essentially flat except near the contact-line region where a
meniscus is formed. The liquid depth h is measured from the bottom
of the cylinder to the static contact line. The container is subjected to a
vertical periodic acceleration att along the z axis as defined in a cylin-
drical coordinate system (r; h; z). This induces an interface disturbance
gðr; h; tÞ of size e and corresponding free surface flow that is described
by a velocity field Uðr; z; h; tÞ and pressure field Pðr; z; h; tÞ that sat-
isfy the continuity and Euler equations,

$ � U ¼ 0; (4a)

q
@

@t
þ ðU � $Þ

� �
U ¼ �$P � qðg � attÞez : (4b)

At the free surface, the interface shape g is coupled to the flow field
through the kinematic condition

@g
@t

þ U � rg ¼ U � n (5)

and Young–Laplace equation

FIG. 3. Definition sketch in (a) 2D planar and (b) 3D perspective views.
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P=r ¼ 2H; (6)

which relates the pressure jump across the interface to the mean curva-
ture H there. Finally, a zero velocity condition is applied on the solid
container boundaries

U ¼ 0jr¼R;z¼gsðRÞ�h: (7)

A. Detuning of the driving force

The functional form of the forcing term is critical in determining
the temporal response of the liquid. Here, we assume
att ¼ g cosðxtÞA=R, where A is the forcing amplitude, and introduce
a novel definition of the dimensionless forcing amplitude

v ¼ A=R ¼ v0 þ ev1 þ Oðe2Þ (8)

with v0 the driving amplitude and v1 a detuning parameter. We will
show that the effect of the detuning parameter is to cause an excess
pressure at first order in our perturbation analysis, which is similar to
that proposed by Maksymov et al.42 to account for a meniscus on a
pancake-shaped drop. The idea is that pressure on the interface due to
the driving force qatt should be related to the shape of the meniscus in
a manner that is to be determined. Here, v1 can be treated either as a
fitting parameter. The detuning approach is typical in nonlinear vibra-
tions, where one often detunes the frequency [cf. Rand, Ref. 43, Eq.
(243)] to, e.g., find the transition curves of the Mathieu equation.
However, we take a different approach by detuning the forcing ampli-
tude for the reasons mentioned above, which leads to the detuning
parameter v1.

B. Linearized equations

We introduce the ad hoc base-state for Eqs. (4)–(7) as

Û ¼ 0; P̂ðz; tÞ ¼ �qgð1� v0 cosxtÞz þ CðtÞ; (9)

where CðtÞ is independent of the spatial variable. We perform a linear
stability analysis about this base-state by decomposing the velocity and
pressure fields as

U ¼ Û þ eu ¼ e$/; P ¼ P̂ þ ep; (10)

where we have assumed an irrotational flow described by the velocity
potential /. Substituting (10) into (4) and collecting the OðeÞ terms
gives

$2/ ¼ 0; (11a)

p ¼ �q
@/
@t

þ v1qgz cosxt: (11b)

Similarly, the kinematic condition (5) reduces to

@/
@z

¼ @g
@t

þ @/
@r

dgsðrÞ
dr

(12)

and the no-penetration condition (7) reduces to

@/
@r

����
r¼R

¼ 0;
@/
@z

����
z¼gsðRÞ�h

¼ 0: (13)

The Young–Laplace equation (6) can be written as

Pjz¼gsðrÞþeg � 2l
@2/
@z2

� P̂jz¼gsðrÞ þ epjz¼gsðrÞ

þ eg
@P̂
@z

� �����
z¼gsðrÞ

� 2l
@2/
@z2

¼ rð$ � nÞz¼gsþeg (14)

with P̂jz¼gsðrÞ ¼rð$ �nÞz¼gs
and pjz¼gsðrÞ ¼�q@/

@t þqgv1 cosxtgsðrÞ.
Here, we have applied viscous potential flow34 to approximate the
bulk viscous dissipation and introduce a linear damping term into
the problem. We note that other sources of damping including the
viscous boundary layer at the solid substrate, dissipation associated
with a moving contact line, and the viscous correction of the viscous
potential flow theory due to the solenoidal component of the veloc-
ity,44 all of which would similarly introduce linear damping terms
that could be combined into a lumped parameter model of linear
damping. We note that viscous effects due to vorticity are often con-
fined to a boundary layer and are often smaller than those due to
irrotational flow,45 and the dissipation near the bottom of the con-
tainer is negligible especially when the depth of the container is large
enough.46,47 Given that our focus is not on the energy budget and
differentiating the various forms of dissipation from one another,
the viscous potential flow approximation is a reasonable one.

C. Reduced equations

Dimensionless variables,

r� ¼ r=R; z� ¼ z=R; h� ¼ h=R; t� ¼ tffiffiffiffiffiffiffiffi
R=g

p ; /� ¼ /ffiffiffiffiffiffiffiffi
R3g

p
(15)

and dimensionless numbers

Bo ¼ qgR2

r
; Ga ¼ gq2R3

l2
(16)

are introduced, where Bo is the Bond number and Ga is the Galilei
number. Normal modes

g ¼ g�ðr; tÞeimh; / ¼ /�ðr; z; tÞeimh (17)

are applied with m the azimuthal mode number. Herein, we drop the
� and refer to dimensionless quantities. A standard manipulation of
the field equations in which the problem is mapped to the boundary
(i.e., boundary integral approach48,49) results in the following govern-
ing equation:

@/
@t

þ 2Ga�
1
2
@2/
@z2

� 1
Bo

k g½ � þ ð1� v0 cosxtÞg
¼ d0;mv1gsðrÞ cosxt; (18)

where

k g½ � ¼ NðrÞ @
2g

@r2
þ qðrÞ @g

@r
�m2wðrÞ 1

r2
g (19)

with
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NðrÞ ¼ 1

ð1þ g02s Þ3=2
; qðrÞ ¼ 1þ 3g02s

rð1þ g02s Þ3=2
� 3g0sks
ð1þ g02s Þ

;

wðrÞ ¼ 1

ð1þ g02s Þ1=2
; ks ¼ g00s þ g0sð1þ g02s Þ=r

ð1þ g02s Þ3=2
:

(20)

Here, d0;m is the Kronecker delta with d0;0 ¼ 1, d0;m6¼0 ¼ 0, and 0 indi-
cates d=dr. The most important thing to note here is that the force
detuning effect is trivial for a perfectly flat interface gs ¼ 0.

Equation (18) is augmented with a contact line boundary condi-
tion, which we assume to be either pinned or free to move,

gjr¼1 ¼ 0; Pinned condition;

@g
@r

����
r¼1

¼ 0; Free condition;
(21)

and an integral condition ð1
0
rgðr; tÞdr ¼ 0 (22)

necessary to ensure volume conservation for the axisymmetric m ¼ 0
modes. Note that the asymmetric modes m 6¼ 0 naturally satisfy vol-
ume conservation.

D. Derivation of inhomogeneous Mathieu equation

We seek a solution (g;/) to the governing equations (12), (13),
(18), (21), and (22) in the form

gðr; tÞ ¼
X1
n¼1

anðtÞVm
n ðrÞ;

/ðr; z; tÞ ¼
X1
n¼1

bnðtÞ coshkmnðz þ h� gsð1ÞÞ
sinhkmnh

JmðkmnrÞ;
(23)

where kmn is the nth zero of J 0mðkÞ as required to satisfy the no-
penetration condition at the container sidewall r ¼ 1 (13). Here, Vm

n are
a set of orthonormal basis functions chosen to satisfy the contact line
(21) and integral (22) conditions. For the free contact line condition,

Vm
n ðrÞ ¼ JmðkmnrÞ; (24)

or a set of Bessel functions. The pinned contact line condition is not as
straightforward as it is not compatible with the no-penetration condi-
tion on the lateral support. This can be accounted for by defining a set
of basis functions that satisfy the pinned contact line condition,

Smn ðrÞ ¼ JmðkmnrÞ � JmðkmnÞ
Jmðkm1Þ Jmðkm1rÞ; n ¼ 2; 3;…N; (25)

and applying the Gram–Schmidt procedure to deliver an orthonormal
set of basis functions Vm

n ðrÞ, where n ¼ 1; 2; 3;…N . This approach
has been applied to similar problems by Bostwick and Steen50 and
Wilson et al.51

Substituting (23) into (12) and (18) gives

X1
n¼1

dan
dt

Vm
n ðrÞ � bnkmn

sinhkmnðgsðrÞ þ h� gsð1ÞÞ
sinhkmnh

JmðkmnrÞ
�

þ bng
0
sðrÞ

coshkmnðgsðrÞ þ h� gsð1ÞÞ
sinhkmnh

dJmðkmnrÞ
dr

�
¼ 0; (26a)

X1
n¼1

dbn
dt

coshkmnðgsðrÞ þ h� gsð1ÞÞ
sinhkmnh

JmðkmnrÞ
�

þ 2Ga�
1
2bnk

2
mn

coshkmnðgsðrÞ þ h� gsð1ÞÞ
sinhkmnh

JmðkmnrÞ

þ anð1� v0 cosxtÞVm
n ðrÞ �

1
Bo

ank
� Vm

n ðrÞ

 ��

¼ d0;mv1 cosxtgsðrÞ; (26b)

respectively.
Projecting (26a) onto the function space fVm

‘ ðrÞg; ‘ ¼ 1; 2;…N ,
via the inner product hf ; g >¼ Ð 10 rf ðrÞgðrÞdr, we obtain

bn ¼
XN
‘¼1

bn‘
da‘
dt

(27)

with

bn‘ ¼
ð1
0
r ðkmn

sinhkmnðgsðrÞ þ h� gsð1ÞÞ
sinhkmnh

JmðkmnrÞ
� 

� g0sðrÞ
coshkmnðgsðrÞ þ h� gsð1ÞÞ

sinhkmnh
dJmðkmnrÞ

dr

�
Vm
‘ ðrÞdr

!�1

:

(28)

Similarly, we project (26b) onto fVm
p ðrÞg; p ¼ 1; 2;…N , and use (27)

to obtain a system of N coupled second-order ODEs

XN
n¼1

cpn
XN
‘¼1

bn‘
d2a‘
dt2

þ 2Ga
�
1
2
XN
n¼1

Kpn

XN
‘¼1

bn‘
da‘
dt

þ apð1� v0 cosxtÞ �
XN
n¼1

Hpnan

¼ d0;mv1ŝp cosxt; p ¼ 1; 2;…;N; (29)

with

cpn ¼
ð1
0
r
coshkmnðgsðrÞ þ h� gsð1ÞÞ

sinhkmnh
JmðkmnrÞVm

p ðrÞdr; (30a)

Kpn ¼
ð1
0
rk2mn

coshkmnðgsðrÞ þ h� gsð1ÞÞ
sinhkmnh

JmðkmnrÞVm
p ðrÞdr;

(30b)

Hpn ¼ 1
Bo

ð1
0
rk Vm

n ðrÞ

 �

Vm
p ðrÞdr; (30c)

ŝp ¼
ð1
0
rgsðrÞVm

p ðrÞdr: (30d)

Equation (29) can be written in a more compact matrix form

A
d2y
dt2

þ 2Ga�
1
2B̂

dy
dt

þ ðP̂ � 2Q̂ cosxtÞy ¼ d0;mv1ŝ cosxt; (31)

where y ¼ ða1; a2;…; aNÞ is a coefficient vector and the components
of the matrices A, B̂, P̂ and Q̂ are given by
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Aij ¼
XN
‘¼1

ci‘b‘j; B̂ij ¼
XN
‘¼1

Ki‘b‘j;

P̂ ij ¼ �Hij þ
1; if i ¼ j:

0; if i 6¼ j:
; Q̂ij ¼

v0=2; if i ¼ j:

0; if i 6¼ j:

(( (32)

III. SOLUTION METHOD

Equation (31) is readily recognized as an inhomogeneous
Mathieu equation and before proceeding further with the analysis it
will be instructive to discuss its structure. Note that the right-hand side
of Eq. (31) vanishes in the following limiting cases; (1) for asymmetric
m 6¼ 0 modes and (2) for a flat meniscus gs ¼ 0, equivalently s ¼ 0,
reducing the problem to a homogeneous Mathieu equation that we
will solve using the Floquet theory in the standard way. For the special
case of the axisymmetric m ¼ 0 modes with a non-trivial meniscus
gs 6¼ 0, the resulting equation is an inhomogeneous Mathieu equation,
which we will solve using a perturbation method.

To facilitate a solution for both of our analytical methods, we
rescale (31) by defining T ¼ xt=2, B ¼ 2A�1B̂, P ¼ 4A�1P̂ ,

Q ¼ 4A�1Q̂
v0

, s ¼ 4A�1ŝ, which gives

x2 d
2y

dT2
þ 2xGa�

1
2B

dy
dT

þ ðP � 2v0Q cos 2TÞy
¼ d0;mv1s cos 2T: (33)

A. Floquet theory

The standard way to apply the Floquet theory is to compute the
Floquet multipliers to determine the stability using the technique of
mapping at a period52 or Hill’s infinite determinant method.53 Our
interest is in the shape of the instability tongues and we follow the
method suggested by Kumar et al.15 by fixing the values of the Floquet
exponent to trace the stability boundaries for both harmonic and sub-
harmonic tongues. In general, this is a much more computational effi-
cient method.

We begin by seeking a solution to the homogeneous Mathieu
equation, i.e., Eq. (33) with right-hand side zero, in the following form:

yðTÞ ¼ efT
XL
l¼�L

nle
i2lT

 !
(34)

with nl a vector with components nnl , n ¼ 1;…N: Substituting (34)
into (33) gives

Xl¼L

l¼�L

x2ðfþ i2lÞ2nnl þ 2xGa�
1
2ðfþ i2lÞ

XN
j¼1

ðBnjÞnjl

0
@

þ
XN
j¼1

ðPnj � 2v0Qnj cos 2TÞnjl
!

¼ 0:

Since the range of v0 in our stability diagrams is much smaller than
the range of x, we fix v0 instead of x for computational efficiency.15

For a given v0, we can compute the stability boundary by setting f ¼ 0
for the harmonic case and f ¼ i for the subharmonic case and solving
for the unknown x from the generalized eigenvalue problem,

ðMx2 þ VxþWÞv ¼ 0, where v ¼ ð n1�L; n
1
�Lþ1;…; n1L�1; n

1
L;

n2�L;…; nNL�1; n
N
L ÞT .

B. Perturbation method

For the axisymmetric m ¼ 0 modes, we use the Poincar�e–
Lindstedt method54,55 to determine the stability boundaries of the
inhomogeneous Mathieu equation. We begin by substituting x ¼ x0

þ v0x1 þ v20x2 þ � � �, ynðTÞ ¼ yn0ðTÞ þ v0yn1ðTÞ þ v20yn2ðTÞ þ � � �
where n ¼ 1; 2;…;N into (33). The meniscus waves are not generated
by the parametric resonance, and for small driving amplitude v0, it can
be well described by a purely linear response, and the meniscus-wave
amplitude is proportional to the external forcing amplitude.26

Therefore, we assume, v1s ¼ v0f . We should also note that typically
the damping term is assumed to be Ga�

1
2 ¼ v0l for the subharmonic

response and Ga�
1
2 ¼ v20l for the harmonic response with the homo-

geneous Mathieu equation; however, the inhomogeneous Mathieu
equation leads to the possibility that Ga�

1
2 ¼ v0l even for the har-

monic tongue. Therefore, we assume Ga�
1
2 ¼ v0l for both subhar-

monic and harmonic responses and expand in the perturbation
parameter v0 to give

Oð1Þ : x2
0
d2yn0
dT2

þ
XN
i¼1

Pniyi0 ¼ 0; (35a)

Oðv0Þ : x2
0
d2yn1
dT2

þ
XN
i¼1

Pniyi1 ¼ fn cos 2T � 2
XN
i¼1

Qniyi0 cos 2T

� 2x0x1
d2yn0
dT2

� 2lx0

XN
i¼1

Bni
dyi0
dT

;

(35b)

Oðv20Þ : x2
0
d2yn2
dT2

þ
XN
i¼1

Pniyi2

¼ �2
XN
i¼1

Qniyi1 cos 2T � 2x0x1
d2yn1
dT2

� ð2x0x2 þ x2
1Þ
d2yn0
dT2

: (35c)

1. Subharmonic response

To determine the transition curves for the subharmonic tongues
at Oð1Þ, we let yn0 ¼ CneiT be the solution of (35a) and solve the
eigenvalue problem

x2
0C ¼ PC; (36)

for the N eigenvaluesx0 with associated eigenvectors c. To remove the
secular terms atOðv0Þ requires

�
XN
i¼1

QniCi þ 2x0x1Cn � 2ilx0

XN
i¼1

BniCi ¼ 0; (37a)

i
XN
i¼1

QniCi þ 2ix0x1Cn þ 2lx0

XN
i¼1

BniCi ¼ 0: (37b)

To determine x1 associated with the particular x0, we project Q and
C onto the eigenvector c associated with the eigenvalue x0 that was
computed atOð1Þ. This allows us to rewrite (37) as
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�cTQccTC þ 2x0x1c
TC � 2ilx0c

TBccTC ¼ 0; (38a)

icTQccTC þ 2ix0x1c
TC þ 2lx0c

TBccTC ¼ 0; (38b)

from which we can easily determine

x1 ¼ 6
1

2x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcTQcÞ2 � 4l2x2

0ðcTBcÞ2
q

; (39)

for each Oð1Þ eigenvalue x0 and eigenvector c combination. This then
gives the equation for the subharmonic stability tongue,

x ¼ x06
1

2x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v20ðcTQcÞ2 � 4 Ga�1

2ð Þ2x2
0ðcTBcÞ2

q
; (40)

which does not exhibit a dependence on the linear forcing term (right-
hand side of inhomogeneous Mathieu equation). We trace the
boundary of subharmonic tongue at the order of v0 like the classical
homogeneous Mathieu equation in perturbation theory.56

2. Harmonic response

For the harmonic tongues, we apply an identical procedure by
assuming yn0 ¼ Cnei2T ¼ En cos 2T þ Fn sin 2T to be the solution of
(35a) and solve the associated eigenvalue problem to get the eigenval-
ues x0 and corresponding eigenvectors c. To remove the secular terms
atOðv0Þ requires
8x0x1En � 4lx0ðBn1F1 þ Bn2F2 þ � � � þ BnNFNÞ þ fn ¼ 0; (41a)

8x0x1Fn þ 4lx0ðBn1E1 þ Bn2E2 þ � � � þ BnNENÞ ¼ 0: (41b)

Like the subharmonic case, we project onto the corresponding eigen-
vectors and determine

x1 ¼ 6
1

8x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF2

c þ E2
BÞðcTf Þ2

ðEcEB þ FcFBÞ2
� 16l2x2

0

s
; (42)

where Ec ¼ cTE, EB ¼ cTBccTE, Fc ¼ cTF, FB ¼ cTBccTF. Here, we

introduce the dimensionless empirical parameter ðf �Þ2 ¼ ðF2cþE2BÞðcT f Þ2
ðEcEBþFcFBÞ2

that is a measure of the harmonic wave amplitude normalized by the
response amplitude. The physical interpretation is more clear when
the system is uncoupled, ðf �Þ2 ¼ ðf =RAÞ2, where R2

A ¼ E2
1 þ F2

1 , such
that f � is the inverse of the scaled linear response. We will discuss the
interpretation of f � in Sec. IV. The particular solution y1p is given by

y1p ¼ � 1
4x2

0
QE þ 1

12x2
0
QE cos 4T þ 1

12x2
0
QF sin 4T: (43)

To remove the secular terms atOðv20Þ requires

4x2
1E þ 8x0x2E þ 5

12x2
0
QQE ¼ 0; (44a)

4x2
1F þ 8x0x2F � 1

12x2
0
QQF ¼ 0: (44b)

We project onto the corresponding eigenvectors and get

x2 ¼ 1
8x0

1
12x2

0
ðcTQcÞ2 � 4x2

1

� �
(45a)

and

x2 ¼ 1
8x0

�5
12x2

0
ðcTQcÞ2 � 4x2

1

� �
: (45b)

The shape of the harmonic tongue is then given by

x¼x0 þ 1
8x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v20ðf �Þ2� 16 Ga�1

2ð Þ2x2
0

q

þ 1
8x0

�5v20
12x2

0
ðcTQcÞ2� 4

1
64x2

0

� �
v20ðf �Þ2 � 16 Ga�

1
2ð Þ2x2

0

�  !
;

(46a)

x¼x0 � 1
8x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v20ðf �Þ2� 16 Ga�1

2ð Þ2x2
0

q

þ 1
8x0

v20
12x2

0
ðcTQcÞ2� 4

1
64x2

0

� �
v20ðf �Þ2� 16 Ga�

1
2ð Þ2x2

0

�  !
:

(46b)

Note the explicit dependence of the linear forcing term f � on the shape
of the harmonic tongues.

IV. RESULTS

We compute the shape of the instability tongues using both
Floquet theory and our perturbation method and show how they
depend upon the dimensionless parameters. For both methods, we
typically use N ¼ 4 and L ¼ 20 in our computations to ensure accu-
racy and convergence of the shape of the first two instability tongues.
Each instability tongue, both subharmonic and harmonic, is defined
by spatial structure of the interface shape. Figure 4 illustrates the modal
structure by plotting typical ða� cÞ interface shapes and (d � f ) cor-
responding wave slopes. Each shape is defined by the mode number
pair ðn;mÞ, where the azimuthal mode numberm represents the num-
ber of polar sectors, and the radial mode number n represents the
number of nodes, or locations of zero displacement in the radial direc-
tion. More details regarding how to identify modes from the wave
slope images are given in Shao et al.1

A. Axisymmetric m50 modes

We begin with the axisymmetric m ¼ 0 modes and verifying our
model predictions against prior experimental results.1 Figure 5 plots
the subharmonic tongues for the [1, 0] and [2, 0] modes and compares
with experiments of Ref. 1 (black � s) for Bo ¼ 167 and h ¼ 0:628.
The agreement between both methods (Floquet and perturbation)
with experiment is excellent.

Figure 6 plots the harmonic and subharmonic instability tongues
for the first two axisymmetric, (1, 0) and (2, 0), modes. Note that both
the harmonic and subharmonic tongues with pinned contact line are
shifted to higher frequency relative to the free contact line, while the
shape of the tongue is largely unaffected. This can be explained by not-
ing that the pinned contact line is more constrained than the free con-
tact line leading to a larger resonance frequency, which can be
identified from the instability tongue as the frequency x with smallest
threshold acceleration v0. For an inviscid liquid Ga�1=2 ¼ 0, the
threshold acceleration is zero. The variation in the shape of the insta-
bility tongues with the contact angle h0 is very small for the large Bond
numbers Bo � 100 we consider here and we do not consider these
effects any further.
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The shape of the harmonic tongues for the axisymmetric modes
depends upon f �. We begin by treating f � as a fitting parameter.
Figure 7(a) plots the instability tongues for the ð1; 0Þ mode with
pinned contact-line showing how f � affects the shape of the tongue.
Recall that only the axisymmetric modes with a meniscus h0 6¼ 90� are
affected by f �. It is interesting to note that the shape of tongue is gov-
erned by the quadratic term Oðv20Þ when f � ¼ 0. In contrast, for
f � 6¼ 0, the shape of tongue is dominated by the linear term Oðv0Þ,
which tends to make the tongue more symmetric. The tongue is nearly

symmetric when f � ¼ 10 especially for small v0.There is a crossover
effect when f � ¼ 1, where the detuning force term and the parametric
term compete against each other giving rise to the unique tongue
shape, which has also been reported in the double parametric forcing
system.57,58 Figure 7(b) plots the instability tongues for a weakly vis-
cous liquid Ga�1=2 ¼ 0:001. Here, the effect of increasing f � is to
widen the harmonic tongue and shift it lower, such that when f �min
¼ 0:268 the threshold amplitude for the harmonic tongue is lower
than that for the subharmonic tongue. In addition, the threshold accel-
eration for the harmonic tongue is v0 ¼ 0:00093 when f � ¼ 10 so that
the effect of damping almost cancels.

The instability tongues typically shift higher with increasing
mode number ðn; 0Þ, as clearly seen in the subharmonic tongues in
Fig. 8. The bandwidth also decreases with increasing mode number for
the harmonic tongues, as shown in Fig. 9(a). Viscosity Ga�

1
2 has a

more pronounced effect on the higher modes and tends to shift those
tongues higher compared with the lower modes, as shown Fig. 9(b).
This is consistent with increased viscous dissipation and a lower
response amplitude for higher modes compared with lower modes.
This implies that higher modes need a large empirical number f � to
counteract this shift higher in threshold acceleration due to viscosity.

B. Asymmetricm 6¼6¼6¼6¼6¼6¼ 0modes

The asymmetricm 6¼ 0 modes are governed by the homogeneous
system, and the shape of the instability tongues is readily computed by
Floquet theory. Figure 10(a) plots the subharmonic tongues for the
ð1; 2Þ, ð1; 3Þ, ð2; 1Þ, ð1; 4Þ, ð2; 2Þ, ð1; 5Þ, ð2; 3Þ, and ð1; 6Þ modes to
compare against experiments by Shao et al.,1 who also showed that all
asymmetricm 6¼ 0 modes exhibited a subharmonic response in exper-
iment, regardless of meniscus shape. This is consistent with Eq. (33).
Figure 10(b) plots the instability tongues for the asymmetric ð1; 1Þ and

FIG. 4. Mode ðn;mÞ shape predictions plotting the (a)–(c) surface shape and (d)–(f) corresponding wave slope image for the (a) and (d) ð2; 0Þ, (b) and (e) ð2; 1Þ, and (c) and
(f) ð2; 3Þ modes.

FIG. 5. Verification of the shape of the subharmonic tongues for the ð1; 0Þ and ð2; 0Þ
modes with pinned contact line predicted by Floquet theory and the perturbation method
by comparing against the experiments of Ref. 1—Fig. 4. Here Ga�

1
2 ¼ 0, Bo ¼ 167,

h ¼ 0:628, and h0 ¼ 90�.
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FIG. 6. (a) Harmonic and (b) subharmonic instability tongues for the ð1; 0Þ and ð2; 0Þ modes plotted in the acceleration-frequency (v0 � x) space, contrasting pinned and free
contact line conditions. Here Bo ¼ 100, h ¼ 1, Ga�1=2 ¼ 0, h0 ¼ 45�, and f � ¼ 5.

FIG. 7. (a) Harmonic instability tongues for the ð1; 0Þ mode with pinned contact line plotted in the acceleration-frequency (v0 � x) space, as they depend upon the empirical
number f �. Here Bo ¼ 100, h ¼ 1, Ga�1=2 ¼ 0, and h0 ¼ 45�. (b) Harmonic (red line type) and subharmonic (blue line type) instability tongues for the ð1; 0Þ mode with
pinned contact line plotted in the acceleration-frequency (v0 � x) space, as they depend upon the empirical number f �. Here Bo ¼ 100, h ¼ 1, Ga�1=2 ¼ 0:001, and
h0 ¼ 45�. The black line indicates threshold acceleration v0 for the subharmonic tongue.

FIG. 8. Harmonic (red line type) and sub-
harmonic (blue line type) instability
tongues for the ð1; 0Þ and ð2; 0Þ modes
with pinned contact line plotted in the
acceleration-frequency (v0 � x) space
for (a) Bo ¼ 100 and (b) Bo ¼ 1000.
Here f � ¼ 10, h ¼ 1, Ga�

1
2 ¼ 0:001, and

h0 ¼ 45�.
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ð2; 1Þ modes. Here, the subharmonic tongues always have lower
threshold acceleration v0 than the harmonic tongues, suggesting that it
is easier to excite subharmonic asymmetric modes, also consistent with
experiment.1

C. Mode mixing

As discussed in the Introduction, Shao et al.1 reported the experi-
mental observation of mixing modes, where it is possible to simulta-
neously excite an axisymmetric m ¼ 0 mode harmonically and an
asymmetric m 6¼ 0 mode subharmonically with the same driving fre-
quency by creating a meniscus and increasing the forcing amplitude
above the Faraday wave threshold, as illustrated in Fig. 1(c). This
experimental observation was a major motivation for this theoretical
study and we illustrate how our results are consistent with those
experiments. Figure 11 plots the harmonic instability tongue for the
ð9; 0Þ mode and the subharmonic instability tongue for the ð6; 3Þ
mode with parameter values consistent with the experimental values
reported by Shao et al. (Ref. 1, Fig. 8). For a fixed driving frequency
fd ¼ 34:7 Hz (vertical line in Fig. 11), as you increase the driving
amplitude A, a harmonic ð9; 0Þ mode is excited after the threshold
acceleration for the corresponding harmonic tongue is reached.
Increasing the driving amplitude even further excites a subharmonic

FIG. 9. Harmonic instability tongues for the ð1; 0Þ and ð2; 0Þ modes with pinned contact line as they depend upon (a) the empirical number f � for Ga�1
2 ¼ 0:001 and (b) Ga�

1
2

for f � ¼ 5. Here h ¼ 1, Bo ¼ 100, and h0 ¼ 45�.

FIG. 10. Instability tongues for asymmetric
m 6¼ 0 modes. (a) Comparison of the sub-
harmonic instability tongues for the pinned
modes with experiments by Shao et al.
(Ref. 1—Fig. 4). (b) Contrasting the har-
monic (red line type) and subharmonic
(blue line type) instability tongues for the
ð1; 1Þ and ð2; 1Þ modes with pinned con-
tact line in the acceleration-frequency
(v0 � x) space for Bo ¼ 100,
Ga�1=2 ¼ 0:001, h ¼ 1, and h0 ¼ 45�.

FIG. 11. Illustration of mode mixing by plotting the ð9; 0Þ harmonic and ð6; 3Þ sub-
harmonic instability tongues in the acceleration-driving frequency A� fd space for
Ga�

1
2 ¼ 0:0001, Bo ¼ 167, and h ¼ 0:628 to compare with experimental observa-

tion of Ref. 1—Fig. 8. Reproduced with permission from Shao et al., J. Fluid Mech.
915, A19 (2021). Copyright 2021 Cambridge University Press.
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ð6; 3Þ mode once the threshold acceleration for that subharmonic
tongue is reached. Incremental increases in driving amplitude result in
the high-amplitude pattern shown in the figure. This interpretation of
our theoretical predictions corresponds to the exact mode mixing
observed by Shao et al. (Ref. 1, Fig. 9), suggesting that our model
includes the essential physics to understand this complex phenomena.

V. CONCLUDING REMARKS

We have developed a theoretical model of surface waves on a liq-
uid bath in a vertically vibrated cylindrical container, which couples
the meniscus wave formed at the container sidewall to the parametric
Faraday wave, as motivated by recent experimental observations of
complex spatiotemporal wave behavior in this system.1 Detuning the
driving acceleration of the container gives rise to an inhomogeneous
Mathieu equation for axisymmetric m ¼ 0 waves, which is distin-
guished from traditional studies of Faraday waves by the additional lin-
ear forcing term on the right hand side of the governing equation. In
contrast, asymmetric m 6¼ 0 waves satisfy a standard homogeneous
Mathieu equation, highlighting the complex relationship between the
spatial wave structure and the temporal response. The shape of the
instability tongues was computed by the Floquet theory for asymmetric
m 6¼ 0 waves and a perturbation method for axisymmetric m ¼ 0
waves. The empirical number f � is related to the shape of the meniscus
and only changes the shape of the harmonic tongues for the axisym-
metric modes by decreasing the threshold acceleration v0 and increas-
ing the bandwidth. For a range of f � > 0, the threshold acceleration
for the axisymmetric m ¼ 0 harmonic tongues can be lower than the
subharmonic tongues, which is consistent with experimental observa-
tions of harmonic edge waves at low driving amplitudes. For a per-
fectly flat meniscus, the subharmonic tongues always have smaller
threshold acceleration than the harmonic tongues, also consistent with
experimental observation. Finally, we show how our model can predict
the mixing of an axisymmetric m ¼ 0 harmonic mode with an asym-
metric m 6¼ 0 subharmonic mode at a single driving frequency and
compare against experimental results (Ref. 1, Fig. 8). The consistency
and great agreement with prior experimental results suggests that our
model captures the essential features of these complex spatiotemporal
wave patterns.

Our model could be extended to include viscoelastic effects13,51

and dynamic contact line effects (e.g., by incorporating the Hocking
condition).59 In addition, a number of the experimental observations
by Shao et al.1 that motivated our study can also be observed in verti-
cally vibrated sessile drops.20,60,61 One could apply similar ideas for
modeling meniscus effects to that problem, with the understanding
that base state curvature of the drop is global whereas the meniscus
effects we consider here are localized to the contact line region. From
an application point of view, our model could be used as a design tool
for pattern formation of the complicated mixed modes.
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