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Abstract

The shape of a soft solid is largely determined by the balance between
elastic and surface energies with capillarity becoming important at length
scales smaller than the elastocapillary length, which approaches the mil-
limeter scale for the softest hydrogels, leading to many new and surprising
phenomena. This review is focused on describing recent experimental and
theoretical progress on the deformations of soft solids due to capillarity in
two-phase systems for both statics and dynamics. Relative to rigid solids,
surface tension can lead to the rounding of sharp corners, wrinkling and
creasing, and general morphological shape change of the static equilibrium
configuration, beyond a critical elastocapillary number. With regard to dy-
namics, both surface tension and viscoelasticity affect wave number selection
in a number of dynamic pattern formation phenomena in soft solids, such as
elastocapillary-gravity waves, Rayleigh–Taylor instability, Plateau–Rayleigh
instability, Faraday waves, and drop oscillations, all of which have direct
analogs with classical hydrodynamic instabilities helping to interpret the
relevant physics.
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Morphogenesis:
the process by which a
biological structure,
i.e., cell, organ, tissue,
develops its shape

Elastocapillary
length, ℓe: the ratio of
surface tension σ to
elastic shear modulus
µ defines an intrinsic
length scale ℓe = σ/µ

Elastocapillary
number, 6:
a dimensionless
number 6 a ℓe/L =
σ/µL that defines the
balance of surface and
elastic energies

1. INTRODUCTION

The shape of a material object often determines functionality. This is seen in a wide range of ma-
terials from the design of metal heat sinks critical for electronic cooling (1) and gas turbine blades
for efficient heat transfer (2) to morphogenesis and the formation of highly corrugated biological
tissue structures seen in the sulci of the brain cortex (3) and placental villous tree (4) that sustain
and create life, to the shape of liquid interfaces that facilitate the assembly of particles and cells (5,
6) in tissue engineering applications (7) and precede the atomization of life-saving medicines in
drug delivery devices (8). These shapes can be static or dynamic and can be harnessed to fabricate
complex structures in soft matter (9–11). The interfacial physics and associated coupling with the
bulk material response become critically important in determining the shape of soft solids and are
the topic of this review.

Rigid solids can take on largely any shape as the undeformed configuration is a minimum of the
elastic energy, whereas liquids, due to capillarity, tend toward a spherical shape in order to min-
imize surface energy. Soft solids, such as gels and biological tissues, can have elastic and surface
energies that are of the same order of magnitude, but the question is on what length scale L. Simple
dimensional analysis yields the elastocapillary length ℓe = σ/µ as the elastic energy is proportional
to material volume and surface energy to material surface area, with σ being the surface tension
and µ being the elastic shear modulus. The elastocapillary length can range from the atomic scale
for metals ℓe ∼ 10−11 m to the micron scale for elastomers ℓe ∼ 10−6 m, to the millimeter scale for
hydrogels ℓe ∼ 10−3 m. The physical interpretation of the elastocapillary length is that systems
with characteristic length L (either intrinsic or imposed) are dominated by elastic effects when
L> ℓe or capillary effects when L< ℓe, and a transition occurs when L∼ ℓe, as schematically illus-
trated inFigure 1 using the dimensionless elastocapillary number6 ≡ ℓe/L = σ/µL, which shows

Material 1

Material 2

Rigid solid Soft solid ΣΣ*

D

a

b

c

∂Ds

∂Df

�

t

Figure 1

Illustration of the elastocapillary effect in a two-phase system, as it depends on the elastocapillary number 6,
contrasting the limiting cases of a rigid solid 6 < 6∗ and soft solid 6 > 6∗, with 6∗ being the critical
elastocapillary number. (a) Schematic diagram of the two-phase system in which a free interface �Df

endowed with surface tension separates the domains of material 1 and material 2, which are partially fixed to
a rigid container with geometry �Ds. Rigid solids can adopt nearly any shape, whereas capillary effects
manifest themselves in soft solids by (b) rounding sharp corners and (c) inducing shape-change instabilities.
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Wetting ridge:
cusp-like shape formed
on a soft substrate at
the three-phase
contact line due to the
unbalanced liquid
surface tension force

Bendocapillarity:
the bending of thin
elastic structures with
bending modulus B by
surface tension σ

occurs at a
characteristic length
scale ℓb = √

B/σ

the rounding of sharp edges and morphological shape change of a rigid cylinder due to capillarity,
as prototypical examples. External loads, such as the gravitational body force or prescribed surface
traction, naturally affect the equilibrium shape of a soft solid, but what seems less appreciated is
how the dynamic material response of soft solids similarly affects pattern formation at interfaces.

Hydrodynamic instability is responsible for a number of canonical pattern formation phenom-
ena, including shear-induced Kelvin–Helmholtz instabilities seen in clouds and other multilayer
systems, Faraday waves (which appear as a parametric instability on a vibrated fluid layer), and the
breakup of a fluid thread due to the Plateau–Rayleigh instability (PRI), to name a few. These sys-
tems are know for their aesthetic beauty. The signature of any instability is competing physics, as
defined by characteristic forces, energies, or timescales. In recent years, it has been shown that soft
solids are also susceptible to many classical hydrodynamic instabilities, but one must account for
the additional physics associated with elasticity to determine the stability threshold and dominant
wavelength describing the pattern formation.

Bulk elastocapillarity is restricted to two-phase systems,whereas elastocapillary phenomena are
also readily seen in soft wetting phenomena, or three-phase systems, in which the liquid surface
tension deforms the underlying substrate. Here, liquid surface tension can bend thin structures,
e.g., capillary origami and the bundling of fibers, and form a wetting ridge on a semi-infinite
substrate. To distinguish between such phenomena, the former is referred to as bendocapillarity.
There is a significant amount of literature in these areas, and we refer the reader to the recent re-
views by Bico et al. (12) for the former and Andreotti & Snoeijer (13) for the latter. For soft solids,
the surface stressϒ and surface energy σ are generally not equal, as they are for liquids, and are re-
lated through the surface strain ε by the Shuttleworth equationϒ = σ I + ∂σ/∂ε (14), as described
in detail in the review by Style et al. (15) (see the sidebar titled Shuttleworth Effect). In fact, surface
stresses in solids can be anisotropic and compressive. For the purposes of this review, we assume
the surface stress is equal to the surface energy and refer to it as the surface tension hereafter.

This review is focused on capillary effects in soft solids for two-phase systems. Our discussion
is pedagogical, beginning with static shape-change phenomena, and then moving on to dynamic
pattern formation. In most phenomena we discuss, there is an analogous classical problem that
appears as a limiting case that helps frame the problem and interpret the relevant physics.

2. STATICS

The static equilibrium shape of a soft solid is defined by the balance between the bulk elastic energy
and free surface energy associated with capillarity. Using the general description of nonlinear

SHUTTLEWORTH EFFECT

Generally, surface stress is defined as the force per unit length required to deform the free surface. Shuttleworth
(14) showed that the solid surface stress ϒ is a function of the surface strain ε as described by the relationship
ϒ = σ I + ∂σ/∂ε [see also Müller & Saúl (16) for a thermodynamic derivation of the free surface stress]. Although
it is mathematically convenient and physically reasonable in many cases to assume surface stress to be a constant,
it remains an approximation that needs to be critically assessed. A major difficulty in incorporating variable surface
stress has been the lack of physical understanding of when the Shuttleworth effect becomes important. Studies on
the deformation of soft gels by a line force at the three-phase liquid contact have shown a significant strain de-
pendence on the surface stress (17, 18); but, in contrast, an experiment on a stretched elastomer found no strain
dependence (19). This indicates the possibility of varied interpretations, even within similar experiments. This
remains an active area of research.

www.annualreviews.org • Shaping Capillary Solids 175
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Neo-Hookean
material:
a hyperelastic material
with nonlinear stress-
strain constitutive law
useful for describing
finite amplitude
deformations in cross-
linked polymers, such
as gels and rubbers

Young–Laplace
equation: an
equation 1p = σH
relating the pressure
jump 1p across a
liquid interface to the
local curvatureH there

continuum mechanics in a Lagrangian framework, the current position of a material point R is
a function of its reference position r(x, y, z), leading to the following mapping R(r) = (X(x, y, z),
Y (x, y, z), Z(x, y, z)). For a neo-Hookean material typical of soft solids, the elastic energy of a
volume D is described as (20)

Eel =
∫
D
dr

(
µ

2
(tr(ε) − 3 − 2 ln J) + λ

2
(ln J)2

)
, 1.

where Fij = Ri,j is the deformation gradient tensor and J = det(F) is its determinant, ε = FFT is
the strain tensor, and µ and λ are the Lame parameters representing the shear and bulk modulus,
respectively, which are related to one another through the Poisson ratio ν by λ = 2νµ/(1 − 2ν ).
Capillarity enters through the surface energy,

Ecap = σ

∫
∂Df

||(F−1 )Tn||ds, 2.

where �Df is the free surface, ds is the area element, and n is the unit normal on the interface.
The total energy then becomes E = Eel + Ecap. The first variation of total energy δE with re-
spect to a small displacement δR leads to linear momentum conservation in the bulk domain D
(21),

∇ · T + ρb = 0, 3.

and the boundary conditions at the free interface �Df and solid support �Ds,

n · T · n = σH, n · T · t = 0[∂Df ]; U = 0 [∂Ds]. 4.

Here,T is the Cauchy stress tensor, ρ is the density, b is the acceleration due to body force (e.g.,
gravity), and H is the curvature. The normal stress condition is similar to the Young–Laplace
equation applicable in fluid interfaces (22–24). A shear-free condition is applied on the free surface
�Df and a zero-displacement condition on the support surface�Ds. For reference, the stress tensor
for an isotropic linear elastic material can be written as T = λTr(ε) + 2µε.

The perspective we take in this review is to describe the self-induced deformations of the soft
solid due to capillarity, relative to the unstrained configuration.

2.1. Capillary-Induced Instability

The presence of surface stress on a soft solid often results in morphological shape change in the
form of localized sharp corners and edges, as seen in creasing and buckling (25). These shapes are
typically understood as examples of interfacial instability in which, due to excessive surface stress,
a small localized perturbation grows into a large deformation with associated localized geometry
and spatial extent, i.e., pattern formation. The typical approach to analyze such instabilities begins
with the consideration of a rigid undeformed solid with a smooth interface and no surface stress
R = R0. The base state is given a small perturbation of O(ε) ≪ 1 such that R = R0 + εR1, and the
stability problem is posed by taking the second variation of total energy δ2E. When the base state
is unstable, surface tension drives the material toward a secondary equilibrium state that differs
from the base state.

2.1.1. Plateau–Rayleigh instability. It is well known that a cylindrical liquid column is sus-
ceptible to breakup into small droplets through the Plateau–Rayleigh instability (PRI) (26–28).
Mora et al. (29) showed that agarose gel cylinders of radius R and shear modulus µ are suscep-
tible to a similar instability that exhibits free surface undulations above a critical elastocapillary
number 6c = σ/µR = 6, as shown in Figure 2a. In their experiments, the gel cylinders were cast

176 Tamim • Bostwick
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Figure 2

Equilibrium shapes of capillary solids. (a) Axial undulations of a cylinder of agar gel appear above a critical elastocapillary number
6 = σ/µR > 6 due to the Plateau–Rayleigh instability. (b) A hanging cylinder of aqueous polyacrylamide hydrogel will stretch to a
length hmax longer than its initial length h that depends on the elastogravity α = ρgh/µ and elastocapillary 6 numbers. Beyond a
critical threshold, self-similar hierarchal wrinkles develop as shown in three-dimensional view and in a horizontal slice (inset). Here,
solid and empty symbols denote axially symmetric and asymmetric deformations. (c) Uniaxial contraction of a soft gel (µ ≈ 1 kPa) leads
to a Biot instability with corresponding surface wrinkling beyond a critical stretch amplitude a that depends on the elastocapillary
number. (d) Compression-induced creasing of soft polymeric gels creates self-contact lines that show hysteretic behavior linked to
elastocapillary effects, as seen by plotting the dimensionless self-contact length L/H0 against the global strain ε for purely elastic
(ℓe ≈ 0) and soft (ℓe ≈ 20µm) materials. Panel a adapted with permission from Reference 29. Panel b adapted from Reference 30 with
permission from the Royal Society of Chemistry. Panel c adapted from Reference 31 with permission from the Royal Society of
Chemistry. Panels a–c provided by S. Mora. Panel d adapted from Reference 32 (CC BY 4.0); provided by S. Karpitscka and J. Snoeijer.

in polystyrene molds and placed in a toluene bath that dissolved the molds and exposed the gel
to a surface tension that initiated the instability. For 6 > 6c, the deformation increases with a
power-law relation, suggesting this is a threshold instability. To explore large amplitude behavior
beyond the instability threshold predicted from linear theory, numerical and theoretical models
have been proposed to account for the nonlinear material response of neo-Hookean solids, fo-
cusing on the roles of axial stretch, boundary conditions, and system configuration, e.g., hollow
cylinders (33–35). Xuan & Biggins (36) showed that PRI in solids is fundamentally different than
in liquids and leads to a phase separation between two distinct regions of stretch that gives rise
to rich postcritical morphologies, such as necking, ballooning, and bead-on-string structures that
can be observed in elastic fibers and tubes (37–40).

www.annualreviews.org • Shaping Capillary Solids 177
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Self-similar:
a feature that looks the
same at different
magnifications, as seen
in fractals

Hierarchical
patterns: spatial
patterns that exhibit
distinct subfeatures at
different length scales

Microtomography:
an experimental
technique used to
image cross sections of
a sample by
interpreting the
interference patterns
of a penetrating wave

2.1.2. Creasing andwrinkling. An elastic solid subject to a uniaxial compressive strain becomes
unstable to sinusoidal perturbations, as described by Biot (41),who predicted the critical stretching
threshold for a semi-infinite elastic half-space.The lack of an intrinsic length scale in Biot’s analysis
made comparison with experiments difficult because many wavelengths are unstable beyond a
critical strain, and a dominant wavelength cannot be identified.This can be resolved by accounting
for the length scales associated with the (a) surface curvature and (b) the finite thickness of the
solid. Experiments were performed with strained bridged microemulsion gels with shear modulus
µ ∼ 1 kPa to create the surface creasing patterns, shown in Figure 2c, above a critical stretch
threshold related to the elastocapillary number, thus resolving the missing length scale in Biot’s
theory (31, 42).

Free surface creasing of a solid is defined by the formation of self-contact regions that grow
from a nucleation site and is ubiquitous in polymeric soft gels and growing biological tissues (43,
44). The review article by Dervaux & Amar (45) provides a comprehensive discussion of the creas-
ing instability focusing on the morphology of soft polymeric materials. Notably, surface tension
effects give rise to hysteretic bistable behavior under compression,whereby existing creases do not
disappear at the same strain value as they appear (46). This is seen in experiments in which a soft
polymeric gel undergoes cyclic folding–unfolding via periodic modulation of the global compres-
sive strain, which leads to a shape asymmetry between the folding and unfolding regimes that is
attributed to contact-line self-pinning, as shown in Figure 2d (32). Finite element analysis of the
crease morphology in soft materials has revealed self-similar shapes due to the combined effects
of surface tension and adhesion (47).

Other complex spatial patterns, such as wrinkles, can similarly appear in soft solids when sur-
face tension interacts with other forces, such as the self-weight due to gravity. Mora et al. (30)
have studied the shape of a hanging elastic cylinder of polyacrylamide hydrogel whose axis is
aligned with the gravity vector. Above a critical value of the control parameters, the cylinder can
simultaneously undergo bulk axial stretching along its length that is accompanied by self-similar
hierarchical patterns that appear around the perimeter of the cylinder, as shown in Figure 2b,
which are measured using microtomography. As the substrate becomes softer, both gravitational
and surface tension effects become stronger, and more wrinkles appear.

2.2. Capillary Homogenization

Surface tension can also smooth or homogenize a solid shape if it has localized regions of high
curvature. This is commonly seen when a soft gel is cast in a stiff mold having sharp edges and
corners, with examples including the flattening of rough surfaces, smoothing of sharp corners, and
shortening of long cylinders (48–50).With regard to the latter, Mora et al. (50) showed that a soft
cylinder shrinks with stretch ratio λ, which depends on the elastocapillary number 6 (as shown
in Figure 3a). In each of these cases, capillarity tends to minimize the surface area by removing
regions of high curvature that would otherwise generate localized regions of high stress according
to the Young–Laplace equation (see the reviews by Style et al. (15) and Bico et al. (12) for discus-
sions on the pioneering works on the smoothing effects of solid surface tension). More recently,
Hui et al. (52) have developed a generalized model for capillary flattening of an arbitrary elastic
surface, showing that periodic surface structures are smoothed by surface tension without chang-
ing their period. Molefe & Kolinski (51) have shown that the shape of rectangular micropillars in
a soft solid becomes rounded and is affected by the distance between neighboring structures, as
shown in Figure 3b. This shows an application of the homogenizing behavior in soft solids that
can be leveraged to shape a collection of structures for large-scale pattern formation. Sharp cor-
ners can also be formed by adhesive forces during the removal of an object from the interface of a
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Rheology: the study
of the flow of matter,
both liquid and solid
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Figure 3

Capillary contraction and smoothing. (a) The length of a cylinder of agar gel immersed in toluene shortens due to capillarity, as defined
by the axial stretch ratio λ plotted against the elastocapillary number 6 = σ/µR. (b) Micropatterned surface structures with sharp edges
in PDMS gels become rounded by the presence of adjacent structures due to capillarity. Panel a adapted with permission from
Reference 50; provided by S. Mora. Panel b adapted with permission from Reference 51; provided by J. Kolinski. Abbreviation: PDMS,
polydimethylsiloxane.

soft polydimethylsiloxane (PDMS) substrate. Here, upon release of the extensional strain, surface
tension is allowed to smooth out the corners, creating a rounded edge over a finite timescale that
evolves in a self-similar manner (53).

3. DYNAMICS

Soft interfaces can reconfigure dynamically, resulting in the formation of oscillatory surface waves
or irrecoverable deformation, i.e., instability, as discussed in the prior section.Whereas static (en-
ergy) stability analysis can determine if a base configuration is stable or unstable, dynamic stability
analysis can provide information about the resulting pattern formation through identification
of the dominant or fastest growing mode. The static stability limit can be recovered by setting
the growth rate to zero. These two perspectives are complementary, and this is best illustrated
from a historical perspective of the PRI (see the sidebar titled Plateau–Rayleigh Instability: A
Historical Perspective). Soft solids differ from liquids in that both surface tension and elasticity
resist deformation, and the timescale over which this deformation occurs depends on the material
properties or rheology. In this section, we describe the interface dynamics of soft materials having

PLATEAU–RAYLEIGH INSTABILITY: A HISTORICAL PERSPECTIVE

It has been known since the time of Plateau (1863) that a liquid cylinder will break up into droplets due to sur-
face tension forces. Plateau was able to show using energy arguments (static stability) that liquid cylinders with
length longer than the circumference are unstable, the well-known Plateau limit, but he incorrectly used this limit
to predict the final drop size and spacing (wavelength). Some years later, Lord Rayleigh (in 1879) using a hydro-
dynamic approach calculated the instability growth rate, as it depends on the disturbance wave number (dynamic
stability), which gave a good approximation to the final drop pattern. For good reason, the PRI bears both names
as appropriate for their unique and complementary contributions to this problem.

www.annualreviews.org • Shaping Capillary Solids 179
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Viscoelasticity:
the time-dependent
property of materials
that exhibit both
viscous and elastic
characteristics when
deformed

Helmholtz
decomposition:
the representation of a
vector field by
decomposition into
the sum of rotational
and irrotational fields

viscoelasticity by framing the recent literature as analogous hydrodynamic instabilities with
elastocapillary effects.

Consider the soft solid shown in Figure 1, with density ρ, complex modulus µ = µ′ + iµ′′, and
surface tension σ . Here, the material is defined on a domain D that is bound by a free interface
�Df and support surface �Ds. For a linear viscoelastic material, the stressT and strain ε fields are
related through the constitutive law,

T(t ) = 2
∫ t

−∞
µ(t − t ′ )

∂ε(t ′ )
∂t ′

dt ′ + I
∫ t

−∞
λ(t − t ′ )

∂ (Tr ε(t ′ ))
∂t ′

dt ′, 5.

where µ and λ are the relaxation moduli, which are related to one another through the Poisson
ratio ν: λ = 2νµ/(1 − 2ν ). Typical values for the rheological properties of µ and λ are provided
by Barnes (54). The strain field is related to the displacement field U through the relationship
ε = (�U+ �UT)/2.The governing boundary value problem is defined by the domain equation,

∇ · T = ρ
∂2U
∂t2

, 6.

with boundary conditions on the free surface �Df and support surface �Ds:

n · T · n = σH, n · T · t = 0[∂Df ]; U = 0 [∂Ds]. 7.

On the free interface �Df, stress continuity gives rise to (a) the Young–Laplace equation relating
the normal stress difference across the interface to the curvature H, there giving rise to elasto-
capillary effects, and (b) a shear-free condition. No displacement conditions are enforced on the
support surface�Ds.The curvature is defined by the surface shape through the normal component
of the interface displacementH = H (U · n|∂Df ).We note that a spatially dependent surface stress
would give rise to a Marangoni-like stress (as with liquids), but for the purposes of our discussion,
we assume a uniform surface stress, i.e., surface tension.

It is often convenient to analyze the temporal viscoelastic material response in the fre-
quency domain ω, and this is done by applying the Fourier transform f̃ (ω) = ∫ ∞

−∞ f (t )eiωt to the
governing equations, (

λ̃(ω) + µ̃(ω)
) ∇ (∇ · u) + µ̃(ω)∇2u = −ρω2u. 8.

Here, we define the frequency-dependent complex modulus,

µ̃(ω) = iω
∫ ∞

0
µ(t )e−iωtdt, 9.

which can be written as µ̃(ω) = µ′(ω) + iµ′′(ω), with µ′(ω) being the storage modulus and µ′′(ω)
being the loss modulus. The form of the complex modulus µ̃(ω) depends on the rheology of
the soft material (see the sidebar titled Rheology of Soft Polymer Gels). Two classical models of
viscoelasticity relevant to soft polymeric materials are the (a) Kelvin–Voigt µ = µ0(1 + iωτ s) and
(b) Maxwellµ = µe

iωτf
1+iωτf

models. Bothmodels are defined by a single viscoelastic timescale, τ s and
τ f for Kelvin–Voigt and Maxwell, respectively. Here, τ s represents the creep and τ f represents the
stress relaxation found in solid-like and liquid-likematerials, respectively.We note that theKelvin–
Voigt model has nonzero shear modulus µ0 at zero frequency and is, therefore, representative
of solid-like materials such as gels, whereas the Maxwell model has zero loss modulus at high
frequency and is more applicable to fluid-like materials, such as polymer solutions.

A solution of the governing equation can be facilitated through Helmholtz decomposition of
the displacement field,

u = ∇8 + ∇ × F, 10.
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RHEOLOGY OF SOFT POLYMER GELS

Polymer gels have a network structure of large molecular chains that are capable of inducing both elastic and
viscous responses in a material when stressed. Cross-linking is responsible for the material elasticity and occurs at
the gelation point or transition from liquid to solid-like behavior. Many of the studies of capillary solids discussed
in this review utilize hydrogels, such as agarose and polyacrylamide, as the soft solid, primarily for their ability
to tune the elasticity by varying the polymer concentration. The rheology, or material response, of polymer gels
is characterized by the complex modulus µ = µ′ + iµ′′ as measured using oscillatory shear tests in a rheometer.
The most commonly used constitutive models of soft solids range from neo-Hookean models for nonlinear purely
elastic materials to Kelvin–Voigt and Maxwell models for linear viscoelastic materials, with the distinction between
the latter two types related to whether the material is characterized as a viscoelastic solid or viscoelastic liquid,
respectively. More general models of viscoelasticity will need to be developed as designer gels are fabricated with
desired material properties.

into scalar 8 and vector F potentials, which when chosen properly result in a set of uncoupled
Helmholtz equations from which the complex frequency ω = ωr + iωi can be computed from the
solvability condition associated with the boundary conditions.Here, stability is determined by the
sign of ωi, with ωi > 0 giving stability (i.e., damped oscillations) and ωi < 0 giving instability with
corresponding growth rate s = −ωi.

3.1. Pattern Formation

The fundamental ansatz in dynamic linear stability analysis is that thematerial is subject to an arbi-
trary spatial disturbance that can be represented as a Fourier series with components defined by a
wavelength λ or, equivalently, wave number ka 2π/λ. Each Fourier component has an associated
growth rate, and the surface pattern that develops is associated with the Fourier mode having the
largest growth rate. This can be either instability driven or a resonant phenomena, and we discuss
both in what follows.Whenever the spatial wavelength is small relative to the characteristic length
scale of the domain L (or container geometry), λ ≪ L, then the domain can be considered semi-
infinite and a classical dispersion relationship ω = ω(k) is obtained, with continuous wave number
k and corresponding zero bandwidth. In contrast, when λ ≈ L, the surface pattern conforms to
the container geometry, is described by a discrete mode number pair, and has a finite bandwidth
over which that particular mode can be excited. In this case, the boundary conditions at the solid
support affect the frequency ω, whereas in the former they play no role.

3.2. Dimensionless Groups

Surface pattern formation can be complex because soft polymeric materials often exhibit a com-
plex rheology characterized by both elasticity and viscosity, making this an inherent multiphysics
problem. To better understand the physics and relevant limiting cases, one can nondimension-
alize the governing equations and resulting dispersion relationships, which gives rise to a set of
dimensionless numbers that define such systems. Here, the relevant timescales are the capillary
timescale tc =√

ρL3/σ , elastic timescale te =√
ρL2/µ0, viscous timescale tv = γL/σ with γ the viscos-

ity, and viscoelastic relaxation time τ (55). The relative balance of these timescales gives rise to a
set of dimensionless parameters that define the physics. Here, the elastocapillary number appears
naturally as the ratio of capillary and elastic timescales 6 a te/tc = σ/Lµ0. The compressibil-
ity number can be defined as the ratio of compressional to shear wave speeds κ ≡ µ/(λ + 2µ) =√

(1−2ν )/2(1+ν ).TheOhnesorge numberOh ≡ tv/tc = γ /
√

ρσL is a balance of viscosity and capillarity.

www.annualreviews.org • Shaping Capillary Solids 181
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Deborah number:
a dimensionless
number ζ a tr/tc
relating the material
relaxation time tr to a
characteristic timescale
tc to characterize a
material’s fluidity

Bond number:
a dimensionless
number Bo = ρgL2/σ
used to characterize
the relative importance
of gravitational to
surface tension effects
at a liquid interface

Dispersion
relationship: a
functional relationship
between the frequency
ω and wave number k,
ω = ω(k)

Viscoelastic effects are slightly more nuanced, and one typically defines the Deborah number
depending upon if the material is more solid-like (Kelvin–Voigt) or fluid-like (Maxwell). For a
Kelvin–Voigt solid, one can define the solid Deborah number ζs ≡ τs/te = τs

√
µ0/ρL2 with limiting

cases corresponding to ζ s = 0, the purely elastic limit, and ζ s = ∞, the purely viscous limit. For a
Maxwell fluid, the fluid Deborah number ζf ≡ τf/tc = τf

√
σ/ρL3, from which ζ f = 0 corresponds to

viscous fluids and ζ f = ∞ corresponds to purely elastic solids. The special case ζ f > 1 > Oh (τ f >

tc > tv) corresponds to an inviscid elastic fluid (56), which is typical of dilute polymer concentra-
tions, such as those typically used in bioinks (57, 58).Whenever an external force is present in the
system, such as gravity, an additional dimensionless number can be defined relative to the chosen
timescale, e.g., for gravity the elastogravity number α = ρgL/µ0 or Bond number Bo = ρgL2/σ .
Lastly, whenever the domain is of finite size, then an aspect ratio 3 = Lx/Ly can be defined, e.g.,
the slenderness of a cylinder 3 = R/L.

3.3. Elastocapillary-Gravity Waves

Free surface waves travel on a semi-infinite material with dispersion relationship ω(k). For a
pure elastic solid, Rayleigh (59) showed that the dimensionless wave frequency β = ρω2/µk2 is
determined from the following characteristic equation:

β3 − 8β2 + 8β (3 − 2κ ) − 16(1 − κ ) = 0. 11.

For incompressible materials κ → 0, Equation 11 admits the Rayleigh wave dispersion
relationship,

ω = 0.955
√

µ

ρ
k, 12.

which shows pure elastic waves are nondispersive and propagate with a constant wave speed
c= ω/k that scales as c ∼ √

µ/ρ. In contrast, for a pure liquid thewaves formed are capillary-gravity
waves with dispersion relationship (60),

ω =
√
gk+ σ

ρ
k3. 13.

Here, gravity is introduced into the problem through the normal stress boundary condition,
Equation 7, as an excess hydrostatic pressure due to the interface deflection from the base state.
Unlike elastic Rayleigh waves, capillary-gravity waves are dispersive with a wave speed that de-
pends on the wave number k; the speed of gravity waves c ∼ k−1/2 decreases with wave number,
while the speed of capillary waves c ∼ k1/2 increases with wave number. For soft viscoelastic
materials, one should expect the dispersion relationship to encompass both Rayleigh waves and
capillary-gravity waves in what is referred to as elastocapillary-gravity waves.

Harden, Pleiner & Pincus (61) put forth the first model of surface waves on a viscoelastic
material using a hydrodynamic theory of polymeric liquids. The dispersion relationship is given
by

(
iω + 2ν(ω)k2

)2 − 4ν(ω)2k4
(
1 + iω

ν(ω)k2

)1/2

+ σk3

ρ
= 0, 14.

where ν(ω) is the complex kinematic viscosity defined by ν(ω) = ν∗(ω) + µ(ω)/iω, with ν∗(ω)
and µ(ω) being the frequency-dependent viscosity and shear modulus, respectively. Their model
predicts capillary waves (ω ∼ k3/2) at the surface tension-dominated limit and Rayleigh waves
(ω ∼ k) at the elasticity-dominated limit, as well as overdamped nonpropagating waves (ω ∼ ik) at
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the viscosity-dominated limit. A similar approach has been taken by Onodera & Choi (62), who
formulate theirmodel using an elasticity theory.The hydrodynamic and elasticity approaches yield
similar results. These theoretical predictions were corroborated by the seminal experiments of
Monroy&Langevin (63),who studied electrically excited traveling waves on agarose gel (shown in
Figure 4a,which plots thewave speed c against the frequency f ). In addition to observing crossover
behavior at frequency f0 between elastic waves and capillary waves with increasing wave number k,
they also observed modal coexistence of a propagating Rayleigh wave and propagating capillary-
gravity wave for a single driving frequency in the crossover region. The review article by Monroy
(68) provides a very detailed discussion and historical perspective of this important problem in
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Figure 4 (Figure appears on preceding page)

Elastocapillary-gravity waves. (a) Traveling wave speed c against frequency f (Hz) on a soft gel substrate reveals capillary waves above
and the combination of capillary waves and elastic waves below the elastocapillary transition frequency f0. (b) Standing wave frequency
ω against scaled wave number k

√
µ/ρ shows a collapse of the data for elastic waves and noncollapse highlighting capillary effects on the

dispersion relationship. (c) A cylindrical container filled with a soft gel is turned upside down and subject to the buoyancy-driven
Rayleigh–Taylor instability. The surface remains flat for µ = 40 Pa but can exhibit one of two unique surface patterns when µ = 32 Pa,
the (1,0) and (1,1) modes. (d) Viscoelasticity affects the Rayleigh–Taylor instability of a soft PDMS gel with large relaxation time in a
rectangular container. (e) Faraday waves appear on the surface of a gel in a mechanically vibrated container and exhibit a subharmonic
response such that the wave frequency f is half the driving frequency fd, f = fd/2. The corresponding surface wave pattern is
characterized by a continuous wavelength λ for large containers (top) and conforms to the container geometry for small containers
(bottom), and is described by a discrete mode number pair (n, ℓ) for the cylindrical container shown here. ( f ) A frequency sweep plotting
acceleration A against driving frequency fd reveals an instability tongue for each mode (n, ℓ), above which one observes that wave
pattern. (g) The shape of the instability tongue, e.g., for the (1,2) mode, depends on the shear modulus µ. Panel a adapted with
permission from Reference 63; provided by F. Monroy. Panel b adapted from Reference 64 with permission from the Royal Society of
Chemistry. Panel c adapted with permission from Reference 65; provided by S. Cai. Panel d adapted with permission from
Reference 66; copyright 2023 American Chemical Society and provided by J. Nunes and H. Stone. Panel e adapted from Reference 64,
with permission from the Royal Society of Chemistry, and with permission from Reference 67, copyright 2020 American Physical
Society. Panels f and g adapted with permission from Reference 67; copyright 2020 American Physical Society. Abbreviation:
PDMS, polydimethylsiloxane.

the field of elastocapillarity. More recently, Shao et al. (64) have studied standing elastocapillary-
gravity waves onmechanically vibrated agarose gels in a regime where the elastocapillary ℓe = σ/µ

and elastogravity ℓg = µ/ρg lengths are of similar magnitude ℓe, ℓg ∼ 0.01 − 1 cm, as shown in
Figure 4b, which plots the wave frequency ω against Rayleigh wave frequency k

√
µ/ρ for a range

of shear modulus 1 < µ < 260Pa showing where capillarity is important. Further experiments by
Chantelot et al. (69) on the samematerial studied the effect of thickness of the gel substrate, which
enters the problem as an additional length scale h and is important whenever it is similar in size
to ℓe and/or ℓg.

Elastocapillary-gravity waves in small containers conform to the container geometry, as shown
in the experiments by Shao et al. (70, 71) in mechanically excited cylindrical containers. Here,
the spatial structure of the wave is essentially described by a Bessel function Jℓ(knℓr) defined
by the mode number pair (n, ℓ). For small containers, the boundary conditions at the contact line
on the container sidewall become important, and one often creates (a) pinned or (b) freely sliding
conditions in experiment, and this affects the wave frequency. Wilson et al. (72) have derived a
dispersion relationship,

λnℓ ≡ ω
√

ρR3/σ = iOhk2nℓ ±
√(

Boknℓ + k3nℓ
)
tanh (knℓh) + 2k2nℓ

1
6

− Oh2k4nℓ, 15.

using the modeling approach of Harden et al. (61) but adapted for the case of a material in a cylin-
drical container with constant viscosity and constant elasticity and freely sliding contact line.Here,
knℓ is the nth zero of J′

ℓ(k), Bo = ρgR2/σ is the Bond number, and h = H/R is the container aspect
ratio. For pinned contact-line conditions, the analysis is slightly more involved, and a Rayleigh–
Ritz variational procedure is invoked over a constrained function space, precluding a closed form
dispersion relationship for this case. This model agrees well with a wide range of experimental
observations.

3.3.1. Rayleigh–Taylor instability. For the elastocapillary-gravity waves discussed above, grav-
ity is typically oriented such that the densermedium (gel) is located below the lightermedium (air),
giving rise to a stable configuration in which surface waves can only be generated through external
forcing. If the configuration is flipped, i.e., the denser medium lies above the lighter medium, the
interface is susceptible to the buoyancy-driven Rayleigh–Taylor instability (RTI) (73, 74). This
is readily seen by examining Equation 13 for g < 0 and σ = 0, which gives rise to an imaginary
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frequency ω ∼ i
√
gk, which corresponds to an exponential growth rate. Here, surface tension sta-

bilizes higher wave numbers. For a pure liquid, the interface is always unstable to RTI and appears
in fields such as astrophysics and turbulent mixing, as described in the review by Sharp (75). For
soft solids, the elastic resistance can stabilize the RTI provided the elasticity is greater than some
threshold value. This was clearly demonstrated in the experiments by Mora et al. (76), who ob-
served the destabilization of polyacrylamide gels in upside-down cylindrical containers above a
critical elastogravity number α = ρgh/µ > 6.22, where h is the depth of the gel. Here, the in-
terface can adopt a number of patterns, which is determined by pattern selection of a dominant
mode shape that conforms to the cylindrical container. In certain parameter regimes, two dom-
inant modes may coexist as demonstrated in the experiments by Zheng et al. (65) and shown in
Figure 4c, where the (1, 0) and (1, 1) modes are observed for the same experimental conditions.
In general, there usually exists a number of unstable modes, and the one that is ultimately ob-
served is the one with the fastest growth rate, as determined by dynamic stability analysis, which
has been performed for the RTI of a soft viscoelastic material by Tamim & Bostwick (77). They
document the dominant instability mode, as it depends on the relevant dimensionless parame-
ters, showing how the container geometry plays a key role in the pattern formation, which agrees
well with experimental observations (65). Slutzky et al. (66) have experimentally studied RTI in
cross-linked PDMS in a rectangular channel with µ0 ∼ O (1 Pa) and high relaxation times τ ∼ O
(10 s) to illustrate the combined effect of viscoelasticity and surface tension on the pattern forma-
tion (cf. Figure 4d). In particular, they show that viscous dissipation in the solid during growth of
the primary instability can lead to intricate secondary buckling patterns. Outside of gels, RTI has
similarly been observed in elastic and elastoplastic materials with relevance to high energy density
physics (78–81). More recent work on RTI has considered additional effects such as convergent
geometry and centrifugal forces, paving the way for utilizing this mechanism in the design of soft
solids (82, 83).

3.3.2. Dynamics of Plateau–Rayleigh instability in viscoelastic solids. The method of dy-
namic stability analysis has also been applied to PRI, in a similar manner to that of Rayleigh’s
contribution to the original fluid instability. Tamim & Bostwick (84) have derived dispersion re-
lations that predict the growth rate of unstable modes in linear soft viscoelastic solid and hollow
cylinders, which recover the static stability limit for the solid cylinder 6c = 6 and hollow cylin-
der 6c = 2. Using a power-law rheological model applicable to cross-linking polymers, they
showed a decrease in the dominant wave number with increased elasticity and viscous dissipa-
tion in both cases. Pandey et al. (85) have studied the dynamic mode selection in neo-Hookean
elastic threads under a slender-body approximation and showed that the fastest growing wave
number determines the nonlinear states such as the beads-on-a-string or cylinders-on-a-string
structure.

3.4. Parametric Waves

Parametric oscillations occur in systems in which one of the governing parameters exhibits tem-
poral periodicity and often leads to a threshold instability when the system is driven beyond a
critical parameter value. This was observed experimentally for capillary-gravity waves on a ver-
tically vibrated fluid bath by Faraday (86), who observed a subharmonic wave response in which
the wave oscillates at half the driving frequency,ω = ωd/2. These are more commonly referred to
as Faraday waves, which have become synonymous with pattern formation on interfaces (see the
sidebar titled Patterning Surfaces by Mechanical Vibration). For reference, we refer the reader
to the review by Miles & Henderson (94) on Faraday waves in Newtonian fluids with a focus on
geometric confinement and nonlinear modal interactions.
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Tongues-of-
instability: regions of
parameter space for
the Mathieu
equation where a given
system response—
subharmonic,
harmonic, and
superharmonic—is
observed

PATTERNING SURFACES BY MECHANICAL VIBRATION

It has been known since the time of Faraday (1831) (86) that a standing wave pattern can be formed at the free surface
of a mechanically vibrated container filled with fluid, hereafter referred to as Faraday waves. At that time, there was
some dispute regarding the temporal wave response, with Faraday (86) reporting waves that oscillate at half the
driving frequency (subharmonic response), whereas Matthiessen (87) reported waves that oscillate at the driving
frequency (harmonic response). Lord Rayleigh (88) conducted experiments that supported Faraday’s observations.
This dispute was resolved by the theoretical analysis put forward by Benjamin & Ursell (89), who showed that the
wave amplitude obeyed a Mathieu equation with a solution that supported both sets of observations. Since that
time, Faraday waves have become synonymous with pattern formation and have been used to study nonlinear and
emergent phenomena in fluids, including the redistribution of particles (90) and surfactants (91) on thin liquid films,
and the rearrangement of layers of granular materials (92) and to induce turbulent mixing of twomiscible fluids (93).
Recent interest in tissue engineering has motivated the use of Faraday waves to control the assembly of organoid
cells in bioprinting technologies, where the working material is a soft hydrogel (6). Experiments by Shao et al. (64,
67) highlight the role of solid surface tension on Faraday waves in soft gels.

The classical modeling approach for Faraday waves is attributed to Benjamin & Ursell (89)
and involves introducing a time-dependent gravitational acceleration g(t) = g − A cos(ωdt), with
A being the driving acceleration, into the governing Equations 6 as a body force F = ρg(t )ẑ. This
gives rise to a set of Mathieu equations for the respective surface wave modes x,

ẍ+ cẋ+ (p− A cos(ωdt )) x = 0, 16.

where p = ω2
0 is related to the natural frequency ω0 for the system, and the damping constant c

incorporates various forms of dissipation in the system, such as viscous dissipation or contact-line
dissipation in systems with moving contact lines. Standing waves appear as solutions of the Math-
ieu equation (Equation 16) in regions of the driving frequency–amplitude ωd–A parameter space
defined by the tongues-of-instability for subharmonic, harmonic, and superharmonic temporal
responses, respectively. Floquet theory is often used to determine the shape of the tongues (95).
Damping shifts the tongues to higher accelerations, leading to a nontrivial threshold acceleration
Ac. For most pure liquid systems, the subharmonic tongue has the lowest threshold acceleration
Ac and, for this reason, are most readily observed experimentally. However, there are exceptions
for thin viscous liquid layers in which the harmonic instability tongue has shifted lower than the
subharmonic tongue (96). Viscoelastic effects in polymeric liquids can significantly alter the Fara-
day wave properties by modifying the threshold acceleration for surface waves (97, 98). Harmonic
waves are the dominant instability mode for a Maxwell model fluid when elastic effects control
the material response (99, 100).

Faraday waves have been recently observed by Shao et al. on agarose gels in large containers
(64) and small cylindrical containers (67). These surface waves exhibit a subharmonic temporal
response with continuous spatial wave number for large containers (cf. Figure 4e, top), but con-
forms to the container geometry for small containers (cf. Figure 4e, bottom) and are defined by
the mode number (n, ℓ) discussed above. Figure 4f shows the instability tongues for an ultrasoft
gel in a small cylindrical container by plotting the driving acceleration A against the driving fre-
quency fd. Note that some modes are accessible over only a small frequency range, highlighting
modal competition in the emergent pattern formation behavior. For a fixed mode (1, 2),Figure 4g
shows how the instability tongues shift toward higher resonance frequency and threshold accel-
eration with increasing shear modulus, thus highlighting the role of elastocapillarity. Theoretical
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Ultrasonic levitation:
an experimental
technique for
suspending materials
in air using acoustic
radiation pressure,
which has been useful
for creating
containerless
conditions

analysis by Bevilacqua et al. (101) for a semi-infinite slab of neo-Hookean material shows how
pattern formation critically depends on the elastocapillary number, with highly elastic materials
favoring harmonic waves over those of subharmonic ones. For low driving frequency, their analysis
recovers the stability limit for the elastic RTI reported by Mora et al. (76).

3.5. Drop Oscillations

It has been known since the time of Lord Rayleigh (1879) (28) that an inviscid liquid drop oscillates
about its spherical equilibrium shape, reflecting a balance between inertia and capillarity, with
characteristic frequency given by

ω2
σ = n(n+ 2)(n− 1)σ

ρR3
, 17.

with n being the polar wave number. This corresponds to the 6 = ∞ limit with the dynamics well
established for Newtonian fluids (102–104) having been verified experimentally under terrestrial
(105) and microgravity (106) conditions, respectively. In contrast, the elastic limit 6 = 0 corre-
sponding to the spheroidal oscillations of a linear elastic sphere has been established by Lamb
(107–110), with frequency given by

ω2
µ = C(n)

µ

ρR2
. 18.

Here, the constant C(n) must be determined numerically from a transcendental equation that
arises from a solvability condition.

Shao et al. (111) have studied the oscillations of agarose gel drops in ultrasonic levitation fo-
cusing on the fundamental n = 2 oblate/prolate mode. By amplitude modulating the carrier wave
field, shape oscillations were excited and frequency response diagrams, such as those shown in
Figure 5a, were obtained through a frequency sweep with the natural frequency corresponding
to that at the resonance peak. They performed experiments over a wide range of elastocapillary
numbers 6 capturing the transition from capillary-dominated to elasticity-dominated motions,
as shown in Figure 5b, which plots the scaled frequency ω/ωσ against 6. To better understand
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Figure 5

Oscillating gel drop in ultrasonic levitation has (a) a frequency response diagram with a single maximum associated with the resonance
frequency for the fundamental n = 2 mode. (b) The scaled resonance frequency ω/ωσ (with ωσ being the capillary frequency) plotted
against the elastocapillary number 6 a σ/GR reveals the elastocapillary transition from elastic wave behavior (dot-dashed line) 6 → 0 to
capillary wave behavior (dashed line) 6 → ∞. Figure adapted with permission from Reference 111; copyright 2019 American Physical
Society.
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Sessile drops: drops
on a solid substrate

the elastocapillary transition, they introduce a low-order model in which surface tension and elas-
ticity can be idealized as springs in parallel that admits an effective natural frequency for the
drop,

ω

ωσ

=
√
1 +

(
C
8

)
1
6

. 19.

The best-fit parameter value C = 12.75 to the experimental data is slightly greater than that
predicted by existing elastic theories C = 7.1, C = 10 (110, 112) number. The crossover region is
determined by setting ω2

σ = ω2
µ and gives rise to a critical elastocapillary number 6c = 1.59.

Sessile drops differ from free drops through their wetting interactions with the solid substrate,
and there is no analogous closed-form dispersion relationship to Equation 17, even for inviscid
sessile drops. However, Steen et al. (113) have revealed the complexity of the frequency spectrum
for liquid sessile drops and organize the associated motions into a droplet motion periodic table
(DMPT), documenting features such as spectral splitting and spectral reordering. Chakrabarti &
Chaudhury (114) study the oscillations of sessile drops made of polyacrylamide gels, which are
excited by white noise. Here, the resonant frequency is identified by peaks in the power spectrum.
They scale their experimental data using a modified capillary frequency, which is necessary to
account for the wetting properties, and show that their data collapse with a dispersion relationship
nearly identical to Equation 19.

3.6. Drop Vibration Rheometer

There is a long history of using the oscillations of levitated drops for measuring fluid prop-
erties, as the procedure eliminates wetting effects making it a containerless process (115–119).
Shao et al. (120) have used this approach to measure the surface tension and viscosity of a soft
agarose gel drop, which is something that has been notoriously difficult to measure. We summa-
rize the approach, which is based on lumped-parameter modeling and exploits the similarity of
drop oscillations with the damped driven oscillator (121, 122),

ẍ+ 2ζωnẋ+ ω2
nx = A cosωt, 20.

with ζ being the damping ratio, ωn is the natural frequency, and (A, ω) are the driving amplitude
and frequency, respectively. The steady-state frequency response of Equation 20 is given by

x
A

= 1√(
1 −

(
ω

ωn

)2)2
+

(
2ζ

(
ω

ωn

))2
, 21.

which can be fit to experimental data (x/A, ω) to obtain ωn and ζ , from which surface tension σ

and viscosity µ can be inferred frommodels that define the spring constant and dashpot constants
in terms of the material parameters. For an agarose gel drop, the normalized spring constant that
incorporates elasticity and capillarity is given by Equation 19, whereas the damping ratio can be
determined by evaluating the viscous dissipation, as computed by Lamb (60) and given by

ζ = 5µ
ρR2ωn

. 22.

There are limitations to this approach, which restricts to Newtonian materials whose elasticity
and surface tension are uncoupled.

More sophisticated models of soft drop oscillations have been put forth by Tamim & Bostwick
for a purely elastic drop (123) and viscoelastic drop with arbitrary rheology, including Kelvin–
Voigt or Maxwell models (124), which are based on a solution of the field equations for a linear
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Spheroidal modes:
characteristic
frequency and mode
shapes given by the
spherical harmonic
functions Y m

n where n
and m are polar and
azimuthal mode
numbers, respectively

viscoelastic material. This approach admits two types of solutions, (a) spheroidal modes (i.e.,
shape-change modes) and (b) torsional (rotational) modes, the latter of which are unaffected by
elastocapillarity. For the spheroidal modes with fixed polar mode number n, there exists an infin-
ity of radial motions defined by a radial mode number, each of which exhibits an elastocapillary
transition that is accompanied by a qualitative change in the deformation field whereby a layer
of recirculation vortices develop at the free surface. Viscoelastic effects give rise to complex fre-
quencies characterized by an oscillation frequency and decay rate. Lastly, they predict a breathing
mode instability for compressible drops, similar to that seen for bubbles in which surface tension
overcomes the material resistance leading to droplet collapse, which appears in a region of the 6

and κ parameter space.

4. CONCLUDING REMARKS

Soft solids are shaped by capillarity on scales less than the elastocapillary length, which is re-
sponsible for a number of beautiful and perhaps unexpected phenomena whose literature we
have reviewed here. The resulting shape morphologies are either in equilibrium or have a pat-
tern that evolves dynamically and, as such, can be broadly categorized into static and dynamic
phenomena.

The two-phase soft solid systems discussed here can be accurately modeled by a constant sur-
face tension.However, amore general description of surface stress with well-defined surface elastic
constants may be required when the material is subjected to an external strain. One way to deter-
mine the strain-dependent surface response in soft solids is through the external stretch induced
by a liquid droplet on a soft substrate, i.e., a three-phase system (17, 18), but here the experimen-
tal measurement is complicated by the stress singularity at the contact line (19, 125, 126). One
proposed solution is to measure surface stresses in two-phase systems by inducing strains through
alternative means (127, 128). Bain et al. (127) experimentally studied the surface stress through
the free surface topography of PDMS gels, cured in a mold and then exposed to an applied ex-
ternal strain, to demonstrate the Shuttleworth effect. Although this technique for characterizing
the solid surface stress using a two-phase system is more promising than a three-phase system,
it still needs to be compared against different testing protocols. For example, Carbonaro et al.
(128) have shown that spinning polyacrylamide hydrogels behave like a neo-Hookean material
with constant surface tension. To address such issues associated with surface stress, a robust theo-
retical framework should be developed that can unify the different strain conditions and account
for hyperelastic material response at large deformations (129, 130).

Nonlinear material response is readily seen in soft solids where, for example, strain stiffening
can affect pattern formation (131, 132). This will become more important as novel soft materials
are designed with desired characteristics like biocompatibility that necessitate a decoupling of elas-
tic and viscous behavior in highly deformed states, as is relevant to novel noncontact rheological
measurements (133, 134). Nonlinearity also appears through finite amplitude deformations that
arise from instabilities, such as PRI or RTI, and lead to secondary stable states that are unique
to soft solids (135). Models that include nonlinearity due to the aforementioned effects should be
developed.

Surface tension in liquids is responsible for a broader range of hydrodynamic phenomena that
has yet to be explored in soft solids (136). For example, surface tension gradients give rise to
the well-known Marangoni effect that drives interfacial flows responsible for, e.g., tears of wine
(137, 138). The Marangoni effect in solids may explain cell aggregation and tissue migration dur-
ing biological processes such as morphogenesis and wound healing (139, 140). The introduction
of surface tension in mechanical models of soft solids can also provide insights into a variety of
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biological processes such as the patterning of damaged axons (141) and muscle contraction during
inhalation (142). From an engineering design perspective, there is great potential for soft struc-
tural prototypes in which surface tension can induce active shape changes when driven out of
equilibrium (143, 144). Lastly, recent studies of capillarity in solids and solid-like materials (e.g.,
yield stress fluids) have given rise to new areas of research such as plastocapillarity (145) and
poroelastocapillarity (146) that should be explored further.

SUMMARY POINTS

1. Self-capillarity in solids arises from the free surface energy and becomes important on
length scales L that are smaller than the elastocapillary length ℓe = σ/µ. For soft solids,
such as hydrogels, ℓe can be millimetric with solid capillarity responsible for many new
and unexpected results. For both static and dynamic phenomena, the elastocapillary
number 6 a ℓe/L = σ/µL helps define a transition 6c between elasticity-dominated
6 < 6c and capillary-dominated 6 > 6c material response.

2. Surface tension affects the static equilibrium shape of soft solids, as defined relative
to rigid solids, through rounding of sharp corners and inducing shape-change mor-
phologies, such as pearling, creasing, and wrinkling. These unique shapes result from a
competition between the elastic energy cost due to deformation and the gain in surface
energy due to shape change.

3. The regularization of the Biot instability of a uniaxial compressed solid by surface tension
is responsible for predicting a dominant wavelength for the wrinkling patterns that has
been validated experimentally, thus helping resolve a historical paradox.

4. A number of pattern formation phenomena have been recently observed in soft
solids that are analogous to classical hydrodynamic interfacial instabilities, such as
the Rayleigh–Taylor instability, the Plateau–Rayleigh instability, elastocapillary-gravity
waves, Faraday waves, and drop oscillations, but whose stability properties depend on
elasticity through a number of new dimensionless numbers. The resulting patterns can
be identified through dynamic stability analysis by identification of the dominant spatial
mode with maximum growth rate.

5. Polymeric soft gels often exhibit nontrivial viscoelastic behavior that affects the dynamics
of soft solids, as defined by the Deborah number ζ .

6. The wave dynamics in soft solids can be used as a nondestructive diagnostic technique
to measure the surface tension of soft solids, which has been notoriously challenging, as
well as other material properties such as viscosity and elasticity. This technique has been
applied to planar surface waves and acoustically levitated drops, with the latter being
notable as a containerless process.

FUTURE ISSUES

1. Future theoretical models should include nonlinear constitutive laws for hyperelastic
materials, as required to generalize the Shuttleworth effect and compare with relevant
experiments for large deformations.
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2. Interfacial instabilities, such as Plateau–Rayleigh instability and Rayleigh–Taylor insta-
bility (RTI), in soft solids have well-defined stability thresholds with pattern formation
determined by mode selection of the primary instability. However, secondary instabil-
ities have been observed as bifurcations from the primary instability branch, e.g., for
RTI, when the size of the deformation becomes large enough to induce nonlinear ef-
fects. Large deformation models should be developed so as to better understand how to
access and harness these secondary instabilities.

3. Pattern formation in soft solids is affected by container geometry (or confinement), but
it is not well known what the role of the physics at the soft solid–container interface
plays in that process, either experimentally or theoretically. Here, adhesion or frictional
effects will couple with elastocapillary effects at the free surface to give rise to potentially
new multiphysics phenomena.

4. Surface stress gradients can give rise to a Marangoni effect in solids that has shown to
be responsible for cell migration through durotaxis and mechanotaxis but could also
be used for surface patterning of soft solids that could be guided by our understanding
of analogous hydrodynamic flows, e.g., Rayleigh–Benard–Marangoni convection. Such
gradients could be generated by mechanics, chemistry, biology, or active soft matter.

5. Much of the existing literature has been fundamental, but there exists a lot of potential
in applied areas in which self-capillarity is relevant, including biology, tribology, and
nanotechnology.

6. Advances in polymer chemistry have allowed for the fabrication of designer polymer
gels with prescribed rheology. Models must be developed for arbitrary rheology so as to
better predict and control surface patterns for, e.g.,manufacturing processes that involve
soft materials.

7. Self-capillarity in soft materials with a more complex rheology has given rise to the new
fields of plastocapillarity (yield stress materials) and poroelastocapillarity (poroelastic
materials), which are in their infancy and should be explored further.
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