
The break-up of a fluid jet into drops is a function of fluid properties
such as density, viscosity, and surface tension. [Reprinted with
permission from American Institute of Physics (Ref. 6) and the American
Association for the Advancement of Science (Ref. 7).]
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Fluid mechanics is that discipline within the broad field of applied mechanics concerned with
the behavior of liquids and gases at rest or in motion. This field of mechanics obviously 
encompasses a vast array of problems that may vary from the study of blood flow in the 
capillaries 1which are only a few microns in diameter2 to the flow of crude oil across Alaska
through an 800-mile-long, 4-ft-diameter pipe. Fluid mechanics principles are needed to ex-
plain why airplanes are made streamlined with smooth surfaces for the most efficient flight,
whereas golf balls are made with rough surfaces 1dimpled2 to increase their efficiency. Nu-
merous interesting questions can be answered by using relatively simple fluid mechanics
ideas. For example:

� How can a rocket generate thrust without having any air to push against in outer space?
� Why can’t you hear a supersonic airplane until it has gone past you?
� How can a river flow downstream with a significant velocity even though the slope of

the surface is so small that it could not be detected with an ordinary level?
� How can information obtained from model airplanes be used to design the real thing?
� Why does a stream of water from a faucet sometimes appear to have a smooth surface,

but sometimes a rough surface?
� How much greater gas mileage can be obtained by improved aerodynamic design of

cars and trucks?

The list of applications and questions goes on and on—but you get the point; fluid mechanics
is a very important, practical subject. It is very likely that during your career as an engineer
you will be involved in the analysis and design of systems that require a good understanding
of fluid mechanics. It is hoped that this introductory text will provide a sound foundation of
the fundamental aspects of fluid mechanics.

3

1
Introduction

Fluid mechanics is
concerned with the
behavior of liquids
and gases at rest
and in motion.
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One of the first questions we need to explore is, What is a fluid? Or we might ask, What is
the difference between a solid and a fluid? We have a general, vague idea of the difference.
A solid is “hard” and not easily deformed, whereas a fluid is “soft” and is easily deformed
1we can readily move through air2. Although quite descriptive, these casual observations of
the differences between solids and fluids are not very satisfactory from a scientific or
engineering point of view. A closer look at the molecular structure of materials reveals that
matter that we commonly think of as a solid 1steel, concrete, etc.2 has densely spaced molecules
with large intermolecular cohesive forces that allow the solid to maintain its shape, and to
not be easily deformed. However, for matter that we normally think of as a liquid 1water, oil,
etc.2, the molecules are spaced farther apart, the intermolecular forces are smaller than for
solids, and the molecules have more freedom of movement. Thus, liquids can be easily
deformed 1but not easily compressed2 and can be poured into containers or forced through a
tube. Gases 1air, oxygen, etc.2 have even greater molecular spacing and freedom of motion
with negligible cohesive intermolecular forces and as a consequence are easily deformed 1and
compressed2 and will completely fill the volume of any container in which they are placed.

Although the differences between solids and fluids can be explained qualitatively on
the basis of molecular structure, a more specific distinction is based on how they deform
under the action of an external load. Specifically, a fluid is defined as a substance that deforms
continuously when acted on by a shearing stress of any magnitude. A shearing stress 1force
per unit area2 is created whenever a tangential force acts on a surface. When common solids
such as steel or other metals are acted on by a shearing stress, they will initially deform
1usually a very small deformation2, but they will not continuously deform 1flow2. However,
common fluids such as water, oil, and air satisfy the definition of a fluid—that is, they will
flow when acted on by a shearing stress. Some materials, such as slurries, tar, putty, toothpaste,
and so on, are not easily classified since they will behave as a solid if the applied shearing
stress is small, but if the stress exceeds some critical value, the substance will flow. The study
of such materials is called rheology and does not fall within the province of classical fluid
mechanics. Thus, all the fluids we will be concerned with in this text will conform to the
definition of a fluid given previously.

Although the molecular structure of fluids is important in distinguishing one fluid from
another, it is not possible to study the behavior of individual molecules when trying to describe
the behavior of fluids at rest or in motion. Rather, we characterize the behavior by considering
the average, or macroscopic, value of the quantity of interest, where the average is evaluated
over a small volume containing a large number of molecules. Thus, when we say that the
velocity at a certain point in a fluid is so much, we are really indicating the average velocity
of the molecules in a small volume surrounding the point. The volume is small compared
with the physical dimensions of the system of interest, but large compared with the average
distance between molecules. Is this a reasonable way to describe the behavior of a fluid? The
answer is generally yes, since the spacing between molecules is typically very small. For
gases at normal pressures and temperatures, the spacing is on the order of and for
liquids it is on the order of The number of molecules per cubic millimeter is on
the order of for gases and for liquids. It is thus clear that the number of molecules
in a very tiny volume is huge and the idea of using average values taken over this volume is
certainly reasonable. We thus assume that all the fluid characteristics we are interested in
1pressure, velocity, etc.2 vary continuously throughout the fluid—that is, we treat the fluid as
a continuum. This concept will certainly be valid for all the circumstances considered in this
text. One area of fluid mechanics for which the continuum concept breaks down is in the
study of rarefied gases such as would be encountered at very high altitudes. In this case the
spacing between air molecules can become large and the continuum concept is no longer
acceptable.

10211018
10�7 mm.

10�6 mm,

4 � Chapter 1 / Introduction

1.1 Some Characteristics of Fluids

A fluid, such as 
water or air, de-
forms continuously
when acted on by 
shearing stresses of
any magnitude.
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1.2 Dimensions, Dimensional Homogeneity, and Units

1.2 Dimensions, Dimensional Homogeneity, and Units � 5

Since in our study of fluid mechanics we will be dealing with a variety of fluid characteristics,
it is necessary to develop a system for describing these characteristics both qualitatively and
quantitatively. The qualitative aspect serves to identify the nature, or type, of the character-
istics 1such as length, time, stress, and velocity2, whereas the quantitative aspect provides a
numerical measure of the characteristics. The quantitative description requires both a number
and a standard by which various quantities can be compared. A standard for length might be
a meter or foot, for time an hour or second, and for mass a slug or kilogram. Such standards
are called units, and several systems of units are in common use as described in the following
section. The qualitative description is conveniently given in terms of certain primary quan-
tities, such as length, L, time, T, mass, M, and temperature, These primary quantities can
then be used to provide a qualitative description of any other secondary quantity: for example,

and so on, where the symbol is used to
indicate the dimensions of the secondary quantity in terms of the primary quantities. Thus,
to describe qualitatively a velocity, V, we would write

and say that “the dimensions of a velocity equal length divided by time.” The primary
quantities are also referred to as basic dimensions.

For a wide variety of problems involving fluid mechanics, only the three basic dimen-
sions, L, T, and M are required. Alternatively, L, T, and F could be used, where F is the basic
dimensions of force. Since Newton’s law states that force is equal to mass times acceleration,
it follows that or Thus, secondary quantities expressed in terms
of M can be expressed in terms of F through the relationship above. For example, stress,
is a force per unit area, so that but an equivalent dimensional equation is

Table 1.1 provides a list of dimensions for a number of common physical
quantities.

All theoretically derived equations are dimensionally homogeneous—that is, the di-
mensions of the left side of the equation must be the same as those on the right side, and all
additive separate terms must have the same dimensions. We accept as a fundamental premise
that all equations describing physical phenomena must be dimensionally homogeneous. 
If this were not true, we would be attempting to equate or add unlike physical quantities,
which would not make sense. For example, the equation for the velocity, V, of a uniformly
accelerated body is

(1.1)

where is the initial velocity, a the acceleration, and t the time interval. In terms of
dimensions the equation is

and thus Eq. 1.1 is dimensionally homogeneous.
Some equations that are known to be valid contain constants having dimensions. The

equation for the distance, d, traveled by a freely falling body can be written as

(1.2)

and a check of the dimensions reveals that the constant must have the dimensions of 
if the equation is to be dimensionally homogeneous. Actually, Eq. 1.2 is a special form of
the well-known equation from physics for freely falling bodies,

(1.3)d �
gt 

2

2

LT 
�2

d � 16.1t 
2

LT 
�1 � LT 

�1 � LT 
�1

V0

V � V0 � at

s � ML�1T 
�2.

s � FL�2,
s,

M � FL�1 T 
2.F � MLT 

�2

V � LT 
�1

�density � ML�3,velocity � LT 
�1,area � L2,

™.

Fluid characteris-
tics can be de-
scribed qualitatively
in terms of certain 
basic quantities
such as length,
time, and mass.
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in which g is the acceleration of gravity. Equation 1.3 is dimensionally homogeneous and
valid in any system of units. For the equation reduces to Eq. 1.2 and thus
Eq. 1.2 is valid only for the system of units using feet and seconds. Equations that are restricted
to a particular system of units can be denoted as restricted homogeneous equations, as opposed
to equations valid in any system of units, which are general homogeneous equations. The
preceding discussion indicates one rather elementary, but important, use of the concept of
dimensions: the determination of one aspect of the generality of a given equation simply
based on a consideration of the dimensions of the various terms in the equation. The concept
of dimensions also forms the basis for the powerful tool of dimensional analysis, which is
considered in detail in Chapter 7.

g � 32.2 ft�s2

6 � Chapter 1 / Introduction

� TA B L E 1 . 1
Dimensions Associated with Common Physical Quantities

FLT MLT
System System

Acceleration
Angle
Angular acceleration
Angular velocity
Area

Density
Energy FL
Force F
Frequency
Heat FL

Length L L
Mass M
Modulus of elasticity
Moment of a force FL
Moment of inertia 1area2

Moment of inertia 1mass2
Momentum FT
Power
Pressure
Specific heat

Specific weight
Strain
Stress
Surface tension
Temperature

Time T T
Torque FL
Velocity
Viscosity 1dynamic2
Viscosity 1kinematic2

Volume
Work FL ML2T 

�2

L3L3

L2T 
�1L2T 

�1

ML�1T 
�1FL�2T

LT 
�1LT 

�1

ML2T 
�2

™™
MT 

�2FL�1

ML�1T 
�2FL�2

M 
0L0T 

0F 
0L0T 

0

ML�2T 
�2FL�3

L2T 
�2™�1L2T 

�2™�1

ML�1T 
�2FL�2

ML2T 
�3FLT 

�1

MLT 
�1

ML2FLT 
2

L4L4

ML2T 
�2

ML�1T 
�2FL�2

FL�1T 
2

ML2T 
�2

T 
�1T 

�1

MLT 
�2

ML2T 
�2

ML�3FL�4T 
2

L2L2

T 
�1T 

�1

T 
�2T 

�2

M 
0L0T 

0F 
0L0T 

0

LT 
�2LT 

�2

General homogen-
eous equations are
valid in any system
of units.
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1.2 Dimensions, Dimensional Homogeneity, and Units � 7

EXAMPLE
1.1

A commonly used equation for determining the volume rate of flow, Q, of a liquid through
an orifice located in the side of a tank is

where A is the area of the orifice, g is the acceleration of gravity, and h is the height of the
liquid above the orifice. Investigate the dimensional homogeneity of this formula.

SOLUTION

The dimensions of the various terms in the equation are ,
, ,

These terms, when substituted into the equation, yield the dimensional form:

or

It is clear from this result that the equation is dimensionally homogeneous 1both sides of the
formula have the same dimensions of 2, and the numbers 10.61 and 2 are dimen-
sionless.

If we were going to use this relationship repeatedly we might be tempted to simplify
it by replacing g with its standard value of and rewriting the formula as

(1)

A quick check of the dimensions reveals that

and, therefore, the equation expressed as Eq. 1 can only be dimensionally correct if the num-
ber 4.90 has the dimensions of Whenever a number appearing in an equation or for-
mula has dimensions, it means that the specific value of the number will depend on the sys-
tem of units used. Thus, for the case being considered with feet and seconds used as units,
the number 4.90 has units of Equation 1 will only give the correct value for 
when A is expressed in square feet and h in feet. Thus, Eq. 1 is a restricted homogeneous
equation, whereas the original equation is a general homogeneous equation that would be
valid for any consistent system of units. A quick check of the dimensions of the various terms
in an equation is a useful practice and will often be helpful in eliminating errors—that is, as
noted previously, all physically meaningful equations must be dimensionally homogeneous.
We have briefly alluded to units in this example, and this important topic will be considered
in more detail in the next section.

Q1in ft3�s2ft1�  2�s.

L1�  2T 
�1.

L3T 
�1 � 14.902 1L5�  22

Q � 4.90 A1h

32.2 ft �s2

12L3T 
�1

1L3T 
�12 � 3 10.61212 4 1L3T 

�12

1L3T 
�12 � 10.612 1L22 112 2 1LT 

�221�  21L21�  2

 h � height � L g � acceleration of gravity � LT 
�2 A � area � L2

 Q � volume�time � L3T 
�1

Q � 0.61 A12gh

1.2.1 Systems of Units

In addition to the qualitative description of the various quantities of interest, it is generally
necessary to have a quantitative measure of any given quantity. For example, if we measure
the width of this page in the book and say that it is 10 units wide, the statement has no
meaning until the unit of length is defined. If we indicate that the unit of length is a meter,
and define the meter as some standard length, a unit system for length has been established
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1and a numerical value can be given to the page width2. In addition to length, a unit must be
established for each of the remaining basic quantities 1force, mass, time, and temperature2.
There are several systems of units in use and we shall consider three systems that are
commonly used in engineering.

British Gravitational (BG) System. In the BG system the unit of length is the
foot 1ft2, the time unit is the second 1s2, the force unit is the pound 1lb2, and the temperature
unit is the degree Fahrenheit or the absolute temperature unit is the degree Rankine 
where

The mass unit, called the slug, is defined from Newton’s second law 
as

This relationship indicates that a 1-lb force acting on a mass of 1 slug will give the mass an
acceleration of 

The weight, 1which is the force due to gravity, g2 of a mass, m, is given by the
equation

and in BG units

Since the earth’s standard gravity is taken as 1commonly approximated as
2, it follows that a mass of 1 slug weighs 32.2 lb under standard gravity.

International System (SI). In 1960 the Eleventh General Conference on Weights
and Measures, the international organization responsible for maintaining precise uniform
standards of measurements, formally adopted the International System of Units as the inter-
national standard. This system, commonly termed SI, has been widely adopted worldwide
and is widely used 1although certainly not exclusively2 in the United States. It is expected
that the long-term trend will be for all countries to accept SI as the accepted standard and it
is imperative that engineering students become familiar with this system. In SI the unit of
length is the meter 1m2, the time unit is the second 1s2, the mass unit is the kilogram 1kg2, and
the temperature unit is the kelvin 1K2. Note that there is no degree symbol used when
expressing a temperature in kelvin units. The Kelvin temperature scale is an absolute scale
and is related to the Celsius 1centigrade2 scale through the relationship

Although the Celsius scale is not in itself part of SI, it is common practice to specify
temperatures in degrees Celsius when using SI units.

The force unit, called the newton 1N2, is defined from Newton’s second law as

Thus, a 1-N force acting on a 1-kg mass will give the mass an acceleration of 1 Standard
gravity in SI is 1commonly approximated as 2 so that a 1-kg mass weighs
9.81 N under standard gravity. Note that weight and mass are different, both qualitatively
and quantitatively! The unit of work in SI is the joule 1J2, which is the work done when the

9.81 m�s29.807 m�s2
m�s2.

1 N � 11 kg2 11 m �s22

K � °C � 273.15

1°C2

32.2 ft�s2
g � 32.174 ft�s2

w1lb2 � m 1slugs2  g 1ft�s22

w � mg

w
1 ft�s2.

1 lb � 11 slug2 11 ft �s22

acceleration2
1force � mass �

°R � °F � 459.67

1°R2,1°F2

8 � Chapter 1 / Introduction

Two systems of
units that are
widely used in engi-
neering are the
British Gravita-
tional (BG) System
and the Interna-
tional System (SI).

7708d_c01_008  8/2/01  3:31 PM  Page 8



point of application of a 1-N force is displaced through a 1-m distance in the 
direction of a force. Thus,

The unit of power is the watt 1W2 defined as a joule per second. Thus,

Prefixes for forming multiples and fractions of SI units are given in Table 1.2. For
example, the notation kN would be read as “kilonewtons” and stands for Similarly,
mm would be read as “millimeters” and stands for The centimeter is not an accepted
unit of length in the SI system, so for most problems in fluid mechanics in which SI units
are used, lengths will be expressed in millimeters or meters.

English Engineering (EE) System. In the EE system units for force and mass
are defined independently; thus special care must be exercised when using this system in
conjunction with Newton’s second law. The basic unit of mass is the pound mass 1lbm2, the
unit of force is the pound 1lb2.1 The unit of length is the foot 1ft2, the unit of time is the second
1s2, and the absolute temperature scale is the degree Rankine To make the equation
expressing Newton’s second law dimensionally homogeneous we write it as

(1.4)

where is a constant of proportionality which allows us to define units for both force and
mass. For the BG system only the force unit was prescribed and the mass unit defined in a

gc

F �
ma
gc

1°R2.

10�3 m.
103 N.

1 W � 1 J�s � 1 N # m�s

1 J � 1 N # m

1.2 Dimensions, Dimensional Homogeneity, and Units � 9

� TA B L E 1 . 2
Prefixes for SI Units

Factor by Which Unit
Is Multiplied Prefix Symbol

tera T
giga G
mega M
kilo k
hecto h

10 deka da
deci d
centi c
milli m
micro
nano n
pico p
femto f
atto a10�18

10�15

10�12

10�9

m10�6

10�3

10�2

10�1

102

103

106

109

1012

1It is also common practice to use the notation, lbf, to indicate pound force.

In mechanics it is
very important to
distinguish between
weight and mass.
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consistent manner such that Similarly, for SI the mass unit was prescribed and the
force unit defined in a consistent manner such that For the EE system, a 1-lb force
is defined as that force which gives a 1 lbm a standard acceleration of gravity which is taken
as Thus, for Eq. 1.4 to be both numerically and dimensionally correct

so that

With the EE system weight and mass are related through the equation

where g is the local acceleration of gravity. Under conditions of standard gravity 
the weight in pounds and the mass in pound mass are numerically equal. Also, since a 1-lb
force gives a mass of 1 lbm an acceleration of and a mass of 1 slug an acceleration
of it follows that

In this text we will primarily use the BG system and SI for units. The EE system is
used very sparingly, and only in those instances where convention dictates its use.
Approximately one-half the problems and examples are given in BG units and one-half in
SI units. We cannot overemphasize the importance of paying close attention to units when
solving problems. It is very easy to introduce huge errors into problem solutions through the
use of incorrect units. Get in the habit of using a consistent system of units throughout a
given solution. It really makes no difference which system you use as long as you are
consistent; for example, don’t mix slugs and newtons. If problem data are specified in SI
units, then use SI units throughout the solution. If the data are specified in BG units, then
use BG units throughout the solution. Tables 1.3 and 1.4 provide conversion factors for some
quantities that are commonly encountered in fluid mechanics. For convenient reference these
tables are also reproduced on the inside of the back cover. Note that in these tables 1and
others2 the numbers are expressed by using computer exponential notation. For example, the
number is equivalent to in scientific notation, and the number

is equivalent to More extensive tables of conversion factors for
a large variety of unit systems can be found in Appendix A.

2.832 � 10�2.2.832 E � 2
5.154 � 1025.154 E � 2

1 slug � 32.174 lbm

1 ft �s2,
32.174 ft �s2

1g � gc2

w �
mg

gc

gc �
11 lbm2 132.174 ft�s22

11 lb2

1 lb �
11 lbm2 132.174 ft�s22

gc

32.174 ft �s2.

gc � 1.
gc � 1.

10 � Chapter 1 / Introduction

� TA B L E 1 . 3
Conversion Factors from BG and EE Units to SI Units

(See inside of back cover.)

� TA B L E 1 . 4
Conversion Factors from SI Units to BG and EE Units

(See inside of back cover.)

When solving prob-
lems it is important
to use a consistent
system of units,
e.g., don’t mix BG
and SI units.
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1.2 Dimensions, Dimensional Homogeneity, and Units � 11

EXAMPLE
1.2

�

Ff

a

� F I G U R E  E 1 . 2

As you work through a large variety of problems in this text, you will find that units
play an essential role in arriving at a numerical answer. Be careful! It is easy to mix units
and cause large errors. If in the above example the elevator acceleration had been left as

with m and g expressed in SI units, we would have calculated the force as 605 N and
the answer would have been 41% too large!
7 ft�s2

A tank of water having a total mass of 36 kg rests on the floor of an elevator. Determine the
force 1in newtons2 that the tank exerts on the floor when the elevator is accelerating upward
at 

SOLUTION

A free-body diagram of the tank is shown in Fig. E1.2 where is the weight of the tank
and water, and is the reaction of the floor on the tank. Application of Newton’s second
law of motion to this body gives

or

(1)

where we have taken upward as the positive direction. Since Eq. 1 can be written
as

(2)

Before substituting any number into Eq. 2 we must decide on a system of units, and then be
sure all of the data are expressed in these units. Since we want in newtons we will use SI
units so that

Since it follows that

(Ans)

The direction is downward since the force shown on the free-body diagram is the force of
the floor on the tank so that the force the tank exerts on the floor is equal in magnitude but
opposite in direction.

Ff � 430 N  1downward on floor2
1 N � 1 kg # m �s2

Ff � 36 kg 39.81 m �s2 � 17 ft �s22 10.3048 m �ft2 4 � 430 kg # m �s2

Ff

Ff � m 1g � a2

w � mg,

Ff �w � ma

a F � ma

Ff

w

7 ft �s2.

7708d_c01_02-38  7/4/01  6:24 AM  Page 11



1.3 Analysis of Fluid Behavior

12 � Chapter 1 / Introduction

The study of fluid mechanics involves the same fundamental laws you have encountered in
physics and other mechanics courses. These laws include Newton’s laws of motion, conser-
vation of mass, and the first and second laws of thermodynamics. Thus, there are strong
similarities between the general approach to fluid mechanics and to rigid-body and deformable-
body solid mechanics. This is indeed helpful since many of the concepts and techniques of
analysis used in fluid mechanics will be ones you have encountered before in other courses.

The broad subject of fluid mechanics can be generally subdivided into fluid statics, in
which the fluid is at rest, and fluid dynamics, in which the fluid is moving. In the following
chapters we will consider both of these areas in detail. Before we can proceed, however, it
will be necessary to define and discuss certain fluid properties that are intimately related to
fluid behavior. It is obvious that different fluids can have grossly different characteristics.
For example, gases are light and compressible, whereas liquids are heavy 1by comparison2
and relatively incompressible. A syrup flows slowly from a container, but water flows rapidly
when poured from the same container. To quantify these differences certain fluid properties
are used. In the following several sections the properties that play an important role in the
analysis of fluid behavior are considered.

1.4 Measures of Fluid Mass and Weight

1.4.1 Density

The density of a fluid, designated by the Greek symbol 1rho2, is defined as its mass per
unit volume. Density is typically used to characterize the mass of a fluid system. In the BG
system has units of and in SI the units are 

The value of density can vary widely between different fluids, but for liquids,
variations in pressure and temperature generally have only a small effect on the value of

The small change in the density of water with large variations in temperature is illustrated
in Fig. 1.1. Tables 1.5 and 1.6 list values of density for several common liquids. The density
of water at is or The large difference between those two
values illustrates the importance of paying attention to units! Unlike liquids, the density
of a gas is strongly influenced by both pressure and temperature, and this difference will
be discussed in the next section.

999 kg�m3.1.94 slugs�ft360 °F

r.

kg�m3.slugs�ft3r

r

@ 4°C     = 1000 kg/m3

1000

990

980

970

960

950
0

D
en

si
ty

, 
  

kg
/m

3
ρ

20 40 60 80 100
Temperature, °C

ρ

� F I G U R E  1 . 1 Density of water as a function of temperature.

The density of a
fluid is defined as
its mass per unit
volume.
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The specific volume, , is the volume per unit mass and is therefore the reciprocal of
the density—that is,

(1.5)

This property is not commonly used in fluid mechanics but is used in thermodynamics.

1.4.2 Specific Weight

The specific weight of a fluid, designated by the Greek symbol 1gamma2, is defined as its
weight per unit volume. Thus, specific weight is related to density through the equation

(1.6)

where g is the local acceleration of gravity. Just as density is used to characterize the mass
of a fluid system, the specific weight is used to characterize the weight of the system. In the
BG system, has units of and in SI the units are Under conditions of standard
gravity water at has a specific weight of 
and Tables 1.5 and 1.6 list values of specific weight for several common liquids
1based on standard gravity2. More complete tables for water can be found in Appendix B
1Tables B.1 and B.22.

1.4.3 Specific Gravity

The specific gravity of a fluid, designated as SG, is defined as the ratio of the density of the
fluid to the density of water at some specified temperature. Usually the specified temperature
is taken as and at this temperature the density of water is or

In equation form, specific gravity is expressed as

(1.7)

and since it is the ratio of densities, the value of SG does not depend on the system of units
used. For example, the specific gravity of mercury at is 13.55 and the density of mercury
can thus be readily calculated in either BG or SI units through the use of Eq. 1.7 as

or

It is clear that density, specific weight, and specifc gravity are all interrelated, and from
a knowledge of any one of the three the others can be calculated.

rHg � 113.552 11000 kg�m32 � 13.6 � 103 kg�m3

rHg � 113.552 11.94 slugs�ft32 � 26.3 slugs�ft3

20 °C

SG �
r

rH2O@4°C

1000 kg�m3.
1.94 slugs�ft34 °C 139.2 °F2,

9.80 kN�m3.
62.4 lb�ft360 °F1g � 32.174 ft�s2 � 9.807 m�s22,

N�m3.lb�ft3g

g � rg

g

v �
1
r

v

1.4 Measures of Fluid Mass and Weight � 13

� TA B L E 1 . 5
Approximate Physical Properties of Some Common Liquids (BG Units)

(See inside of front cover.)

� TA B L E 1 . 6
Approximate Physical Properties of Some Common Liquids (SI Units)

(See inside of front cover.)

Specific weight is
weight per unit vol-
ume; specific grav-
ity is the ratio of
fluid density to the
density of water at
a certain tempera-
ture.
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1.5 Ideal Gas Law

14 � Chapter 1 / Introduction

Gases are highly compressible in comparison to liquids, with changes in gas density directly
related to changes in pressure and temperature through the equation

(1.8)

where p is the absolute pressure, the density, T the absolute temperature,2 and R is a gas
constant. Equation 1.8 is commonly termed the ideal or perfect gas law, or the equation of
state for an ideal gas. It is known to closely approximate the behavior of real gases under
normal conditions when the gases are not approaching liquefaction.

Pressure in a fluid at rest is defined as the normal force per unit area exerted on a plane
surface 1real or imaginary2 immersed in a fluid and is created by the bombardment of the
surface with the fluid molecules. From the definition, pressure has the dimension of 
and in BG units is expressed as 1psf 2 or 1psi2 and in SI units as In SI,

defined as a pascal, abbreviated as Pa, and pressures are commonly specified in
pascals. The pressure in the ideal gas law must be expressed as an absolute pressure, which
means that it is measured relative to absolute zero pressure 1a pressure that would only occur
in a perfect vacuum2. Standard sea-level atmospheric pressure 1by international agreement2
is 14.696 psi 1abs2 or 101.33 kPa 1abs2. For most calculations these pressures can be rounded
to 14.7 psi and 101 kPa, respectively. In engineering it is common practice to measure pressure
relative to the local atmospheric pressure, and when measured in this fashion it is called gage
pressure. Thus, the absolute pressure can be obtained from the gage pressure by adding the
value of the atmospheric pressure. For example, a pressure of 30 psi 1gage2 in a tire is equal
to 44.7 psi 1abs2 at standard atmospheric pressure. Pressure is a particularly important fluid
characteristic and it will be discussed more fully in the next chapter.

The gas constant, R, which appears in Eq. 1.8, depends on the particular gas and is
related to the molecular weight of the gas. Values of the gas constant for several common
gases are listed in Tables 1.7 and 1.8. Also in these tables the gas density and specific weight
are given for standard atmospheric pressure and gravity and for the temperature listed. More
complete tables for air at standard atmospheric pressure can be found in Appendix B 1Tables
B.3 and B.42.

1 N�m2
N�m2.lb�in.2lb�ft2

FL�2,

r

p � rRT

2We will use to represent temperature in thermodynamic relationships although T is also used to denote the basic dimension of
time.

� TA B L E 1 . 7
Approximate Physical Properties of Some Common Gases at Standard Atmospheric Pressure
(BG Units)

(See inside of front cover.)

� TA B L E 1 . 8
Approximate Physical Properties of Some Common Gases at Standard Atmospheric Pressure
(SI Units)

(See inside of front cover.)

In the ideal gas
law, absolute pres-
sures and tempera-
tures must be used.
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1.6 Viscosity

1.6 Viscosity � 15

EXAMPLE
1.3

A compressed air tank has a volume of When the tank is filled with air at a gage
pressure of 50 psi, determine the density of the air and the weight of air in the tank. Assume
the temperature is and the atmospheric pressure is 14.7 psi 1abs2.

SOLUTION

The air density can be obtained from the ideal gas law 1Eq. 1.82 expressed as

so that

(Ans)

Note that both the pressure and temperature were changed to absolute values.
The weight, of the air is equal to

so that since 

(Ans)w � 0.276 lb

1 lb � 1 slug # ft �s2

 � 10.0102 slugs�ft32 132.2 ft �s22 10.84 ft32

 w � rg � 1volume2

w,

r �
150 lb�in.2 � 14.7 lb�in.22 1144 in.2�ft22

11716 ft # lb�slug # °R2 3 170 � 4602°R 4
� 0.0102 slugs�ft3

r �
p

RT

70 °F

0.84 ft3.

The properties of density and specific weight are measures of the “heaviness” of a fluid. It
is clear, however, that these properties are not sufficient to uniquely characterize how fluids
behave since two fluids 1such as water and oil2 can have approximately the same value of
density but behave quite differently when flowing. There is apparently some additional prop-
erty that is needed to describe the “fluidity” of the fluid.

To determine this additional property, consider a hypothetical experiment in which a
material is placed between two very wide parallel plates as shown in Fig. 1.2a. The bottom
plate is rigidly fixed, but the upper plate is free to move. If a solid, such as steel, were placed
between the two plates and loaded with the force P as shown, the top plate would be displaced
through some small distance, 1assuming the solid was mechanically attached to the plates2.
The vertical line AB would be rotated through the small angle, to the new position 
We note that to resist the applied force, P, a shearing stress, would be developed at the
plate-material interface, and for equilibrium to occur where A is the effective upperP � tA

t,
AB¿.db,

da

P P

(a) (b)

Fixed plate

a

b

δ

δβ

B

A

B' Aτ

� F I G U R E  1 . 2 (a) Defor-
mation of material placed between 
two parallel plates. (b) Forces acting
on upper plate.

Fluid motion can
cause shearing
stresses.

V1.1 Viscous fluids
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plate area 1Fig. 1.2b2. It is well known that for elastic solids, such as steel, the small angular
displacement, 1called the shearing strain2, is proportional to the shearing stress, that is
developed in the material.

What happens if the solid is replaced with a fluid such as water? We would immediately
notice a major difference. When the force P is applied to the upper plate, it will move
continuously with a velocity, U 1after the initial transient motion has died out2 as illustrated
in Fig. 1.3. This behavior is consistent with the definition of a fluid—that is, if a shearing
stress is applied to a fluid it will deform continuously. A closer inspection of the fluid motion
between the two plates would reveal that the fluid in contact with the upper plate moves with
the plate velocity, U, and the fluid in contact with the bottom fixed plate has a zero velocity.
The fluid between the two plates moves with velocity that would be found to vary
linearly, as illustrated in Fig. 1.3. Thus, a velocity gradient, is developed
in the fluid between the plates. In this particular case the velocity gradient is a constant since

but in more complex flow situations this would not be true. The experimental
observation that the fluid “sticks” to the solid boundaries is a very important one in fluid
mechanics and is usually referred to as the no-slip condition. All fluids, both liquids and
gases, satisfy this condition.

In a small time increment, an imaginary vertical line AB in the fluid would rotate
through an angle, so that

Since it follows that

We note that in this case, is a function not only of the force P 1which governs U 2 but also
of time. Thus, it is not reasonable to attempt to relate the shearing stress, to as is done
for solids. Rather, we consider the rate at which is changing and define the rate of shearing
strain, as

which in this instance is equal to

A continuation of this experiment would reveal that as the shearing stress, is increased
by increasing P 1recall that 2, the rate of shearing strain is increased in direct
proportion—that is,

t � P�A
t,

g
#

�
U

b
�

du

dy

g
#

� lim
dtS0

 
db

dt

g
#
,

db

dbt,
db

db �
U dt

b

da � U dt

tan db � db �
da

b

db,
dt,

du�dy � U�b,

du�dy,u � Uy�b,
u � u 1y2

t,db

16 � Chapter 1 / Introduction

b

U

δβ

B'B

P

u

Fixed plate

y

δ

A

a

� F I G U R E  1 . 3 Behavior of a fluid
placed between two parallel plates.

Real fluids, even
though they may be
moving, always
“stick” to the solid
boundaries that
contain them.

V1.2 No-slip 
condition
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or

This result indicates that for common fluids such as water, oil, gasoline, and air the shearing
stress and rate of shearing strain 1velocity gradient2 can be related with a relationship of the
form

(1.9)

where the constant of proportionality is designated by the Greek symbol 1mu2 and is called
the absolute viscosity, dynamic viscosity, or simply the viscosity of the fluid. In accordance
with Eq. 1.9, plots of versus should be linear with the slope equal to the viscosity
as illustrated in Fig. 1.4. The actual value of the viscosity depends on the particular fluid,
and for a particular fluid the viscosity is also highly dependent on temperature as illustrated
in Fig. 1.4 with the two curves for water. Fluids for which the shearing stress is linearly
related to the rate of shearing strain (also referred to as rate of angular deformation2 are
designated as Newtonian fluids I. Newton (1642–1727). Fortunately most common fluids,
both liquids and gases, are Newtonian. A more general formulation of Eq. 1.9 which applies
to more complex flows of Newtonian fluids is given in Section 6.8.1.

Fluids for which the shearing stress is not linearly related to the rate of shearing strain
are designated as non-Newtonian fluids. Although there is a variety of types of non-Newtonian
fluids, the simplest and most common are shown in Fig. 1.5. The slope of the shearing stress
vs rate of shearing strain graph is denoted as the apparent viscosity, For Newtonian fluids
the apparent viscosity is the same as the viscosity and is independent of shear rate.

For shear thinning fluids the apparent viscosity decreases with increasing shear rate—
the harder the fluid is sheared, the less viscous it becomes. Many colloidal suspensions and
polymer solutions are shear thinning. For example, latex paint does not drip from the brush
because the shear rate is small and the apparent viscosity is large. However, it flows smoothly

map.

du�dyt

m

t � m 
du

dy

t �  
du

dy

t � g
#

1.6 Viscosity � 17

Dynamic viscosity
is the fluid property
that relates shear-
ing stress and fluid
motion.

S
he

ar
in

g 
st

re
ss

, 
 

Crude oil (60 °F)

µ

1
Water (60 °F)

Water (100 °F)

Air (60 °F)

Rate of shearing strain, du__
dy

τ

� F I G U R E  1 . 4 Linear varia-
tion of shearing stress with rate of
shearing strain for common fluids.

V1.3 Capillary tube
viscometer
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onto the wall because the thin layer of paint between the wall and the brush causes a large
shear rate and a small apparent viscosity.

For shear thickening fluids the apparent viscosity increases with increasing shear rate—
the harder the fluid is sheared, the more viscous it becomes. Common examples of this type
of fluid include water-corn starch mixture and water-sand mixture 1“quicksand”2. Thus, the
difficulty in removing an object from quicksand increases dramatically as the speed of removal
increases.

The other type of behavior indicated in Fig. 1.5 is that of a Bingham plastic, which is
neither a fluid nor a solid. Such material can withstand a finite shear stress without motion
1therefore, it is not a fluid2, but once the yield stress is exceeded it flows like a fluid 1hence,
it is not a solid2. Toothpaste and mayonnaise are common examples of Bingham plastic
materials.

From Eq. 1.9 it can be readily deduced that the dimensions of viscosity are 
Thus, in BG units viscosity is given as and in SI units as Values of viscosity
for several common liquids and gases are listed in Tables 1.5 through 1.8. A quick glance at
these tables reveals the wide variation in viscosity among fluids. Viscosity is only mildly
dependent on pressure and the effect of pressure is usually neglected. However, as previously
mentioned, and as illustrated in Fig. 1.6, viscosity is very sensitive to temperature. For
example, as the temperature of water changes from 60 to the density decreases by
less than 1% but the viscosity decreases by about 40%. It is thus clear that particular attention
must be given to temperature when determining viscosity.

Figure 1.6 shows in more detail how the viscosity varies from fluid to fluid and how
for a given fluid it varies with temperature. It is to be noted from this figure that the viscosity
of liquids decreases with an increase in temperature, whereas for gases an increase in
temperature causes an increase in viscosity. This difference in the effect of temperature on
the viscosity of liquids and gases can again be traced back to the difference in molecular
structure. The liquid molecules are closely spaced, with strong cohesive forces between
molecules, and the resistance to relative motion between adjacent layers of fluid is related
to these intermolecular forces. As the temperature increases, these cohesive forces are reduced
with a corresponding reduction in resistance to motion. Since viscosity is an index of this
resistance, it follows that the viscosity is reduced by an increase in temperature. In gases,
however, the molecules are widely spaced and intermolecular forces negligible. In this case
resistance to relative motion arises due to the exchange of momentum of gas molecules
between adjacent layers. As molecules are transported by random motion from a region of

100 °F

N # s�m2.lb # s�ft2
FTL�2.

1large du�dy2

18 � Chapter 1 / Introduction

Bingham plastic

Rate of shearing strain, du
dy

S
he

ar
in

g 
st

re
ss

,τ

µap

1

Shear thinning

Newtonian

Shear thickening
� F I G U R E  1 . 5 Variation of shearing 
stress with rate of shearing strain for several 
types of fluids, including common non-Newtonian
fluids.

The various types
of non-Newtonian
fluids are distin-
guished by how
their apparent vis-
cosity changes with
shear rate.

V1.4 Non-
Newtonian behavior
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low bulk velocity to mix with molecules in a region of higher bulk velocity 1and vice versa2,
there is an effective momentum exchange which resists the relative motion between the layers.
As the temperature of the gas increases, the random molecular activity increases with a
corresponding increase in viscosity.

The effect of temperature on viscosity can be closely approximated using two empirical
formulas. For gases the Sutherland equation can be expressed as

(1.10)

where C and S are empirical constants, and T is absolute temperature. Thus, if the viscosity
is known at two temperatures, C and S can be determined. Or, if more than two viscosities
are known, the data can be correlated with Eq. 1.10 by using some type of curve-fitting
scheme.

For liquids an empirical equation that has been used is

(1.11)

where D and B are constants and T is absolute temperature. This equation is often referred
to as Andrade’s equation. As was the case for gases, the viscosity must be known at least
for two temperatures so the two constants can be determined. A more detailed discussion of
the effect of temperature on fluids can be found in Ref. 1.

m � De 
B�T

m �
CT 

3�  2

T � S

1.6 Viscosity � 19

Viscosity is very
sensitive to temper-
ature.

4.0

2.0

1.0
8
6
4

2

1 × 10-1

8
6
4

2

1 × 10-2

8
6
4

2

1 × 10-3

8
6
4

2

1 × 10-4

8
6
4

2

1 × 10-5

8
6
-20 0 20 40 60 80 100 120

Temperature, °C

D
yn

am
ic

 v
is

co
si

ty
, 

  
 N

 •
 s

/m
2

µ

SAE 10W oil

Glycerin

Water

Air

Hydrogen
� F I G U R E  1 . 6
Dynamic (absolute) viscosity
of some common fluids as a
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20 � Chapter 1 / Introduction

EXAMPLE
1.4

A dimensionless combination of variables that is important in the study of viscous flow
through pipes is called the Reynolds number, Re, defined as where is the fluid den-
sity, V the mean fluid velocity, D the pipe diameter, and the fluid viscosity. A Newtonian
fluid having a viscosity of and a specific gravity of 0.91 flows through a 
25-mm-diameter pipe with a velocity of Determine the value of the Reynolds num-
ber using 1a2 SI units, and 1b2 BG units.

SOLUTION

(a) The fluid density is calculated from the specific gravity as

and from the definition of the Reynolds number

However, since it follows that the Reynolds number is unitless—that
is,

(Ans)

The value of any dimensionless quantity does not depend on the system of units used
if all variables that make up the quantity are expressed in a consistent set of units. To
check this we will calculate the Reynolds number using BG units.

(b) We first convert all the SI values of the variables appearing in the Reynolds number to
BG values by using the conversion factors from Table 1.4. Thus,

 m � 10.38 N # s�m22 12.089 � 10�22 � 7.94 � 10�3 lb # s�ft2

 D � 10.025 m2 13.2812 � 8.20 � 10�2 ft

 V � 12.6 m�s2 13.2812 � 8.53 ft�s

 r � 1910 kg�m32 11.940 � 10�32 � 1.77 slugs�ft3

Re � 156

1 N � 1 kg # m�s2

 � 156 1kg # m�s22�N
 Re �

rVD
m

�
1910 kg�m32 12.6 m�s2 125 mm2 110�3 m�mm2

0.38 N # s�m2

r � SG rH2O@4°C � 0.91 11000 kg�m32 � 910 kg�m3

2.6 m�s.
0.38 N # s�m2

m

rrVD�m

Quite often viscosity appears in fluid flow problems combined with the density in the
form

This ratio is called the kinematic viscosity and is denoted with the Greek symbol 1nu2. The
dimensions of kinematic viscosity are and the BG units are and SI units are 
Values of kinematic viscosity for some common liquids and gases are given in Tables 1.5
through 1.8. More extensive tables giving both the dynamic and kinematic viscosities for
water and air can be found in Appendix B 1Tables B.1 through B.42, and graphs showing
the variation in both dynamic and kinematic viscosity with temperature for a variety of fluids
are also provided in Appendix B 1Figs. B.1 and B.22.

Although in this text we are primarily using BG and SI units, dynamic viscosity is
often expressed in the metric CGS 1centimeter-gram-second2 system with units of

This combination is called a poise, abbreviated P. In the CGS system, kinematic
viscosity has units of and this combination is called a stoke, abbreviated St.cm2�s,
dyne # s�cm2.

m2�s.ft2�sL2�T,
n

n �
m

r

Kinematic viscosity
is defined as the 
ratio of the absolute
viscosity to the fluid
density.
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1.6 Viscosity � 21

and the value of the Reynolds number is

(Ans)

since The values from part 1a2 and part 1b2 are the same, as ex-
pected. Dimensionless quantities play an important role in fluid mechanics and the sig-
nificance of the Reynolds number as well as other important dimensionless combina-
tions will be discussed in detail in Chapter 7. It should be noted that in the Reynolds
number it is actually the ratio that is important, and this is the property that we
have defined as the kinematic viscosity.

m�r

1 lb � 1 slug # ft�s2.

 � 156 1slug # ft�s22�lb � 156

 Re �
11.77 slugs�ft32 18.53 ft �s2 18.20 � 10�2 ft2

7.94 � 10�3 lb # s�ft2

EXAMPLE
1.5

The velocity distribution for the flow of a Newtonian fluid between two wide, parallel plates
(see Fig. E1.5) is given by the equation

where V is the mean velocity. The fluid has a viscosity of When 
and determine: (a) the shearing stress acting on the bottom wall, and (b) the 
shearing stress acting on a plane parallel to the walls and passing through the centerline 
(midplane).

h � 0.2 in.
V � 2 ft �s0.04 lb # s�ft2.

u �
3V

2
 c1 � ay

h
b2 d

h

h

y u

� F I G U R E  E 1 . 5

SOLUTION

For this type of parallel flow the shearing stress is obtained from Eq. 1.9,

(1)

Thus, if the velocity distribution is known, the shearing stress can be determined
at all points by evaluating the velocity gradient, For the distribution given

(2)

(a) Along the bottom wall so that (from Eq. 2)

du

dy
�

3V

h

y � �h

du

dy
� �

3Vy

h2

du�dy.
u � u1y2

t � m 
du

dy
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1.7.1 Bulk Modulus

An important question to answer when considering the behavior of a particular fluid is how
easily can the volume 1and thus the density2 of a given mass of the fluid be changed when
there is a change in pressure? That is, how compressible is the fluid? A property that is
commonly used to characterize compressibility is the bulk modulus, defined as

(1.12)

where dp is the differential change in pressure needed to create a differential change in
volume, of a volume The negative sign is included since an increase in pressure will
cause a decrease in volume. Since a decrease in volume of a given mass, will result
in an increase in density, Eq. 1.12 can also be expressed as

(1.13)

The bulk modulus 1also referred to as the bulk modulus of elasticity2 has dimensions of
pressure, In BG units values for are usually given as 1psi2 and in SI units as

Large values for the bulk modulus indicate that the fluid is relatively
incompressible—that is, it takes a large pressure change to create a small change in volume.
As expected, values of for common liquids are large 1see Tables 1.5 and 1.62. For example,
at atmospheric pressure and a temperature of it would require a pressure of 3120 psi
to compress a unit volume of water 1%. This result is representative of the compressibility
of liquids. Since such large pressures are required to effect a change in volume, we conclude
that liquids can be considered as incompressible for most practical engineering applications.

60 °F
Ev

N�m2 1Pa2. lb�in.2EvFL�2.

Ev �
dp

dr�r

m � rV�,
V�.dV�,

Ev � �
dp

dV��V�

Ev,

22 � Chapter 1 / Introduction

1.7 Compressibility of Fluids

and therefore the shearing stress is

(Ans)

This stress creates a drag on the wall. Since the velocity distribution is symmetrical,
the shearing stress along the upper wall would have the same magnitude and direction.

(b) Along the midplane where it follows from Eq. 2 that

and thus the shearing stress is

(Ans)

From Eq. 2 we see that the velocity gradient (and therefore the shearing stress)
varies linearly with y and in this particular example varies from 0 at the center of the
channel to at the walls. For the more general case the actual variation will,
of course, depend on the nature of the velocity distribution.

14.4 lb�ft2

tmidplane � 0

du

dy
� 0

y � 0

 � 14.4 lb�ft2 1in direction of flow2
 tbottom

wall
� m a3V

h
b �

10.04 lb # s�ft22 132 12 ft �s2
10.2 in.2 11 ft �12 in.2

Liquids are usually
considered to be
imcompressible,
whereas gases are
generally consid-
ered compressible.
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As liquids are compressed the bulk modulus increases, but the bulk modulus near atmospheric
pressure is usually the one of interest. The use of bulk modulus as a property describing
compressibility is most prevalent when dealing with liquids, although the bulk modulus can
also be determined for gases.

1.7.2 Compression and Expansion of Gases

When gases are compressed 1or expanded2 the relationship between pressure and density
depends on the nature of the process. If the compression or expansion takes place under
constant temperature conditions 1isothermal process2, then from Eq. 1.8

(1.14)

If the compression or expansion is frictionless and no heat is exchanged with the surroundings
1isentropic process2, then

(1.15)

where k is the ratio of the specific heat at constant pressure, to the specific heat at constant
volume, The two specific heats are related to the gas constant, R, through
the equation As was the case for the ideal gas law, the pressure in both Eqs.
1.14 and 1.15 must be expressed as an absolute pressure. Values of k for some common gases
are given in Tables 1.7 and 1.8, and for air over a range of temperatures, in Appendix B
1Tables B.3 and B.42.

With explicit equations relating pressure and density the bulk modulus for gases can
be determined by obtaining the derivative from Eq. 1.14 or 1.15 and substituting the
results into Eq. 1.13. It follows that for an isothermal process

(1.16)

and for an isentropic process,

(1.17)

Note that in both cases the bulk modulus varies directly with pressure. For air under standard
atmospheric conditions with 1abs2 and the isentropic bulk modulus is
20.6 psi. A comparison of this figure with that for water under the same conditions

shows that air is approximately 15,000 times as compressible as water.
It is thus clear that in dealing with gases greater attention will need to be given to the effect
of compressibility on fluid behavior. However, as will be discussed further in later sections,
gases can often be treated as incompressible fluids if the changes in pressure are small.

1Ev � 312,000 psi2

k � 1.40,p � 14.7 psi

Ev � kp

Ev � p

dp�dr

R � cp � cv.
cv 1i.e., k � cp�cv2.

cp,

p

rk � constant

p
r

� constant

1.7 Compressibility of Fluids � 23

EXAMPLE
1.6

A cubic foot of helium at an absolute pressure of 14.7 psi is compressed isentropically to
What is the final pressure?

SOLUTION

For an isentropic compression,

pi

rk
i

�
pf

rk
f

1
2 ft

3.

The value of the
bulk modulus de-
pends on the type
of process involved.
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1.7.3 Speed of Sound

Another important consequence of the compressibility of fluids is that disturbances introduced
at some point in the fluid propagate at a finite velocity. For example, if a fluid is flowing in
a pipe and a valve at the outlet is suddenly closed 1thereby creating a localized disturbance2,
the effect of the valve closure is not felt instantaneously upstream. It takes a finite time for
the increased pressure created by the valve closure to propagate to an upstream location.
Similarly, a loud speaker diaphragm causes a localized disturbance as it vibrates, and the
small change in pressure created by the motion of the diaphragm is propagated through the
air with a finite velocity. The velocity at which these small disturbances propagate is called
the acoustic velocity or the speed of sound, c. It will be shown in Chapter 11 that the speed
of sound is related to changes in pressure and density of the fluid medium through the equation

(1.18)

or in terms of the bulk modulus defined by Eq. 1.13

(1.19)

Since the disturbance is small, there is negligible heat transfer and the process is assumed to
be isentropic. Thus, the pressure-density relationship used in Eq. 1.18 is that for an isentropic
process.

For gases undergoing an isentropic process, 1Eq. 1.172 so that

and making use of the ideal gas law, it follows that

(1.20)

Thus, for ideal gases the speed of sound is proportional to the square root of the absolute
temperature. For example, for air at with and it
follows that The speed of sound in air at various temperatures can be found
in Appendix B 1Tables B.3 and B.42. Equation 1.19 is also valid for liquids, and values of

can be used to determine the speed of sound in liquids. For water at
and so that or Note that

the speed of sound in water is much higher than in air. If a fluid were truly incompressible
the speed of sound would be infinite. The speed of sound in water for various

temperatures can be found in Appendix B 1Tables B.1 and B.22.1Ev � q 2
4860 ft�s.c � 1481 m�sr � 998.2 kg�m320 °C, Ev � 2.19 GN�m2

Ev

c � 1117 ft �s.
R � 1716 ft # lb�slug # °Rk � 1.4060 °F

c � 1kRT

c � Bkp
r

Ev � kp

c � BEv

r

c � Bdp

dr

24 � Chapter 1 / Introduction

where the subscripts i and f refer to initial and final states, respectively. Since we are inter-
ested in the final pressure, it follows that

As the volume is reduced by one half, the density must double, since the mass of the gas re-
mains constant. Thus,

(Ans)pf � 1221.66114.7 psi2 � 46.5 psi 1abs2

pf � arf

ri
bk

pi

pf  
,

The velocity at
which small distur-
bances propagate in
a fluid is called the
speed of sound.

7708d_c01_024  8/2/01  3:36 PM  Page 24



It is a common observation that liquids such as water and gasoline will evaporate if they are
simply placed in a container open to the atmosphere. Evaporation takes place because some
liquid molecules at the surface have sufficient momentum to overcome the intermolecular
cohesive forces and escape into the atmosphere. If the container is closed with a small air
space left above the surface, and this space evacuated to form a vacuum, a pressure will
develop in the space as a result of the vapor that is formed by the escaping molecules. When
an equilibrium condition is reached so that the number of molecules leaving the surface is
equal to the number entering, the vapor is said to be saturated and the pressure that the vapor
exerts on the liquid surface is termed the vapor pressure.

Since the development of a vapor pressure is closely associated with molecular activity,
the value of vapor pressure for a particular liquid depends on temperature. Values of vapor
pressure for water at various temperatures can be found in Appendix B 1Tables B.1 and B.22,
and the values of vapor pressure for several common liquids at room temperatures are given
in Tables 1.5 and 1.6.

Boiling, which is the formation of vapor bubbles within a fluid mass, is initiated when
the absolute pressure in the fluid reaches the vapor pressure. As commonly observed in the
kitchen, water at standard atmospheric pressure will boil when the temperature reaches

—that is, the vapor pressure of water at is 14.7 psi 1abs2. However,
if we attempt to boil water at a higher elevation, say 10,000 ft above sea level, where the
atmospheric pressure is 10.1 psi 1abs2, we find that boiling will start when the temperature

212 °F212 °F 1100 °C2

1.8 Vapor Pressure � 25

EXAMPLE
1.7

A jet aircraft flies at a speed of 550 mph at an altitude of 35,000 ft, where the temperature
is Determine the ratio of the speed of the aircraft, V, to that of the speed of sound,
c, at the specified altitude. Assume 

SOLUTION

From Eq. 1.20 the speed of sound can be calculated as

Since the air speed is

the ratio is

(Ans)

This ratio is called the Mach number, Ma. If the aircraft is flying at subsonic
speeds, whereas for it is flying at supersonic speeds. The Mach number is an im-
portant dimensionless parameter used in the study of the flow of gases at high speeds and
will be further discussed in Chapters 7, 9, and 11.

Ma 7 1.0
Ma 6 1.0

V
c

�
807 ft�s
973 ft�s

� 0.829

V �
1550 mi�hr2 15280 ft�mi2

13600 s�hr2
� 807 ft�s

 � 973 ft�s
 c � 1kRT � 111.402  11716 ft # lb�slug # °R2 1�66 � 4602 °R

k � 1.40.
�66 °F.

1.8 Vapor Pressure

A liquid boils when
the pressure is re-
duced to the vapor
pressure.
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1.9 Surface Tension

At the interface between a liquid and a gas, or between two immiscible liquids, forces develop
in the liquid surface which cause the surface to behave as if it were a “skin” or “membrane”
stretched over the fluid mass. Although such a skin is not actually present, this conceptual
analogy allows us to explain several commonly observed phenomena. For example, a steel
needle will float on water if placed gently on the surface because the tension developed in
the hypothetical skin supports the needle. Small droplets of mercury will form into spheres
when placed on a smooth surface because the cohesive forces in the surface tend to hold all
the molecules together in a compact shape. Similarly, discrete water droplets will form when
placed on a newly waxed surface. (See the photograph at the beginning of Chapter 1.)

These various types of surface phenomena are due to the unbalanced cohesive forces
acting on the liquid molecules at the fluid surface. Molecules in the interior of the fluid mass
are surrounded by molecules that are attracted to each other equally. However, molecules
along the surface are subjected to a net force toward the interior. The apparent physical
consequence of this unbalanced force along the surface is to create the hypothetical skin or
membrane. A tensile force may be considered to be acting in the plane of the surface along
any line in the surface. The intensity of the molecular attraction per unit length along any
line in the surface is called the surface tension and is designated by the Greek symbol 
1sigma2. For a given liquid the surface tension depends on temperature as well as the other
fluid it is in contact with at the interface. The dimensions of surface tension are with
BG units of and SI units of Values of surface tension for some common liquids
1in contact with air2 are given in Tables 1.5 and 1.6 and in Appendix B 1Tables B.1 and B.22
for water at various temperatures. The value of the surface tension decreases as the temper-
ature increases.

The pressure inside a drop of fluid can be calculated using the free-body diagram in
Fig. 1.7. If the spherical drop is cut in half 1as shown2 the force developed around the edge

N�m.lb�ft
FL�1

s

is about At this temperature the vapor pressure of water is 10.1 psi 1abs2. Thus, boiling
can be induced at a given pressure acting on the fluid by raising the temperature, or at a
given fluid temperature by lowering the pressure.

An important reason for our interest in vapor pressure and boiling lies in the common
observation that in flowing fluids it is possible to develop very low pressure due to the fluid
motion, and if the pressure is lowered to the vapor pressure, boiling will occur. For example,
this phenomenon may occur in flow through the irregular, narrowed passages of a valve or
pump. When vapor bubbles are formed in a flowing fluid they are swept along into regions
of higher pressure where they suddenly collapse with sufficient intensity to actually cause
structural damage. The formation and subsequent collapse of vapor bubbles in a flowing fluid,
called cavitation, is an important fluid flow phenomenon to be given further attention in
Chapters 3 and 7.

193 °F.

In flowing liquids it
is possible for the
pressure in local-
ized regions to
reach vapor pres-
sure thereby caus-
ing cavitation.

Rσ

σR2∆pπ � F I G U R E  1 . 7 Forces acting on one-half of a liquid drop.

V1.5 Floating razor
blade
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due to surface tension is This force must be balanced by the pressure difference,
between the internal pressure, and the external pressure, acting over the circular area,

Thus,

or

(1.21)

It is apparent from this result that the pressure inside the drop is greater than the pressure
surrounding the drop. 1Would the pressure on the inside of a bubble of water be the same as
that on the inside of a drop of water of the same diameter and at the same temperature?2

Among common phenomena associated with surface tension is the rise 1or fall2 of a
liquid in a capillary tube. If a small open tube is inserted into water, the water level in the
tube will rise above the water level outside the tube as is illustrated in Fig. 1.8a. In this
situation we have a liquid–gas–solid interface. For the case illustrated there is an attraction
1adhesion2 between the wall of the tube and liquid molecules which is strong enough to
overcome the mutual attraction 1cohesion2 of the molecules and pull them up the wall. Hence,
the liquid is said to wet the solid surface.

The height, h, is governed by the value of the surface tension, the tube radius, R,
the specific weight of the liquid, and the angle of contact, between the fluid and tube.
From the free-body diagram of Fig. 1.8b we see that the vertical force due to the surface
tension is equal to and the weight is and these two forces must balance
for equilibrium. Thus,

so that the height is given by the relationship

(1.22)

The angle of contact is a function of both the liquid and the surface. For water in contact
with clean glass It is clear from Eq. 1.22 that the height is inversely proportional to
the tube radius, and therefore the rise of a liquid in a tube as a result of capillary action
becomes increasingly pronounced as the tube radius is decreased.

u � 0°.

h �
2s cos u

gR

gpR2h � 2pRs cos u

gpR2h2pRs cos u

u,g,
s,

¢p � pi � pe �
2s

R

2pRs � ¢p pR2

pR2.
pe,pi,

¢p,2pRs.

1.9 Surface Tension � 27

� F I G U R E  1 . 8 Effect of capillary action in small tubes. (a) Rise of column for a liquid
that wets the tube. (b) Free-body diagram for calculating column height. (c) Depression of col-
umn for a nonwetting liquid.

π

h
R2h

2  R  

θ

2R

θ

(a) (b) (c)

γπ

σ

h

Capillary action in
small tubes, which
involves a liquid–
gas–solid interface,
is caused by surface
tension.
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If adhesion of molecules to the solid surface is weak compared to the cohesion between
molecules, the liquid will not wet the surface and the level in a tube placed in a nonwetting
liquid will actually be depressed as shown in Fig. 1.8c. Mercury is a good example of a
nonwetting liquid when it is in contact with a glass tube. For nonwetting liquids the angle
of contact is greater than and for mercury in contact with clean glass 

Surface tension effects play a role in many fluid mechanics problems including the
movement of liquids through soil and other porous media, flow of thin films, formation of
drops and bubbles, and the breakup of liquid jets. Surface phenomena associated with liquid–
gas, liquid–liquid, liquid–gas–solid interfaces are exceedingly complex, and a more detailed
and rigorous discussion of them is beyond the scope of this text. Fortunately, in many fluid
mechanics problems, surface phenomena, as characterized by surface tension, are not impor-
tant, since inertial, gravitational, and viscous forces are much more dominant.

u � 130°.90°,

28 � Chapter 1 / Introduction

EXAMPLE
1.8

Pressures are sometimes determined by measuring the height of a column of liquid in a ver-
tical tube. What diameter of clean glass tubing is required so that the rise of water at 
in a tube due to capillary action 1as opposed to pressure in the tube2 is less than 1.0 mm?

SOLUTION

From Eq. 1.22

so that

For water at 1from Table B.22, and Since 
it follows that for 

and the minimum required tube diameter, D, is

(Ans)D � 2R � 0.0298 m � 29.8 mm

R �
210.0728 N�m2 112

19.789 � 103 N�m32 11.0 mm2 110�3 m�mm2
� 0.0149 m

h � 1.0 mm,
u � 0°g � 9.789 kN�m3.s � 0.0728 N�m20 °C

R �
2s cos u

gh

h �
2s cos u

gR

20 °C

1.10 A Brief Look Back in History

Before proceeding with our study of fluid mechanics, we should pause for a moment to
consider the history of this important engineering science. As is true of all basic scientific
and engineering disciplines, their actual beginnings are only faintly visible through the haze
of early antiquity. But, we know that interest in fluid behavior dates back to the ancient
civilizations. Through necessity there was a practical concern about the manner in which
spears and arrows could be propelled through the air, in the development of water supply and
irrigation systems, and in the design of boats and ships. These developments were of course
based on trial and error procedures without any knowledge of mathematics or mechanics.

Surface tension ef-
fects play a role in
many fluid mechan-
ics problems associ-
ated with liquid–
gas, liquid–liquid,
or liquid–gas–solid
interfaces.
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However, it was the accumulation of such empirical knowledge that formed the basis for
further development during the emergence of the ancient Greek civilization and the
subsequent rise of the Roman Empire. Some of the earliest writings that pertain to modern
fluid mechanics are those of Archimedes 1287–212 B.C.2, a Greek mathematician and inventor
who first expressed the principles of hydrostatics and flotation. Elaborate water supply
systems were built by the Romans during the period from the fourth century B.C. through the
early Christian period, and Sextus Julius Frontinus 1A.D. 40–1032, a Roman engineer,
described these systems in detail. However, for the next 1000 years during the Middle Ages
1also referred to as the Dark Ages2, there appears to have been little added to further
understanding of fluid behavior.

Beginning with the Renaissance period 1about the fifteenth century2 a rather continuous
series of contributions began that forms the basis of what we consider to be the science of
fluid mechanics. Leonardo da Vinci 11452–15192 described through sketches and writings
many different types of flow phenomena. The work of Galileo Galilei 11564–16422 marked
the beginning of experimental mechanics. Following the early Renaissance period and during
the seventeenth and eighteenth centuries, numerous significant contributions were made.
These include theoretical and mathematical advances associated with the famous names of
Newton, Bernoulli, Euler, and d’Alembert. Experimental aspects of fluid mechanics were
also advanced during this period, but unfortunately the two different approaches, theoretical
and experimental, developed along separate paths. Hydrodynamics was the term associated
with the theoretical or mathematical study of idealized, frictionless fluid behavior, with the
term hydraulics being used to describe the applied or experimental aspects of real fluid
behavior, particularly the behavior of water. Further contributions and refinements were made
to both theoretical hydrodynamics and experimental hydraulics during the nineteenth century,
with the general differential equations describing fluid motions that are used in modern fluid
mechanics being developed in this period. Experimental hydraulics became more of a science,
and many of the results of experiments performed during the nineteenth century are still used
today.

At the beginning of the twentieth century both the fields of theoretical hydrodynamics
and experimental hydraulics were highly developed, and attempts were being made to
unify the two. In 1904 a classic paper was presented by a German professor, Ludwig Prandtl
11857–19532, who introduced the concept of a “fluid boundary layer,” which laid the
foundation for the unification of the theoretical and experimental aspects of fluid mechanics.
Prandtl’s idea was that for flow next to a solid boundary a thin fluid layer 1boundary layer2
develops in which friction is very important, but outside this layer the fluid behaves very
much like a frictionless fluid. This relatively simple concept provided the necessary impetus
for the resolution of the conflict between the hydrodynamicists and the hydraulicists. Prandtl
is generally accepted as the founder of modern fluid mechanics.

Also, during the first decade of the twentieth century, powered flight was first success-
fully demonstrated with the subsequent vastly increased interest in aerodynamics. Because
the design of aircraft required a degree of understanding of fluid flow and an ability to make
accurate predictions of the effect of air flow on bodies, the field of aerodynamics provided
a great stimulus for the many rapid developments in fluid mechanics that have taken place
during the twentieth century.

As we proceed with our study of the fundamentals of fluid mechanics, we will continue
to note the contributions of many of the pioneers in the field. Table 1.9 provides a chrono-
logical listing of some of these contributors and reveals the long journey that makes up the
history of fluid mechanics. This list is certainly not comprehensive with regard to all of the
past contributors, but includes those who are mentioned in this text. As mention is made in
succeeding chapters of the various individuals listed in Table 1.9, a quick glance at this table
will reveal where they fit into the historical chain.

1.10 A Brief Look Back in History � 29

Some of the earliest
writings that per-
tain to modern fluid
mechanics can be
traced back to the
ancient Greek civi-
lization and subse-
quent Roman 
Empire.
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ARCHIMEDES 1287–212 B.C.2
Established elementary principles of buoyancy
and flotation.
SEXTUS JULIUS FRONTINUS 1A.D. 40–1032
Wrote treatise on Roman methods of water
distribution.
LEONARDO da VINCI 11452–15192
Expressed elementary principle of continuity;
observed and sketched many basic flow
phenomena; suggested designs for hydraulic
machinery.
GALILEO GALILEI 11564–16422
Indirectly stimulated experimental hydraulics;
revised Aristotelian concept of vacuum.
EVANGELISTA TORRICELLI 11608–16472
Related barometric height to weight of
atmosphere, and form of liquid jet to trajectory
of free fall.
BLAISE PASCAL 11623–16622
Finally clarified principles of barometer,
hydraulic press, and pressure transmissibility.
ISAAC NEWTON 11642–17272
Explored various aspects of fluid resistance–
inertial, viscous, and wave; discovered jet
contraction.
HENRI de PITOT 11695–17712
Constructed double-tube device to indicate water
velocity through differential head.
DANIEL BERNOULLI 11700–17822
Experimented and wrote on many phases of
fluid motion, coining name “hydrodynamics”;
devised manometry technique and adapted
primitive energy principle to explain velocity-
head indication; proposed jet propulsion.
LEONHARD EULER 11707–17832
First explained role of pressure in fluid flow;
formulated basic equations of motion and so-
called Bernoulli theorem; introduced concept of
cavitation and principle of centrifugal machinery.
JEAN le ROND d’ALEMBERT 11717–17832
Originated notion of velocity and acceleration
components, differential expression of
continuity, and paradox of zero resistance to
steady nonuniform motion.
ANTOINE CHEZY 11718–17982
Formulated similarity parameter for predicting
flow characteristics of one channel from
measurements on another.
GIOVANNI BATTISTA VENTURI 11746–18222
Performed tests on various forms of
mouthpieces–in particular, conical contractions
and expansions.
LOUIS MARIE HENRI NAVIER 11785–18362
Extended equations of motion to include
“molecular” forces.

AUGUSTIN LOUIS de CAUCHY 11789–18572
Contributed to the general field of theoretical
hydrodynamics and to the study of wave motion.

GOTTHILF HEINRICH LUDWIG HAGEN
11797–18842
Conducted original studies of resistance in and
transition between laminar and turbulent flow.

JEAN LOUIS POISEUILLE 11799–18692
Performed meticulous tests on resistance of flow
through capillary tubes.

HENRI PHILIBERT GASPARD DARCY
11803–18582
Performed extensive tests on filtration and pipe
resistance; initiated open-channel studies carried
out by Bazin.

JULIUS WEISBACH 11806–18712
Incorporated hydraulics in treatise on
engineering mechanics, based on original
experiments; noteworthy for flow patterns,
nondimensional coefficients, weir, and resistance
equations.

WILLIAM FROUDE 11810–18792
Developed many towing-tank techniques, in
particular the conversion of wave and boundary
layer resistance from model to prototype scale.

ROBERT MANNING 11816–18972
Proposed several formulas for open-channel
resistance.

GEORGE GABRIEL STOKES 11819–19032
Derived analytically various flow relationships
ranging from wave mechanics to viscous
resistance—particularly that for the settling of
spheres.

ERNST MACH 11838–19162
One of the pioneers in the field of supersonic
aerodynamics.

OSBORNE REYNOLDS 11842–19122
Described original experiments in many fields—
cavitation, river model similarity, pipe
resistance—and devised two parameters for
viscous flow; adapted equations of motion of a
viscous fluid to mean conditions of turbulent
flow.

JOHN WILLIAM STRUTT, LORD RAYLEIGH
11842–19192
Investigated hydrodynamics of bubble collapse,
wave motion, jet instability, laminar flow
analogies, and dynamic similarity.

VINCENZ STROUHAL 11850–19222
Investigated the phenomenon of “singing wires.”

EDGAR BUCKINGHAM 11867–19402
Stimulated interest in the United States in the
use of dimensional analysis.

� TA B L E 1 . 9
Chronological Listing of Some Contributors to the Science of Fluid
Mechanics Noted in the Texta

The rich history of
fluid mechanics is
fascinating, and
many of the contri-
butions of the
pioneers in the field
are noted in the
succeeding
chapters.
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MORITZ WEBER 11871–19512
Emphasized the use of the principles of
similitude in fluid flow studies and formulated a
capillarity similarity parameter.
LUDWIG PRANDTL 11875–19532
Introduced concept of the boundary layer and is
generally considered to be the father of present-
day fluid mechanics.
LEWIS FERRY MOODY 11880–19532
Provided many innovations in the field of hydraulic
machinery. Proposed a method of correlating
pipe resistance data which is widely used.

THEODOR VON KÁRMÁN 11881–19632
One of the recognized leaders of twentieth
century fluid mechanics. Provided major
contributions to our understanding of surface
resistance, turbulence, and wake phenomena.
PAUL RICHARD HEINRICH BLASIUS11883–19702
One of Prandtl’s students who provided an
analytical solution to the boundary layer
equations. Also, demonstrated that pipe
resistance was related to the Reynolds number.

� TA B L E 1 . 9 (continued)

aAdapted from Ref. 2; used by permission of the Iowa Institute of Hydraulic Research, The University of Iowa.

It is, of course, impossible to summarize the rich history of fluid mechanics in a few
paragraphs. Only a brief glimpse is provided, and we hope it will stir your interest. References
2 to 5 are good starting points for further study, and in particular Ref. 2 provides an excellent,
broad, easily read history. Try it—you might even enjoy it!
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Note: Unless specific values of required fluid properties are
given in the statement of the problem, use the values found in
the tables on the inside of the front cover. Problems designated
with an are intended to be solved with the aid of a pro-
grammable calculator or a computer. Problems designated with
a are “open-ended” problems and require critical thinking
in that to work them one must make various assumptions and
provide the necessary data. There is not a unique answer to
these problems.

In the E-book, answers to the even-numbered problems can
be obtained by clicking on the problem number. In the E-book,
access to the videos that accompany problems can be obtained
by clicking on the “video” segment (i.e., Video 1.3) of the prob-
lem statement. The lab-type problems can be accessed by click-
ing on the “click here” segment of the problem statement.

1.1 Determine the dimensions, in both the FLT system and
the MLT system, for (a) the product of mass times velocity,
(b) the product of force times volume, and (c) kinetic energy
divided by area.

1.2 Verify the dimensions, in both the FLT and MLT
systems, of the following quantities which appear in Table 1.1:
(a) angular velocity, (b) energy, (c) moment of inertia 1area2,
(d) power, and (e) pressure.

1.3 Verify the dimensions, in both the FLT system and the
MLT system, of the following quantities which appear in Table
1.1: (a) acceleration, (b) stress, (c) moment of a force, (d) vol-
ume, and (e) work.

1.4 If P is a force and x a length, what are the dimensions1in the FLT system2 of (a) (b) and (c)

1.5 If p is a pressure, V a velocity, and � a fluid density,
what are the dimensions (in the MLT system) of (a) p/�, (b)
pV�, and (c) ?

1.6 If V is a velocity, a length, and a fluid property
having dimensions of which of the following
combinations are dimensionless: (a) (b) (c)
(d)

1.7 Dimensionless combinations of quantities 1commonly
called dimensionless parameters2 play an important role in fluid
mechanics. Make up five possible dimensionless parameters by
using combinations of some of the quantities listed in Table 1.1.

1.8 The force, P, that is exerted on a spherical particle
moving slowly through a liquid is given by the equation

where is a fluid property 1viscosity2 having dimensions of
is the particle diameter, and V is the particle velocity.

What are the dimensions of the constant, Would you
classify this equation as a general homogeneous equation?

1.9 According to information found in an old hydraulics
book, the energy loss per unit weight of fluid flowing through
a nozzle connected to a hose can be estimated by the formula

where h is the energy loss per unit weight, D the hose diameter,
d the nozzle tip diameter, V the fluid velocity in the hose, and
g the acceleration of gravity. Do you think this equation is valid
in any system of units? Explain.

1.10 The pressure difference, across a partial blockage
in an artery 1called a stenosis2 is approximated by the equation

where V is the blood velocity, the blood viscosity 
the blood density the artery diameter, the area

of the unobstructed artery, and the area of the stenosis.
Determine the dimensions of the constants and Would
this equation be valid in any system of units?

1.11 Assume that the speed of sound, c, in a fluid depends
on an elastic modulus, with dimensions and the fluid
density, in the form If this is to be a
dimensionally homogeneous equation, what are the values for
a and b? Is your result consistent with the standard formula for
the speed of sound? 1See Eq. 1.19.2
1.12 A formula for estimating the volume rate of flow, Q,
over the spillway of a dam is

where C is a constant, g the acceleration of gravity, B the
spillway width, H the depth of water passing over the spillway,
and V the velocity of water just upstream of the dam. Would
this equation be valid in any system of units? Explain.

† 1.13 Cite an example of a restricted homogeneous
equation contained in a technical article found in an engineering
journal in your field of interest. Define all terms in the equation,
explain why it is a restricted equation, and provide a complete
journal citation 1title, date, etc.2.
1.14 Make use of Table 1.3 to express the following
quantities in SI units: (a) (b) 4.81 slugs, (c) 3.02
lb, (d) (e)

1.15 Make use of Table 1.4 to express the following
quantities in BG units: (a) 14.2 km, (b) (c)

(d) (e)

1.16 Make use of Appendix A to express the following
quantities in SI units: (a) 160 acre, (b) 742 Btu, (c) 240 miles,
(d) 79.1 hp, (e)

1.17 Clouds can weigh thousands of pounds due to their
liquid water content. Often this content is measured in grams
per cubic meter (g/m3). Assume that a cumulus cloud occupies
a volume of one cubic kilometer, and its liquid water content
is 0.2 g/m3. (a) What is the volume of this cloud in cubic
miles? (b) How much does the water in the cloud weigh in
pounds?

1.18 For Table 1.3 verify the conversion relationships for:
(a) area, (b) density, (c) velocity, and (d) specific weight. Use
the basic conversion relationships:

and 1 slug � 14.594 kg.4.4482 N;
1 ft � 0.3048 m; 1 lb �

60.3 °F.

5.67 mm�hr.0.0320 N # m�s,1.61 kg�m3,
8.14 N�m3,

0.0234 lb # s�ft2.73.1 ft�s2,
10.2 in.�min,

Q � C 22g B 1H � V 2�2g23�2

c � 1Ev2a1r2b.r,
FL�2,Ev,

Ku.Kv

A1

A01ML�32, Dr
1FL�2T 2,m

¢p � Kv 
mV

D
� Ku aA0

A1
� 1b2

rV 
2

¢p,

h � 10.04 to 0.092 1D�d24V2�2g

3p?
FL�2T, D

m

P � 3pmDV

V�/n?
V 

2n,V/�n,V/n,
L2T  

�1,
n/

p�rV 2

�P dx?d3P�dx3,dP�dx,

1†2
1*2

Problems
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1.19 For Table 1.4 verify the conversion relationships for:
(a) acceleration, (b) density, (c) pressure, and (d) volume flow-
rate. Use the basic conversion relationships:

and 

1.20 Water flows from a large drainage pipe at a rate of
What is this volume rate of flow in (a) , (b)

liters min, and (c) ft ?

1.21 A tank of oil has a mass of 30 slugs. (a) Determine
its weight in pounds and in newtons at the earth’s surface. (b)
What would be its mass 1in slugs2 and its weight 1in pounds2 if
located on the moon’s surface where the gravitational attraction
is approximately one-sixth that at the earth’s surface?

1.22 A certain object weighs 300 N at the earth’s surface.
Determine the mass of the object 1in kilograms2 and its weight
1in newtons2 when located on a planet with an acceleration of
gravity equal to 

1.23 An important dimensionless parameter in certain types
of fluid flow problems is the Froude number defined as 
where V is a velocity, g the acceleration of gravity, and � a
length. Determine the value of the Froude number for

and Recalculate the
Froude number using SI units for V, g, and Explain the
significance of the results of these calculations.

1.24 The specific weight of a certain liquid is 
Determine its density and specific gravity.

1.25 A hydrometer is used to measure the specific gravity
of liquids. (See Video V2.6.) For a certain liquid a hydrometer
reading indicates a specific gravity of 1.15. What is the liquid’s
density and specific weight? Express your answer in SI units.

1.26 An open, rigid-walled, cylindrical tank contains 
of water at Over a 24-hour period of time the water
temperature varies from to Make use of the data
in Appendix B to determine how much the volume of water will
change. For a tank diameter of 2 ft, would the corresponding
change in water depth be very noticeable? Explain.

† 1.27 Estimate the number of pounds of mercury it
would take to fill your bath tub. List all assumptions and show
all calculations.

1.28 A liquid when poured into a graduated cylinder is
found to weigh 8 N when occupying a volume of 500 ml 1milli-
liters2. Determine its specific weight, density, and specific gravity.

1.29 The information on a can of pop indicates that the can
contains 355 mL. The mass of a full can of pop is 0.369 kg
while an empty can weighs 0.153 N. Determine the specific
weight, density, and specific gravity of the pop and compare
your results with the corresponding values for water at 
Express your results in SI units.

*1.30 The variation in the density of water, with tem-
perature, T, in the range is given in the
following table.

Density 1kg m32 998.2 997.1 995.7 994.1 992.2 990.2 988.1

Temperature 20 25 30 35 40 45 50

Use these data to determine an empirical equation of the form
which can be used to predict the density

over the range indicated. Compare the predicted values with the
data given. What is the density of water at 

† 1.31 Estimate the number of kilograms of water
consumed per day for household purposes in your city. List all
assumptions and show all calculations.

1.32 The density of oxygen contained in a tank is 
when the temperature is Determine the gage pressure of
the gas if the atmospheric pressure is 97 kPa.

1.33 Some experiments are being conducted in a laboratory
in which the air temperature is 27 �C, and the atmospheric
pressure is 14.3 psia. Determine the density of the air. Express
your answers in slugs/ft3 and in kg/m3.

1.34 A closed tank having a volume of is filled with
0.30 lb of a gas. A pressure gage attached to the tank reads 12 psi
when the gas temperature is There is some question as
to whether the gas in the tank is oxygen or helium. Which do
you think it is? Explain how you arrived at your answer.

† 1.35 The presence of raindrops in the air during a heavy
rainstorm increases the average density of the air/water mixture.
Estimate by what percent the average air/water density is greater
than that of just still air. State all assumptions and show
calculations.

1.36 A tire having a volume of contains air at a gage
pressure of 26 psi and a temperature of Determine the
density of the air and the weight of the air contained in the tire.

1.37 A rigid tank contains air at a pressure of 90 psia and
a temperature of 60 �F. By how much will the pressure increase
as the temperature is increased to 110 �F?

*1.38 Develop a computer program for calculating the
density of an ideal gas when the gas pressure in pascals 1abs2,
the temperature in degrees Celsius, and the gas constant in

are specified.

*1.39 Repeat Problem 1.38 for the case in which the
pressure is given in psi 1gage2, the temperature in degrees
Fahrenheit, and the gas constant in 

1.40 Make use of the data in Appendix B to determine the
dynamic vicosity of mercury at Express your answer in
BG units.

1.41 One type of capillary-tube viscometer is shown in
Video V1.3 and in Fig. P1.41 at the top of the following page.
For this device the liquid to be tested is drawn into the tube to
a level above the top etched line. The time is then obtained for
the liquid to drain to the bottom etched line. The kinematic
viscosity, �, in m2/s is then obtained from the equation 
where K is a constant, R is the radius of the capillary tube in
mm, and t is the drain time in seconds. When glycerin at 20 �C
is used as a calibration fluid in a particular viscometer the drain
time is 1,430 s. When a liquid having a density of 970 kg/m3

is tested in the same viscometer the drain time is 900 s. What
is the dynamic viscosity of this liquid?

1.42 The viscosity of a soft drink was determined by using
a capillary tube viscometer similar to that shown in Fig. P1.41
and Video V1.3. For this device the kinematic viscosity, �, is
directly proportional to the time, t, that it takes for a given
amount of liquid to flow through a small capillary tube. That

n � KR4t

75 °F.

ft #lb�slug #°R.

J�kg # K

70 °F.
3 ft3

80 °F.

2 ft3

25° C.
2.0 kg�m3

42.1° C?

r � c1 � c2T � c3T 
2

1°C2

�

20 °C � T � 50 °C,
r,

20 °C.

90 °F.40 °F
40 °F.

4 ft3

85.3 lb�ft3.

/.
/ � 2 ft.g � 32.2 ft�s2,V � 10 ft�s,

V�1g/,

4.0 ft�s2.

3�s�
m3�s1200 gal�min.

1 kg � 0.068521 slug.1 N � 0.22481 lb;
1 m � 3.2808 ft;
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is, . The following data were obtained from regular pop
and diet pop. The corresponding measured specific gravities 
are also given. Based on these data, by what percent is the
absolute viscosity, µ, of regular pop greater than that of diet
pop?

Regular pop Diet pop

t(s) 377.8 300.3

SG 1.044 1.003

1.43 The time, t, it takes to pour a liquid from a container
depends on several factors, including the kinematic viscosity, 	,
of the liquid. (See Video V1.1.) In some laboratory tests various
oils having the same density but different viscosities were
poured at a fixed tipping rate from small 150 ml beakers. The
time required to pour 100 ml of the oil was measured, and it
was found that an approximate equation for the pouring time in
seconds was with 	 in m2/s. 
(a) Is this a general homogeneous equation? Explain. (b) Compare
the time it would take to pour 100 ml of SAE 30 oil from a 150
ml beaker at 0 �C to the corresponding time at a temperature of
60 �C. Make use of Fig. B.2 in Appendix B for viscosity data.

1.44 The viscosity of a certain fluid is poise.
Determine its viscosity in both SI and BG units.

1.45 The kinematic viscosity of oxygen at and a pres-
sure of 150 kPa 1abs2 is 0.104 stokes. Determine the dynamic
viscosity of oxygen at this temperature and pressure.

*1.46 Fluids for which the shearing stress, �, is not linearly
related to the rate of shearing strain, ��, are designated as non-
Newtonian fluids. Such fluids are commonplace and can exhibit
unusual behavior as shown in Video V1.4. Some experimental
data obtained for a particular non-Newtonian fluid at 80 �F are
shown below.

�(lb/ft2) 0 2.11 7.82 18.5 31.7

�� (s�1) 0 50 100 150 200

Plot these data and fit a second-order polynomial to the data using
a suitable graphing program. What is the apparent viscosity of
this fluid when the rate of shearing strain is 70 ? Is this
apparent viscosity larger or smaller than that for water at the
same temperature?

1.47 Water flows near a flat surface and some measure-
ments of the water velocity, u, parallel to the surface, at different
heights, y, above the surface are obtained. At the surface .
After an analysis of the data, the lab technician reports that the
velocity distribution in the range is given by
the equation

with u in ft/s when y is in ft. (a) Do you think that this equation
would be valid in any system of units? Explain. (b) Do you
think this equation is correct? Explain. You may want to look
at Video 1.2 to help you arrive at your answer.

1.48 Calculate the Reynolds numbers for the flow of water
and for air through a 4-mm-diameter tube, if the mean velocity
is 3 m s and the temperature is in both cases 1see Example
1.42. Assume the air is at standard atmospheric pressure.

1.49 For air at standard atmospheric pressure the values of
the constants that appear in the Sutherland equation 1Eq. 1.102
are and Use
these values to predict the viscosity of air at and 
and compare with values given in Table B.4 in Appendix B.

*1.50 Use the values of viscosity of air given in Table B.4
at temperatures of 0, 20, 40, 60, 80, and to determine
the constants C and S which appear in the Sutherland equation1Eq. 1.102. Compare your results with the values given in Prob-
lem 1.49. 1Hint: Rewrite the equation in the form

and plot versus T. From the slope and intercept of this
curve, C and S can be obtained.2
1.51 The viscosity of a fluid plays a very important role in
determining how a fluid flows. (See Video V1.1.) The value of
the viscosity depends not only on the specific fluid but also on
the fluid temperature. Some experiments show that when a
liquid, under the action of a constant driving pressure, is forced
with a low velocity, V, through a small horizontal tube, the
velocity is given by the equation . In this equation K
is a constant for a given tube and pressure, and µ is the dynamic
viscosity. For a particular liquid of interest, the viscosity is given
by Andrade’s equation (Eq. 1.11) with 
and . By what percentage will the velocity increase
as the liquid temperature is increased from 40 �F to 100 �F?
Assume all other factors remain constant.

*1.52 Use the value of the viscosity of water given in Table
B.2 at temperatures of 0, 20, 40, 60, 80, and to determine
the constants D and B which appear in Andrade’s equation 1Eq.
1.112. Calculate the value of the viscosity at and compare
with the value given in Table B.2. 1Hint: Rewrite the equation
in the form

ln m � 1B2 1
T

� ln D

50 °C

100 °C

B � 4000 °R
D � 5 � 10�7 lb � s�ft2

V � K�m

T 
3�  2�m

T 
3�  2

m
� a 1

C
b T �

S

C

100 °C

90 °C10 °C
S � 110.4 K.C � 1.458 � 10�6 kg� 1m # s # K1�22

30 °C�

u � 0.81 � 9.2y � 4.1 � 103y3

0 6 y 6 0.1 ft

y � 0

s�1

20 °C

5 � 10�4

t � 1 � 9 � 102n � 8 � 103n2

n � Kt

Etched lines

Glass
strengthening

bridge

Capillary
tube

� F I G U R E  P 1 . 4 1
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and plot ln versus From the slope and intercept of this
curve, B and D can be obtained. If a nonlinear curve-fitting
program is available the constants can be obtained directly from
Eq. 1.11 without rewriting the equation.2

1.53 Crude oil having a viscosity of 
is contained between parallel plates. The bottom plate is fixed
and the upper plate moves when a force P is applied 1see Fig.
1.32. If the distance between the two plates is 0.1 in., what value
of P is required to translate the plate with a velocity of 3 ft s?
The effective area of the upper plate is 

1.54 As shown in Video V1.2, the “no slip” condition
means that a fluid “sticks” to a solid surface. This is true for
both fixed and moving surfaces. Let two layers of fluid be
dragged along by the motion of an upper plate as shown in Fig.
P1.54. The bottom plate is stationary. The top fluid puts a shear
stress on the upper plate, and the lower fluid puts a shear stress
on the botton plate. Determine the ratio of these two shear
stresses.

1.55 There are many fluids that exhibit non-Newtonian
behavior (see, for example, Video V1.4). For a given fluid the
distinction between Newtonian and non-Newtonian behavior is
usually based on measurements of shear stress and rate of
shearing strain. Assume that the viscosity of blood is to be
determined by measurements of shear stress, �, and rate of
shearing strain, du/dy, obtained from a small blood sample
tested in a suitable viscometer. Based on the data given below
determine if the blood is a Newtonian or non-Newtonian fluid.
Explain how you arrived at your answer.

�(N/m2) 0.04 0.06 0.12 0.18 0.30 0.52 1.12 2.10

du/dy ( ) 2.25 4.50 11.25 22.5 45.0 90.0 225 450

1.56 A 40-lb, 0.8-ft-diameter, 1-ft-tall cylindrical tank
slides slowly down a ramp with a constant speed of 0.1 ft/s as
shown in Fig. P1.56. The uniform-thickness oil layer on the
ramp has a viscosity of 0.2 lb . Determine the angle, �,
of the ramp.

1.57 A piston having a diameter of 5.48 in. and a length of
9.50 in. slides downward with a velocity V through a vertical
pipe. The downward motion is resisted by an oil film between
the piston and the pipe wall. The film thickness is 0.002 in.,
and the cylinder weighs 0.5 lb. Estimate V if the oil viscosity
is Assume the velocity distribution in the gap is
linear.

1.58 A Newtonian fluid having a specific gravity of 0.92
and a kinematic viscosity of flows past a fixed
surface. Due to the no-slip condition, the velocity at the fixed
surface is zero (as shown in Video V1.2), and the velocity
profile near the surface is shown in Fig. P1.58. Determine the
magnitude and direction of the shearing stress developed on the
plate. Express your answer in terms of U and �, with U and �
expressed in units of meters per second and meters, respectively.

1.59 When a viscous fluid flows past a thin sharp-edged
plate, a thin layer adjacent to the plate surface develops in which
the velocity, u, changes rapidly from zero to the approach
velocity, U, in a small distance, This layer is called a
boundary layer. The thickness of this layer increases with the
distance x along the plate as shown in Fig. P1.59. Assume that

and where is the kinematic
viscosity of the fluid. Determine an expression for the force
1drag2 that would be developed on one side of the plate of length
l and width b. Express your answer in terms of l, b, and 
where is the fluid density.

*1.60 Standard air flows past a flat surface and velocity
measurements near the surface indicate the following distribution:

y 1ft2 0.005 0.01 0.02 0.04 0.06 0.08

u 0.74 1.51 3.03 6.37 10.21 14.431ft�s2

r
r,n,

nd � 3.5 1nx�Uu � U y�d

d.

4 � 10�4m2�s

0.016 lb # s�ft2.

� s�ft2

s�1

200 in.2
�

9.52 � 10�4 lb # s�ft2

1�T.m

Fluid 1 0.02 m

Fluid 2 0.02 m

2 m/s

3 m/s

1 = 0.4 N • s/m2µ

2 = 0.2 N • s/m2µ

U

� F I G U R E  P 1 . 5 4

Tank

0.1 ft/s

Oil

0.002 ft

θ

� F I G U R E  P 1 . 5 6

δ

y
U

u

u__
U

= –3__
2

1__
2

y__
 δ

y__
 δ( )

3

� F I G U R E  P 1 . 5 8

�

y

x
δ

Plate
width = b

U

u = U

u = U y_
δ

Boundary layer

� F I G U R E  P 1 . 6 0
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The coordinate y is measured normal to the surface and u is the
velocity parallel to the surface. (a) Assume the velocity
distribution is of the form

and use a standard curve-fitting technique to determine the
constants and (b) Make use of the results of part 1a2 to
determine the magnitude of the shearing stress at the wall

and at 

1.61 The viscosity of liquids can be measured through the
use of a rotating cylinder viscometer of the type illustrated in
Fig. P1.61. In this device the outer cylinder is fixed and the
inner cylinder is rotated with an angular velocity, The torque

required to develop is measured and the viscosity is
calculated from these two measurements. Develop an equation
relating , and Neglect end effects and assume
the velocity distribution in the gap is linear.

1.62 The space between two 6-in.-long concentric cylinders
is filled with glycerin The
inner cylinder has a radius of 3 in. and the gap width between
cylinders is 0.1 in. Determine the torque and the power required
to rotate the inner cylinder at The outer cylinder
is fixed. Assume the velocity distribution in the gap to be linear.

1.63 One type of rotating cylinder viscometer, called a
Stormer viscometer, uses a falling weight, to cause the
cylinder to rotate with an angular velocity, as illustrated in
Fig. P1.63. For this device the viscosity, of the liquid is related
to and through the equation where K is a
constant that depends only on the geometry 1including the liquid
depth2 of the viscometer. The value of K is usually determined
by using a calibration liquid 1a liquid of known viscosity2.

(a) Some data for a particular Stormer viscometer, obtained
using glycerin at as a calibration liquid, are given
below. Plot values of the weight as ordinates and val-
ues of the angular velocity as abscissae. Draw the best
curve through the plotted points and determine K for the
viscometer.

0.22 0.66 1.10 1.54 2.20

0.53 1.59 2.79 3.83 5.49

(b) A liquid of unknown viscosity is placed in the same vis-
cometer used in part 1a2, and the data given below are
obtained. Determine the viscosity of this liquid.

0.04 0.11 0.22 0.33 0.44

0.72 1.89 3.73 5.44 7.42

*1.64 The following torque-angular velocity data were
obtained with a rotating cylinder viscometer of the type
described in Problem 1.61.

Torque 13.1 26.0 39.5 52.7 64.9 78.6

Angular
velocity 1.0 2.0 3.0 4.0 5.0 6.0

For this viscometer and
Make use of these data and a standard curve-fitting

program to determine the viscosity of the liquid contained in
the viscometer.

1.65 A 12-in.-diameter circular plate is placed over a fixed
bottom plate with a 0.1-in. gap between the two plates filled
with glycerin as shown in Fig. P1.65. Determine the torque
required to rotate the circular plate slowly at 2 rpm. Assume
that the velocity distribution in the gap is linear and that the
shear stress on the edge of the rotating plate is negligible.

† 1.66 Vehicle shock absorbers damp out oscillations
caused by road roughness. Describe how a temperature change
may affect the operation of a shock absorber.

1.67 A rigid-walled cubical container is completely filled
with water at and sealed. The water is then heated to

Determine the pressure that develops in the container
when the water reaches this higher temperature. Assume that
the volume of the container remains constant and the value of

100 °F.
40 °F

/ � 5.00 in.
Ri � 2.45 in.,Ro � 2.50 in.,

1rad�s2

1ft # lb2

v 1rev�s2

w 1lb2

v 1rev�s2

w 1lb2

20 °C

w � Kmv,vw
m,

v,
w,

180 rev�min.

1viscosity � 8.5 � 10�3 lb # s�ft22.

Ri.m, v, t, /, Ro

vt
v.

y � 0.05 ft.1y � 02

C2.C1

u � C1y � C2y
3

Liquid

Fixed
outer

cylinder
�

ω

�

Ri

Ro

Rotating
inner

cylinder

� F I G U R E  P 1 . 6 1

Liquid

Fixed outer
cylinder

Weight

ω

W
Rotating

inner
cylinder

� F I G U R E  P 1 . 6 3

Rotating plate

0.1 in. gap

Torque

� F I G U R E  P 1 . 6 5
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the bulk modulus of the water remains constant and equal to
300,000 psi.

1.68 In a test to determine the bulk modulus of a liquid it
was found that as the absolute pressure was changed from 15
to 3000 psi the volume decreased from 10.240 to 
Determine the bulk modulus for this liquid.

1.69 Calculate the speed of sound in for (a) gasoline,
(b) mercury, and (c) seawater.

1.70 Air is enclosed by a rigid cylinder containing a piston.
A pressure gage attached to the cylinder indicates an initial
reading of 25 psi. Determine the reading on the gage when the
piston has compressed the air to one-third its original volume.
Assume the compression process to be isothermal and the local
atmospheric pressure to be 14.7 psi.

1.71 Often the assumption is made that the flow of a certain
fluid can be considered as incompressible flow if the density of
the fluid changes by less than 2%. If air is flowing through a
tube such that the air pressure at one section is 9.0 psi and at
a downstream section it is 8.6 psi at the same temperature, do
you think that this flow could be considered an imcompressible
flow? Support your answer with the necessary calculations.
Assume standard atmospheric pressure.

1.72 Oxygen at and 300 kPa absolute pressure ex-
pands isothermally to an absolute pressure of 120 kPa. Deter-
mine the final density of the gas.

1.73 Natural gas at and standard atmospheric pres-
sure of 14.7 psi is compressed isentropically to a new absolute
pressure of 70 psi. Determine the final density and temperature
of the gas.

1.74 Compare the isentropic bulk modulus of air at 101 kPa1abs2 with that of water at the same pressure.

*1.75 Develop a computer program for calculating the final
gage pressure of gas when the initial gage pressure, initial and
final volumes, atmospheric pressure, and the type of process1isothermal or isentropic2 are specified. Use BG units. Check
your program against the results obtained for Problem 1.70.

1.76 An important dimensionless parameter concerned
with very high speed flow is the Mach number, defined as V/c,
where V is the speed of the object such as an airplane or
projectile, and c is the speed of sound in the fluid surrounding
the object. For a projectile traveling at 800 mph through air at
50 �F and standard atmospheric pressure, what is the value of
the Mach number?

1.77 Jet airliners typically fly at altitudes between
approximately 0 to 40,000 ft. Make use of the data in Appendix
C to show on a graph how the speed of sound varies over this
range.

1.78 When a fluid flows through a sharp bend, low
pressures may develop in localized regions of the bend. Estimate
the minimum absolute pressure 1in psi2 that can develop without
causing cavitation if the fluid is water at 

1.79 Estimate the minimum absolute pressure 1in pascals2
that can be developed at the inlet of a pump to avoid cavitation
if the fluid is carbon tetrachloride at 

1.80 When water at flows through a converging
section of pipe, the pressure is reduced in the direction of flow.
Estimate the minimum absolute pressure that can develop
without causing cavitation. Express your answer in both BG
and SI units.

1.81 A partially filled closed tank contains ethyl alcohol at
If the air above the alcohol is evacuated, what is the

minimum absolute pressure that develops in the evacuated
space?

1.82 Estimate the excess pressure inside a raindrop having
a diameter of 3 mm.

1.83 A 12-mm diameter jet of water discharges vertically
into the atmosphere. Due to surface tension the pressure inside
the jet will be slightly higher than the surrounding atmospheric
pressure. Determine this difference in pressure.

1.84 As shown in Video V1.5, surface tension forces can
be strong enough to allow a double-edge steel razor blade to
“float” on water, but a single-edge blade will sink. Assume that
the surface tension forces act at an angle � relative to the water
surface as shown in Fig. P1.84. (a) The mass of the double-
edge blade is , and the total length of its sides
is 206 mm. Determine the value of � required to maintain
equilibrium between the blade weight and the resultant surface
tension force. (b) The mass of the single-edge blade is

, and the total length of its sides is 154 mm.
Explain why this blade sinks. Support your answer with the
necessary calculations.

1.85 To measure the water depth in a large open tank with
opaque walls, an open vertical glass tube is attached to the side
of the tank. The height of the water column in the tube is then
used as a measure of the depth of water in the tank. (a) For 
a true water depth in the tank of 3 ft, make use of Eq. 1.22 (with

) to determine the percent error due to capillarity as the
diameter of the glass tube is changed. Assume a water
temperature of 80 �F. Show your results on a graph of percent
error versus tube diameter, D, in the range 
(b) If you want the error to be less than 1%, what is the smallest
tube diameter allowed?

1.86 Under the right conditions, it is possible, due to surface
tension, to have metal objects float on water. (See Video V1.5.)
Consider placing a short length of a small diameter steel (sp.
wt. � 490 lb/ft3) rod on a surface of water. What is the
maximum diameter that the rod can have before it will sink?
Assume that the surface tension forces act vertically upward.
Note: A standard paper clip has a diameter of 0.036 in. Partially
unfold a paper clip and see if you can get it to float on water.
Do the results of this experiment support your analysis?

1.87 An open, clean glass tube, having a diameter of 3 mm,
is inserted vertically into a dish of mercury at How far
will the column of mercury in the tube be depressed?

20 °C.

0.1 in. 6 D 6 1.0 in.

u � 0°

2.61 � 10�3kg

0.64 � 10�3kg

68 °F.

90 °C

20 °C.

160 °F.

70 °F

30 °C

m�s

10.138 in.3

Blade

Surface tension
force

θ
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7708d_c01_02-38  7/5/01  1:37 PM  Page 37



38 � Chapter 1 / Introduction

1.88 An open 2-mm-diameter tube is inserted into a pan of
ethyl alcohol and a similar 4-mm-diameter tube is inserted into
a pan of water. In which tube will the height of the rise of the
fluid column due to capillary action be the greatest? Assume
the angle of contact is the same for both tubes.

*1.89 The capillary rise in a tube depends on the cleanliness
of both the fluid and the tube. Typically, values of h are less
than those predicted by Eq. 1.22 using values of and for
clean fluids and tubes. Some measurements of the height, h, to
which a water column rises in a vertical open tube of diameter
d are given below. The water was tap water at a temperature of

and no particular effort was made to clean the glass tube.
Fit a curve to these data and estimate the value of the product

If it is assumed that has the value given in Table 1.5,

what is the value of If it is assumed that is equal to 
what is the value of 

d 1in.2 0.3 0.25 0.20 0.15 0.10 0.05

h 1in.2 0.133 0.165 0.198 0.273 0.421 0.796

1.90 This problem involves the use of a Stormer viscometer
to determine whether a fluid is a Newtonian or a non-Newtonian
fluid. To proceed with this problem, click here in the E-book.

1.91 This problem involves the use of a capillary tube
viscometer to determine the kinematic viscosity of water as a
function of temperature. To proceed with this problem, click
here in the E-book.

s?
0°,uu?

ss cos u.

60 °F

us
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