The break-up of a fluid jet into drops is a function of fluid properties
such as density, viscosity, and surface tension. [Reprinted with
permission from American Institute of Physics (Ref. 6) and the American
Association for the Advancement of Science (Ref. 7).]



[ntroduction

Fluid mechanics is
concerned with the
behavior of liquids
and gases at rest
and in motion.

Fluid mechanics is that discipline within the broad field of applied mechanics concerned with
the behavior of liquids and gases at rest or in motion. This field of mechanics obviously
encompasses a vast array of problems that may vary from the study of blood flow in the
capillaries (which are only a few microns in diameter) to the flow of crude oil across Alaska
through an 800-mile-long, 4-ft-diameter pipe. Fluid mechanics principles are needed to ex-
plain why airplanes are made streamlined with smooth surfaces for the most efficient flight,
whereas golf balls are made with rough surfaces (dimpled) to increase their efficiency. Nu-
merous interesting questions can be answered by using relatively simple fluid mechanics
ideas. For example:

B How can a rocket generate thrust without having any air to push against in outer space?

Why can’t you hear a supersonic airplane until it has gone past you?

B How can a river flow downstream with a significant velocity even though the slope of
the surface is so small that it could not be detected with an ordinary level?

B How can information obtained from model airplanes be used to design the real thing?

B Why does a stream of water from a faucet sometimes appear to have a smooth surface,
but sometimes a rough surface?

B How much greater gas mileage can be obtained by improved aerodynamic design of
cars and trucks?

The list of applications and questions goes on and on—but you get the point; fluid mechanics
is a very important, practical subject. It is very likely that during your career as an engineer
you will be involved in the analysis and design of systems that require a good understanding
of fluid mechanics. It is hoped that this introductory text will provide a sound foundation of
the fundamental aspects of fluid mechanics.
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1.1 Some Characteristics of Fluids

A fluid, such as
water or air, de-
Jforms continuously
when acted on by
shearing stresses of
any magnitude.

One of the first questions we need to explore is, What is a fluid? Or we might ask, What is
the difference between a solid and a fluid? We have a general, vague idea of the difference.
A solid is “hard” and not easily deformed, whereas a fluid is “soft” and is easily deformed
(we can readily move through air). Although quite descriptive, these casual observations of
the differences between solids and fluids are not very satisfactory from a scientific or
engineering point of view. A closer look at the molecular structure of materials reveals that
matter that we commonly think of as a solid (steel, concrete, etc.) has densely spaced molecules
with large intermolecular cohesive forces that allow the solid to maintain its shape, and to
not be easily deformed. However, for matter that we normally think of as a liquid (water, oil,
etc.), the molecules are spaced farther apart, the intermolecular forces are smaller than for
solids, and the molecules have more freedom of movement. Thus, liquids can be easily
deformed (but not easily compressed) and can be poured into containers or forced through a
tube. Gases (air, oxygen, etc.) have even greater molecular spacing and freedom of motion
with negligible cohesive intermolecular forces and as a consequence are easily deformed (and
compressed) and will completely fill the volume of any container in which they are placed.

Although the differences between solids and fluids can be explained qualitatively on
the basis of molecular structure, a more specific distinction is based on how they deform
under the action of an external load. Specifically, a fluid is defined as a substance that deforms
continuously when acted on by a shearing stress of any magnitude. A shearing stress (force
per unit area) is created whenever a tangential force acts on a surface. When common solids
such as steel or other metals are acted on by a shearing stress, they will initially deform
(usually a very small deformation), but they will not continuously deform (flow). However,
common fluids such as water, oil, and air satisfy the definition of a fluid—that is, they will
flow when acted on by a shearing stress. Some materials, such as slurries, tar, putty, toothpaste,
and so on, are not easily classified since they will behave as a solid if the applied shearing
stress is small, but if the stress exceeds some critical value, the substance will flow. The study
of such materials is called rheology and does not fall within the province of classical fluid
mechanics. Thus, all the fluids we will be concerned with in this text will conform to the
definition of a fluid given previously.

Although the molecular structure of fluids is important in distinguishing one fluid from
another, it is not possible to study the behavior of individual molecules when trying to describe
the behavior of fluids at rest or in motion. Rather, we characterize the behavior by considering
the average, or macroscopic, value of the quantity of interest, where the average is evaluated
over a small volume containing a large number of molecules. Thus, when we say that the
velocity at a certain point in a fluid is so much, we are really indicating the average velocity
of the molecules in a small volume surrounding the point. The volume is small compared
with the physical dimensions of the system of interest, but large compared with the average
distance between molecules. Is this a reasonable way to describe the behavior of a fluid? The
answer is generally yes, since the spacing between molecules is typically very small. For
gases at normal pressures and temperatures, the spacing is on the order of 10~¢ mm, and for
liquids it is on the order of 10~" mm. The number of molecules per cubic millimeter is on
the order of 10'® for gases and 10! for liquids. It is thus clear that the number of molecules
in a very tiny volume is huge and the idea of using average values taken over this volume is
certainly reasonable. We thus assume that all the fluid characteristics we are interested in
(pressure, velocity, etc.) vary continuously throughout the fluid—that is, we treat the fluid as
a continuum. This concept will certainly be valid for all the circumstances considered in this
text. One area of fluid mechanics for which the continuum concept breaks down is in the
study of rarefied gases such as would be encountered at very high altitudes. In this case the
spacing between air molecules can become large and the continuum concept is no longer
acceptable.
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1.2 Dimensions, Dimensional Homogeneity, and Units

Fluid characteris-
tics can be de-
scribed qualitatively
in terms of certain
basic quantities
such as length,
time, and mass.

Since in our study of fluid mechanics we will be dealing with a variety of fluid characteristics,
it is necessary to develop a system for describing these characteristics both qualitatively and
quantitatively. The qualitative aspect serves to identify the nature, or type, of the character-
istics (such as length, time, stress, and velocity), whereas the quantitative aspect provides a
numerical measure of the characteristics. The quantitative description requires both a number
and a standard by which various quantities can be compared. A standard for length might be
a meter or foot, for time an hour or second, and for mass a slug or kilogram. Such standards
are called units, and several systems of units are in common use as described in the following
section. The qualitative description is conveniently given in terms of certain primary quan-
tities, such as length, L, time, T, mass, M, and temperature, O. These primary quantities can
then be used to provide a qualitative description of any other secondary quantity: for example,
area = L7, velocity = LT, density = ML 3, and so on, where the symbol = is used to
indicate the dimensions of the secondary quantity in terms of the primary quantities. Thus,
to describe qualitatively a velocity, V, we would write

V=LT"!

and say that “the dimensions of a velocity equal length divided by time.” The primary
quantities are also referred to as basic dimensions.

For a wide variety of problems involving fluid mechanics, only the three basic dimen-
sions, L, T, and M are required. Alternatively, L, T, and F could be used, where F is the basic
dimensions of force. Since Newton’s law states that force is equal to mass times acceleration,
it follows that F = MLT > or M = FL™' T* Thus, secondary quantities expressed in terms
of M can be expressed in terms of F through the relationship above. For example, stress, o,
is a force per unit area, so that o = FL % but an equivalent dimensional equation is
o = ML™'T~2 Table 1.1 provides a list of dimensions for a number of common physical
quantities.

All theoretically derived equations are dimensionally homogeneous—that is, the di-
mensions of the left side of the equation must be the same as those on the right side, and all
additive separate terms must have the same dimensions. We accept as a fundamental premise
that all equations describing physical phenomena must be dimensionally homogeneous.
If this were not true, we would be attempting to equate or add unlike physical quantities,
which would not make sense. For example, the equation for the velocity, V, of a uniformly
accelerated body is

V="V,+a (1.1)

where V, is the initial velocity, a the acceleration, and ¢ the time interval. In terms of
dimensions the equation is

LT ' =LT'+ LT"!

and thus Eq. 1.1 is dimensionally homogeneous.
Some equations that are known to be valid contain constants having dimensions. The
equation for the distance, d, traveled by a freely falling body can be written as

d = 16.1¢> (1.2)

and a check of the dimensions reveals that the constant must have the dimensions of LT ~2
if the equation is to be dimensionally homogeneous. Actually, Eq. 1.2 is a special form of
the well-known equation from physics for freely falling bodies,

_ 8’

d
2

1.3)
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in which g is the acceleration of gravity. Equation 1.3 is dimensionally homogeneous and
valid in any system of units. For g = 32.2 ft/s” the equation reduces to Eq. 1.2 and thus

General homogen- Eq. 1.2 is valid only for the system of units using feet and seconds. Equations that are restricted
eous equations are to a particular system of units can be denoted as restricted homogeneous equations, as opposed
valid in any system to equations valid in any system of units, which are general homogeneous equations. The
of units. preceding discussion indicates one rather elementary, but important, use of the concept of

dimensions: the determination of one aspect of the generality of a given equation simply
based on a consideration of the dimensions of the various terms in the equation. The concept
of dimensions also forms the basis for the powerful tool of dimensional analysis, which is
considered in detail in Chapter 7.

m TABLE 1.1
Dimensions Associated with Common Physical Quantities

FLT MLT

System System
Acceleration LT LT
Angle FL°T® M°L°T®
Angular acceleration T2 T2
Angular velocity T 7!
Area L’ L?
Density FL™*T? ML™3
Energy FL ML*T™?
Force F MLT*
Frequency ! T!
Heat FL ML*T?
Length L L
Mass FL'T? M
Modulus of elasticity FL™? ML™'T™?
Moment of a force FL ML*T™?
Moment of inertia (area) L L
Moment of inertia (mass) FLT? ML?
Momentum FT MLT™!
Power FLT™! ML*T?
Pressure FL™? ML™'T?
Specific heat L’T207! L’T?07!
Specific weight FL™? ML™T?
Strain FLT® M°LT®
Stress FL? ML™'T™?
Surface tension FL™! MT?
Temperature (S} (S)
Time T T
Torque FL ML*T™?
Velocity LT™! LT™!
Viscosity (dynamic) FL™’T ML™'T™!
Viscosity (kinematic) L7 LT
Volume L L’

Work FL ML*T?
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A commonly used equation for determining the volume rate of flow, Q, of a liquid through
an orifice located in the side of a tank is

0 = 0.61 A\ 2gh

where A is the area of the orifice, g is the acceleration of gravity, and % is the height of the
liquid above the orifice. Investigate the dimensional homogeneity of this formula.

SoLution

The dimensions of the various terms in the equation are Q = volume/time = L3T_1,
A = area = L*, g = acceleration of gravity = LT %, h = height = L

These terms, when substituted into the equation, yield the dimensional form:
(LT = (0.61)(L)(V2)(LT*)X(L)"
or
(LT = [(0.61)V2)(L’T )

It is clear from this result that the equation is dimensionally homogeneous (both sides of the
formula have the same dimensions of L*T "), and the numbers (0.61 and V/2) are dimen-
sionless.

If we were going to use this relationship repeatedly we might be tempted to simplify
it by replacing g with its standard value of 32.2 ft/s> and rewriting the formula as

Q =490AVh (0))
A quick check of the dimensions reveals that
LT = (4.90)(L"?)

and, therefore, the equation expressed as Eq. 1 can only be dimensionally correct if the num-
ber 4.90 has the dimensions of L'?T~!. Whenever a number appearing in an equation or for-
mula has dimensions, it means that the specific value of the number will depend on the sys-
tem of units used. Thus, for the case being considered with feet and seconds used as units,
the number 4.90 has units of ft'/?/s. Equation 1 will only give the correct value for Q(in ft*/s)
when A is expressed in square feet and 4 in feet. Thus, Eq. 1 is a restricted homogeneous
equation, whereas the original equation is a general homogeneous equation that would be
valid for any consistent system of units. A quick check of the dimensions of the various terms
in an equation is a useful practice and will often be helpful in eliminating errors—that is, as
noted previously, all physically meaningful equations must be dimensionally homogeneous.
We have briefly alluded to units in this example, and this important topic will be considered
in more detail in the next section.

\.

1.2.1 Systems of Units

In addition to the qualitative description of the various quantities of interest, it is generally
necessary to have a quantitative measure of any given quantity. For example, if we measure
the width of this page in the book and say that it is 10 units wide, the statement has no
meaning until the unit of length is defined. If we indicate that the unit of length is a meter,
and define the meter as some standard length, a unit system for length has been established
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Two systems of
units that are
widely used in engi-
neering are the
British Gravita-
tional (BG) System
and the Interna-
tional System (SI).

(and a numerical value can be given to the page width). In addition to length, a unit must be
established for each of the remaining basic quantities (force, mass, time, and temperature).
There are several systems of units in use and we shall consider three systems that are
commonly used in engineering.

British Gravitational (BG) System. In the BG system the unit of length is the
foot (ft), the time unit is the second (s), the force unit is the pound (Ib), and the temperature
unit is the degree Fahrenheit (°F) or the absolute temperature unit is the degree Rankine (°R),
where

°R = °F + 459.67

The mass unit, called the slug, is defined from Newton’s second law (force = mass X
acceleration) as

11b = (1 slug)(1 ft/s?)

This relationship indicates that a 1-1b force acting on a mass of 1 slug will give the mass an
acceleration of 1 ft/s%.

The weight, W (which is the force due to gravity, g) of a mass, m, is given by the
equation

W = mg
and in BG units
W(lb) = m(slugs) g(ft/s?)

Since the earth’s standard gravity is taken as g = 32.174 ft/s* (commonly approximated as
32.2 ft/s%), it follows that a mass of 1 slug weighs 32.2 Ib under standard gravity.

International System (SI). 1n 1960 the Eleventh General Conference on Weights
and Measures, the international organization responsible for maintaining precise uniform
standards of measurements, formally adopted the International System of Units as the inter-
national standard. This system, commonly termed SI, has been widely adopted worldwide
and is widely used (although certainly not exclusively) in the United States. It is expected
that the long-term trend will be for all countries to accept SI as the accepted standard and it
is imperative that engineering students become familiar with this system. In SI the unit of
length is the meter (m), the time unit is the second (s), the mass unit is the kilogram (kg), and
the temperature unit is the kelvin (K). Note that there is no degree symbol used when
expressing a temperature in kelvin units. The Kelvin temperature scale is an absolute scale
and is related to the Celsius (centigrade) scale (°C) through the relationship

K =°C + 273.15

Although the Celsius scale is not in itself part of SI, it is common practice to specify
temperatures in degrees Celsius when using SI units.
The force unit, called the newton (N), is defined from Newton’s second law as

IN = (1kg)(1 m/s?)

Thus, a 1-N force acting on a 1-kg mass will give the mass an acceleration of 1m/s* Standard
gravity in SI is 9.807 m/s? (commonly approximated as 9.81 m/s?) so that a 1-kg mass weighs
9.81 N under standard gravity. Note that weight and mass are different, both qualitatively
and quantitatively! The unit of work in SI is the joule (J), which is the work done when the



In mechanics it is
very important to
distinguish between
weight and mass.
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m TABLE 1.2
Prefixes for SI Units

Factor by Which Unit

Is Multiplied Prefix Symbol
10" tera T
10° giga G
10° mega M
10° kilo k
10° hecto h
10 deka da
107! deci d
1072 centi c
1073 milli m
10°° micro N
107° nano n
10712 pico P
1075 femto f
10718 atto a

point of application of a 1-N force is displaced through a 1-m distance in the
direction of a force. Thus,

1J=1N'm
The unit of power is the watt (W) defined as a joule per second. Thus,
I1W=1J/s=1N-m/s

Prefixes for forming multiples and fractions of SI units are given in Table 1.2. For
example, the notation kN would be read as “kilonewtons” and stands for 10°> N. Similarly,
mm would be read as “millimeters” and stands for 10~> m. The centimeter is not an accepted
unit of length in the SI system, so for most problems in fluid mechanics in which SI units
are used, lengths will be expressed in millimeters or meters.

English Engineering (EE) System. In the EE system units for force and mass
are defined independently; thus special care must be exercised when using this system in
conjunction with Newton’s second law. The basic unit of mass is the pound mass (Ibm), the
unit of force is the pound (Ib)." The unit of length is the foot (ft), the unit of time is the second
(s), and the absolute temperature scale is the degree Rankine (°R). To make the equation
expressing Newton’s second law dimensionally homogeneous we write it as

F="2 (1.4)

gC
where g, is a constant of proportionality which allows us to define units for both force and
mass. For the BG system only the force unit was prescribed and the mass unit defined in a

"t is also common practice to use the notation, Ibf, to indicate pound force.
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When solving prob-
lems it is important
to use a consistent
system of units,
e.g., don’t mix BG
and SI units.

consistent manner such that g. = 1. Similarly, for SI the mass unit was prescribed and the
force unit defined in a consistent manner such that g. = 1. For the EE system, a 1-1b force
is defined as that force which gives a 1 lbm a standard acceleration of gravity which is taken
as 32.174 ft/s*. Thus, for Eq. 1.4 to be both numerically and dimensionally correct

(1 1bm)(32.174 ft/s?)

1lb =
8c
so that
_ (11bm)(32.174 ft/s?)
8e = (11b)
With the EE system weight and mass are related through the equation

m
Y =28

8c

where g is the local acceleration of gravity. Under conditions of standard gravity (g = g.)
the weight in pounds and the mass in pound mass are numerically equal. Also, since a 1-lb
force gives a mass of 1 Ibm an acceleration of 32.174 ft/ s? and a mass of 1 slug an acceleration
of 1 ft/s% it follows that

1 slug = 32.174 Ibm

In this text we will primarily use the BG system and SI for units. The EE system is
used very sparingly, and only in those instances where convention dictates its use.
Approximately one-half the problems and examples are given in BG units and one-half in
SI units. We cannot overemphasize the importance of paying close attention to units when
solving problems. It is very easy to introduce huge errors into problem solutions through the
use of incorrect units. Get in the habit of using a consistent system of units throughout a
given solution. It really makes no difference which system you use as long as you are
consistent; for example, don’t mix slugs and newtons. If problem data are specified in SI
units, then use SI units throughout the solution. If the data are specified in BG units, then
use BG units throughout the solution. Tables 1.3 and 1.4 provide conversion factors for some
quantities that are commonly encountered in fluid mechanics. For convenient reference these
tables are also reproduced on the inside of the back cover. Note that in these tables (and
others) the numbers are expressed by using computer exponential notation. For example, the
number 5.154 E + 2 is equivalent to 5.154 X 107 in scientific notation, and the number
2.832 E — 2 is equivalent to 2.832 X 1072, More extensive tables of conversion factors for
a large variety of unit systems can be found in Appendix A.

m TABLE 1.3
Conversion Factors from BG and EE Units to SI Units

(See inside of back cover.)

m TABLE 1.4
Conversion Factors from SI Units to BG and EE Units

(See inside of back cover.)
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A tank of water having a total mass of 36 kg rests on the floor of an elevator. Determine the
force (in newtons) that the tank exerts on the floor when the elevator is accelerating upward
at 7 ft/s>.

SoLution

A free-body diagram of the tank is shown in Fig. E1.2 where W is the weight of the tank
and water, and F is the reaction of the floor on the tank. Application of Newton’s second
law of motion to this body gives

EF = ma
or
Fr— W = ma (0]

where we have taken upward as the positive direction. Since W' = mg, Eq. 1 can be written
as

Fy=m(g + a) @

Before substituting any number into Eq. 2 we must decide on a system of units, and then be
sure all of the data are expressed in these units. Since we want F; in newtons we will use SI
units so that

F; =36 kg[9.81 m/s* + (7 ft/s*)(0.3048 m/ft)] = 430 kg - m/s>
Since 1 N = 1 kg - m/s? it follows that
F;=430N (downward on floor) (Ans)

The direction is downward since the force shown on the free-body diagram is the force of
the floor on the tank so that the force the tank exerts on the floor is equal in magnitude but
opposite in direction.

B FIGURE E1.2

As you work through a large variety of problems in this text, you will find that units
play an essential role in arriving at a numerical answer. Be careful! It is easy to mix units
and cause large errors. If in the above example the elevator acceleration had been left as
7 ft/s* with m and g expressed in SI units, we would have calculated the force as 605 N and
the answer would have been 41% too large!

\.
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1.3 Analysis of Fluid Behavior

The study of fluid mechanics involves the same fundamental laws you have encountered in
physics and other mechanics courses. These laws include Newton’s laws of motion, conser-
vation of mass, and the first and second laws of thermodynamics. Thus, there are strong
similarities between the general approach to fluid mechanics and to rigid-body and deformable-
body solid mechanics. This is indeed helpful since many of the concepts and techniques of
analysis used in fluid mechanics will be ones you have encountered before in other courses.

The broad subject of fluid mechanics can be generally subdivided into fluid statics, in
which the fluid is at rest, and fluid dynamics, in which the fluid is moving. In the following
chapters we will consider both of these areas in detail. Before we can proceed, however, it
will be necessary to define and discuss certain fluid properties that are intimately related to
fluid behavior. It is obvious that different fluids can have grossly different characteristics.
For example, gases are light and compressible, whereas liquids are heavy (by comparison)
and relatively incompressible. A syrup flows slowly from a container, but water flows rapidly
when poured from the same container. To quantify these differences certain fluid properties
are used. In the following several sections the properties that play an important role in the
analysis of fluid behavior are considered.

14 Measures of Fluid Mass and Weight

The density of a
fluid is defined as
its mass per unit
volume.

14.1 Density

The density of a fluid, designated by the Greek symbol p (rho), is defined as its mass per
unit volume. Density is typically used to characterize the mass of a fluid system. In the BG
system p has units of slugs/ft> and in SI the units are kg/m".

The value of density can vary widely between different fluids, but for liquids,
variations in pressure and temperature generally have only a small effect on the value of
p. The small change in the density of water with large variations in temperature is illustrated
in Fig. 1.1. Tables 1.5 and 1.6 list values of density for several common liquids. The density
of water at 60 °F is 1.94 slugs/ft> or 999 kg/m?>. The large difference between those two
values illustrates the importance of paying attention to units! Unlike liquids, the density
of a gas is strongly influenced by both pressure and temperature, and this difference will
be discussed in the next section.

1000

990
@ 4°C p = 1000 kg/m®
980

970

Density, p kg/m3

960

950

0 20 40 60 80 100
Temperature, °C

B FIGURE 1.1 Density of water as a function of temperature.



Specific weight is
weight per unit vol-
ume; specific grav-
ity is the ratio of
fluid density to the
density of water at
a certain tempera-
ture.
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m TABLE 1.5
Approximate Physical Properties of Some Common Liquids (BG Units)

(See inside of front cover.)

B TABLE 1.6
Approximate Physical Properties of Some Common Liquids (SI Units)

(See inside of front cover.)

The specific volume, v, is the volume per unit mass and is therefore the reciprocal of
the density—that is,

v =— (1.5)
p

This property is not commonly used in fluid mechanics but is used in thermodynamics.

14.2 Specific Weight

The specific weight of a fluid, designated by the Greek symbol y (gamma), is defined as its
weight per unit volume. Thus, specific weight is related to density through the equation

Y =P8 (1.6)

where g is the local acceleration of gravity. Just as density is used to characterize the mass
of a fluid system, the specific weight is used to characterize the weight of the system. In the
BG system, y has units of 1b/ft> and in SI the units are N/m?>. Under conditions of standard
gravity (g = 32.174 ft/s* = 9.807 m/s*), water at 60 °F has a specific weight of 62.4 1b/ft’
and 9.80 kN/m?>. Tables 1.5 and 1.6 list values of specific weight for several common liquids
(based on standard gravity). More complete tables for water can be found in Appendix B
(Tables B.1 and B.2).

143 Specific Gravity

The specific gravity of a fluid, designated as SG, is defined as the ratio of the density of the
fluid to the density of water at some specified temperature. Usually the specified temperature
is taken as 4 °C (39.2 °F), and at this temperature the density of water is 1.94 slugs/ft® or
1000 kg/m?>. In equation form, specific gravity is expressed as

sG=—"F .7

PH,0@4°C

and since it is the ratio of densities, the value of SG does not depend on the system of units
used. For example, the specific gravity of mercury at 20 °C is 13.55 and the density of mercury
can thus be readily calculated in either BG or SI units through the use of Eq. 1.7 as

pre = (13.55)(1.94 slugs/ft’) = 26.3 slugs/ft’
or
pg = (13.55)(1000 kg/m’) = 13.6 X 10’ kg/m’

It is clear that density, specific weight, and specifc gravity are all interrelated, and from
a knowledge of any one of the three the others can be calculated.
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1.5 Ideal Gas Law

In the ideal gas

law, absolute pres-
sures and tempera-
tures must be used.

Gases are highly compressible in comparison to liquids, with changes in gas density directly
related to changes in pressure and temperature through the equation

p = pRT (1.8)

where p is the absolute pressure, p the density, 7 the absolute temperature,” and R is a gas
constant. Equation 1.8 is commonly termed the ideal or perfect gas law, or the equation of
state for an ideal gas. It is known to closely approximate the behavior of real gases under
normal conditions when the gases are not approaching liquefaction.

Pressure in a fluid at rest is defined as the normal force per unit area exerted on a plane
surface (real or imaginary) immersed in a fluid and is created by the bombardment of the
surface with the fluid molecules. From the definition, pressure has the dimension of FL?,
and in BG units is expressed as Ib/ft* (psf) or Ib/in.? (psi) and in SI units as N/m? In SI,
1 N/m? defined as a pascal, abbreviated as Pa, and pressures are commonly specified in
pascals. The pressure in the ideal gas law must be expressed as an absolute pressure, which
means that it is measured relative to absolute zero pressure (a pressure that would only occur
in a perfect vacuum). Standard sea-level atmospheric pressure (by international agreement)
is 14.696 psi (abs) or 101.33 kPa (abs). For most calculations these pressures can be rounded
to 14.7 psi and 101 kPa, respectively. In engineering it is common practice to measure pressure
relative to the local atmospheric pressure, and when measured in this fashion it is called gage
pressure. Thus, the absolute pressure can be obtained from the gage pressure by adding the
value of the atmospheric pressure. For example, a pressure of 30 psi (gage) in a tire is equal
to 44.7 psi (abs) at standard atmospheric pressure. Pressure is a particularly important fluid
characteristic and it will be discussed more fully in the next chapter.

The gas constant, R, which appears in Eq. 1.8, depends on the particular gas and is
related to the molecular weight of the gas. Values of the gas constant for several common
gases are listed in Tables 1.7 and 1.8. Also in these tables the gas density and specific weight
are given for standard atmospheric pressure and gravity and for the temperature listed. More
complete tables for air at standard atmospheric pressure can be found in Appendix B (Tables
B.3 and B.4).

B TABLE 1.7

Approximate Physical Properties of Some Common Gases at Standard Atmospheric Pressure
(BG Units)

(See inside of front cover.)

B TABLE 1.8

Approximate Physical Properties of Some Common Gases at Standard Atmospheric Pressure
(SI Units)

(See inside of front cover.)

*We will use to represent temperature in thermodynamic relationships although T is also used to denote the basic dimension of
time.
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A compressed air tank has a volume of 0.84 ft>. When the tank is filled with air at a gage
pressure of 50 psi, determine the density of the air and the weight of air in the tank. Assume
the temperature is 70 °F and the atmospheric pressure is 14.7 psi (abs).

SoLution

The air density can be obtained from the ideal gas law (Eq. 1.8) expressed as

p

P~ rr

so that

(50 1b/in.* + 14.7 Ib/in.?)(144 in.?/ft?) 5
p= = 0.0102 slugs/ft’ (Ans)
(1716 ft - Ib/slug - °R)[(70 + 460)°R]

Note that both the pressure and temperature were changed to absolute values.
The weight, W', of the air is equal to

W = pg X (volume)
= (0.0102 slugs/f)(32.2 ft/s>)(0.84 £¢°)
so that since 11b = 1 slug - ft/s
W =0.276 1b (Ans)

\.

1.6 Viscosity

V1.1 Viscous fluids

Fluid motion can
cause shearing
stresses.

The properties of density and specific weight are measures of the “heaviness” of a fluid. It
is clear, however, that these properties are not sufficient to uniquely characterize how fluids
behave since two fluids (such as water and oil) can have approximately the same value of
density but behave quite differently when flowing. There is apparently some additional prop-
erty that is needed to describe the “fluidity” of the fluid.

To determine this additional property, consider a hypothetical experiment in which a
material is placed between two very wide parallel plates as shown in Fig. 1.2a. The bottom
plate is rigidly fixed, but the upper plate is free to move. If a solid, such as steel, were placed
between the two plates and loaded with the force P as shown, the top plate would be displaced
through some small distance, da (assuming the solid was mechanically attached to the plates).
The vertical line AB would be rotated through the small angle, 83, to the new position AB'.
We note that to resist the applied force, P, a shearing stress, 7, would be developed at the
plate-material interface, and for equilibrium to occur P = 7A where A is the effective upper

B FIGURE 1.2 (a)Defor-
mation of material placed between
Fixed plate two parallel plates. (b) Forces acting
(@) (b on upper plate.
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V1.2 No-slip
condition

Real fluids, even
though they may be
moving, always
“stick” to the solid
boundaries that
contain them.

plate area (Fig. 1.2b). It is well known that for elastic solids, such as steel, the small angular
displacement, 88 (called the shearing strain), is proportional to the shearing stress, 7, that is
developed in the material.

What happens if the solid is replaced with a fluid such as water? We would immediately
notice a major difference. When the force P is applied to the upper plate, it will move
continuously with a velocity, U (after the initial transient motion has died out) as illustrated
in Fig. 1.3. This behavior is consistent with the definition of a fluid—that is, if a shearing
stress is applied to a fluid it will deform continuously. A closer inspection of the fluid motion
between the two plates would reveal that the fluid in contact with the upper plate moves with
the plate velocity, U, and the fluid in contact with the bottom fixed plate has a zero velocity.
The fluid between the two plates moves with velocity u = u(y) that would be found to vary
linearly, u = Uy/b, as illustrated in Fig. 1.3. Thus, a velocity gradient, du/dy, is developed
in the fluid between the plates. In this particular case the velocity gradient is a constant since
du/dy = U/b, but in more complex flow situations this would not be true. The experimental
observation that the fluid “sticks” to the solid boundaries is a very important one in fluid
mechanics and is usually referred to as the no-slip condition. All fluids, both liquids and
gases, satisfy this condition.

In a small time increment, 67, an imaginary vertical line AB in the fluid would rotate
through an angle, 683, so that

I3
tan 68 =~ 683 = o4
b
Since éa = U ét it follows that
U 6t
B =—
B b

We note that in this case, 88 is a function not only of the force P (which governs U) but also
of time. Thus, it is not reasonable to attempt to relate the shearing stress, 7, to 8@ as is done
for solids. Rather, we consider the rate at which 83 is changing and define the rate of shearing
strain, 7y, as

© — fim 2P

L=
which in this instance is equal to

U _du

YT T @

A continuation of this experiment would reveal that as the shearing stress, 7, is increased
by increasing P (recall that 7 = P/A), the rate of shearing strain is increased in direct
proportion—that is,

U
LN ,
I ! >
B: I/B'
_u» : /
b 7/ |/
y —> I//
> paal
Al 9B B FIGURE 1.3 Behavior of a fluid

2 (Fixed plate  placed between two parallel plates.




V1.3 Capillary tube
viscometer

Dynamic viscosity
is the fluid property
that relates shear-
ing stress and fluid
motion.
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T oy
or

du

T —
dy
This result indicates that for common fluids such as water, oil, gasoline, and air the shearing
stress and rate of shearing strain (velocity gradient) can be related with a relationship of the
form

du

dy 1.9)

T=p
where the constant of proportionality is designated by the Greek symbol u (mu) and is called
the absolute viscosity, dynamic viscosity, or simply the viscosity of the fluid. In accordance
with Eq. 1.9, plots of 7 versus du/dy should be linear with the slope equal to the viscosity
as illustrated in Fig. 1.4. The actual value of the viscosity depends on the particular fluid,
and for a particular fluid the viscosity is also highly dependent on temperature as illustrated
in Fig. 1.4 with the two curves for water. Fluids for which the shearing stress is linearly
related to the rate of shearing strain (also referred to as rate of angular deformation) are
designated as Newtonian fluids 1. Newton (1642—1727). Fortunately most common fluids,
both liquids and gases, are Newtonian. A more general formulation of Eq. 1.9 which applies
to more complex flows of Newtonian fluids is given in Section 6.8.1.

Fluids for which the shearing stress is not linearly related to the rate of shearing strain
are designated as non-Newtonian fluids. Although there is a variety of types of non-Newtonian
fluids, the simplest and most common are shown in Fig. 1.5. The slope of the shearing stress
vs rate of shearing strain graph is denoted as the apparent viscosity, w,,. For Newtonian fluids
the apparent viscosity is the same as the viscosity and is independent of shear rate.

For shear thinning fluids the apparent viscosity decreases with increasing shear rate—
the harder the fluid is sheared, the less viscous it becomes. Many colloidal suspensions and
polymer solutions are shear thinning. For example, latex paint does not drip from the brush
because the shear rate is small and the apparent viscosity is large. However, it flows smoothly

Crude oil (60 °F)

Water (60 °F)

Shearing stress, ©

Water (100 °F)

Air (60 °F
& ) B FIGURE 1.4 Linear varia-

tion of shearing stress with rate of
shearing strain for common fluids.

. . du
Rate of shearing strain, e
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The various types
of non-Newtonian
[fluids are distin-
guished by how
their apparent vis-
cosity changes with
shear rate.

V1.4 Non-
Newtonian behavior

Bingham plastic

Shear thinning—s,

~— Newtonian

Shearing stress, 7

B FIGURE 1.5 Variation of shearing
stress with rate of shearing strain for several
types of fluids, including common non-Newtonian

Rate of shearing strain, Z—; fluids.

~—— Shear thickening

onto the wall because the thin layer of paint between the wall and the brush causes a large
shear rate (large du/dy) and a small apparent viscosity.

For shear thickening fluids the apparent viscosity increases with increasing shear rate—
the harder the fluid is sheared, the more viscous it becomes. Common examples of this type
of fluid include water-corn starch mixture and water-sand mixture (“quicksand”). Thus, the
difficulty in removing an object from quicksand increases dramatically as the speed of removal
increases.

The other type of behavior indicated in Fig. 1.5 is that of a Bingham plastic, which is
neither a fluid nor a solid. Such material can withstand a finite shear stress without motion
(therefore, it is not a fluid), but once the yield stress is exceeded it flows like a fluid (hence,
it is not a solid). Toothpaste and mayonnaise are common examples of Bingham plastic
materials.

From Eq. 1.9 it can be readily deduced that the dimensions of viscosity are FTL .
Thus, in BG units viscosity is given as Ib - s/ft?> and in SI units as N - s/m?. Values of viscosity
for several common liquids and gases are listed in Tables 1.5 through 1.8. A quick glance at
these tables reveals the wide variation in viscosity among fluids. Viscosity is only mildly
dependent on pressure and the effect of pressure is usually neglected. However, as previously
mentioned, and as illustrated in Fig. 1.6, viscosity is very sensitive to temperature. For
example, as the temperature of water changes from 60 to 100 °F the density decreases by
less than 1% but the viscosity decreases by about 40%. It is thus clear that particular attention
must be given to temperature when determining viscosity.

Figure 1.6 shows in more detail how the viscosity varies from fluid to fluid and how
for a given fluid it varies with temperature. It is to be noted from this figure that the viscosity
of liquids decreases with an increase in temperature, whereas for gases an increase in
temperature causes an increase in viscosity. This difference in the effect of temperature on
the viscosity of liquids and gases can again be traced back to the difference in molecular
structure. The liquid molecules are closely spaced, with strong cohesive forces between
molecules, and the resistance to relative motion between adjacent layers of fluid is related
to these intermolecular forces. As the temperature increases, these cohesive forces are reduced
with a corresponding reduction in resistance to motion. Since viscosity is an index of this
resistance, it follows that the viscosity is reduced by an increase in temperature. In gases,
however, the molecules are widely spaced and intermolecular forces negligible. In this case
resistance to relative motion arises due to the exchange of momentum of gas molecules
between adjacent layers. As molecules are transported by random motion from a region of



Viscosity is very
sensitive to temper-
ature.
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Dynamic viscosity, N * s/m?
IS

4 Water

Air

Hydrogen
1x 109 m FIGURE 1.6

6 Dynamic (absolute) viscosity
-20 0 20 40 60 80 100 120 4f some common fluids as a
Temperature, °C function of temperature.

low bulk velocity to mix with molecules in a region of higher bulk velocity (and vice versa),
there is an effective momentum exchange which resists the relative motion between the layers.
As the temperature of the gas increases, the random molecular activity increases with a
corresponding increase in viscosity.

The effect of temperature on viscosity can be closely approximated using two empirical
formulas. For gases the Sutherland equation can be expressed as

CT3"?
CT+S

I (1.10)
where C and S are empirical constants, and 7T is absolute temperature. Thus, if the viscosity
is known at two temperatures, C and S can be determined. Or, if more than two viscosities
are known, the data can be correlated with Eq. 1.10 by using some type of curve-fitting
scheme.

For liquids an empirical equation that has been used is

w = De®T (1.11)

where D and B are constants and 7 is absolute temperature. This equation is often referred
to as Andrade’s equation. As was the case for gases, the viscosity must be known at least
for two temperatures so the two constants can be determined. A more detailed discussion of
the effect of temperature on fluids can be found in Ref. 1.
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Kinematic viscosity
is defined as the
ratio of the absolute
viscosity to the fluid
density.

EXAMP:_.E

Quite often viscosity appears in fluid flow problems combined with the density in the
form

This ratio is called the kinematic viscosity and is denoted with the Greek symbol v (nu). The
dimensions of kinematic viscosity are L*/T, and the BG units are ft*/s and SI units are m?/s.
Values of kinematic viscosity for some common liquids and gases are given in Tables 1.5
through 1.8. More extensive tables giving both the dynamic and kinematic viscosities for
water and air can be found in Appendix B (Tables B.1 through B.4), and graphs showing
the variation in both dynamic and kinematic viscosity with temperature for a variety of fluids
are also provided in Appendix B (Figs. B.1 and B.2).

Although in this text we are primarily using BG and SI units, dynamic viscosity is
often expressed in the metric CGS (centimeter-gram-second) system with units of
dyne - s/cm?. This combination is called a poise, abbreviated P. In the CGS system, kinematic
viscosity has units of cm?/s, and this combination is called a stoke, abbreviated St.

A dimensionless combination of variables that is important in the study of viscous flow
through pipes is called the Reynolds number, Re, defined as pVD/u where p is the fluid den-
sity, V the mean fluid velocity, D the pipe diameter, and w the fluid viscosity. A Newtonian
fluid having a viscosity of 0.38 N -s/m” and a specific gravity of 0.91 flows through a
25-mm-diameter pipe with a velocity of 2.6 m/s. Determine the value of the Reynolds num-
ber using (a) ST units, and (b) BG units.

SoLution

(a) The fluid density is calculated from the specific gravity as
p = SG puoasc = 0.91 (1000 kg/m*) = 910 kg/m’
and from the definition of the Reynolds number
pVD (910 kg/m’)(2.6 m/s)(25 mm)(10™> m/mm)

o 0.38 N - s/m?
156 (kg - m/s*)/N

Re

However, since 1 N = 1 kg - m/s” it follows that the Reynolds number is unitless—that
is,
Re = 156 (Ans)

The value of any dimensionless quantity does not depend on the system of units used
if all variables that make up the quantity are expressed in a consistent set of units. To
check this we will calculate the Reynolds number using BG units.

(b) We first convert all the SI values of the variables appearing in the Reynolds number to
BG values by using the conversion factors from Table 1.4. Thus,

p = (910 kg/m?)(1.940 X 107°) = 1.77 slugs/ft’

V = (2.6 m/s)(3.281) = 8.53 ft/s

D = (0.025 m)(3.281) = 8.20 X 10> ft

w = (0.38 N -5/m?)(2.089 X 107%) = 7.94 X 1073 1b - s/ft®
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and the value of the Reynolds number is

(1.77 slugs/ft*)(8.53 ft/s)(8.20 X 1072 ft)
7.94 X 1073 1b - s/ft?
156 (slug - ft/s*)/1b = 156 (Ans)

since 11b = 1 slug - ft/s%. The values from part (a) and part (b) are the same, as ex-
pected. Dimensionless quantities play an important role in fluid mechanics and the sig-
nificance of the Reynolds number as well as other important dimensionless combina-
tions will be discussed in detail in Chapter 7. It should be noted that in the Reynolds
number it is actually the ratio u/p that is important, and this is the property that we
have defined as the kinematic viscosity.

The velocity distribution for the flow of a Newtonian fluid between two wide, parallel plates
(see Fig. E1.5) is given by the equation

2=

where V is the mean velocity. The fluid has a viscosity of 0.04 Ib - s/ft>. When V = 2 ft/s
and & = 0.2 in. determine: (a) the shearing stress acting on the bottom wall, and (b) the
shearing stress acting on a plane parallel to the walls and passing through the centerline
(midplane).

! |
oY u
|| )
. =
h
!
) ) MW FIGURE E1.5
SoLution
For this type of parallel flow the shearing stress is obtained from Eq. 1.9,
du
=u— 1
s @)

Thus, if the velocity distribution u = u(y) is known, the shearing stress can be determined
at all points by evaluating the velocity gradient, du/dy. For the distribution given
du 3Vy
= 2)
dy h

(a) Along the bottom wall y = —h so that (from Eq. 2)

du 3V
dy h
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and therefore the shearing stress is

<3v> ~(0.041b - s/f3)(3)(2 ft/s)
h) (02in)(1ft/12in.)

14.4 1b/ft* (in direction of flow) (Ans)

Thottom
wall

This stress creates a drag on the wall. Since the velocity distribution is symmetrical,
the shearing stress along the upper wall would have the same magnitude and direction.
(b) Along the midplane where y = 0 it follows from Eq. 2 that

_y
dy
and thus the shearing stress is
Tmidplane =0 (AIIS)

From Eq. 2 we see that the velocity gradient (and therefore the shearing stress)
varies linearly with y and in this particular example varies from O at the center of the
channel to 14.4 1b/ft> at the walls. For the more general case the actual variation will,
of course, depend on the nature of the velocity distribution.

1.7 Compressibility of Fluids

Liquids are usually
considered to be
imcompressible,
whereas gases are
generally consid-
ered compressible.

1.7.1 Bulk Modulus

An important question to answer when considering the behavior of a particular fluid is how
easily can the volume (and thus the density) of a given mass of the fluid be changed when
there is a change in pressure? That is, how compressible is the fluid? A property that is
commonly used to characterize compressibility is the bulk modulus, E,, defined as
dp
E,=—— 1.12
! dv /¥ (1.12)
where dp is the differential change in pressure needed to create a differential change in
volume, d¥, of a volume ¥. The negative sign is included since an increase in pressure will
cause a decrease in volume. Since a decrease in volume of a given mass, m = p¥, will result
in an increase in density, Eq. 1.12 can also be expressed as

_
" dp/p

The bulk modulus (also referred to as the bulk modulus of elasticity) has dimensions of
pressure, FL 2. In BG units values for E, are usually given as Ib/in.” (psi) and in SI units as
N/m? (Pa). Large values for the bulk modulus indicate that the fluid is relatively
incompressible—that is, it takes a large pressure change to create a small change in volume.
As expected, values of E, for common liquids are large (see Tables 1.5 and 1.6). For example,
at atmospheric pressure and a temperature of 60 °F it would require a pressure of 3120 psi
to compress a unit volume of water 1%. This result is representative of the compressibility
of liquids. Since such large pressures are required to effect a change in volume, we conclude
that liquids can be considered as incompressible for most practical engineering applications.

1.13)



The value of the
bulk modulus de-
pends on the type
of process involved.
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As liquids are compressed the bulk modulus increases, but the bulk modulus near atmospheric
pressure is usually the one of interest. The use of bulk modulus as a property describing
compressibility is most prevalent when dealing with liquids, although the bulk modulus can
also be determined for gases.

1.7.2 Compression and Expansion of Gases

When gases are compressed (or expanded) the relationship between pressure and density
depends on the nature of the process. If the compression or expansion takes place under
constant temperature conditions (isothermal process), then from Eq. 1.8

% = constant (1.14)

If the compression or expansion is frictionless and no heat is exchanged with the surroundings
(isentropic process), then

Ek = constant (1.15)
p
where k is the ratio of the specific heat at constant pressure, c,, to the specific heat at constant
volume, ¢, (i.e., k = c,/c,). The two specific heats are related to the gas constant, R, through
the equation R = ¢, — ¢,. As was the case for the ideal gas law, the pressure in both Egs.
1.14 and 1.15 must be expressed as an absolute pressure. Values of k for some common gases
are given in Tables 1.7 and 1.8, and for air over a range of temperatures, in Appendix B
(Tables B.3 and B.4).
With explicit equations relating pressure and density the bulk modulus for gases can
be determined by obtaining the derivative dp/dp from Eq. 1.14 or 1.15 and substituting the
results into Eq. 1.13. It follows that for an isothermal process

E,=p (1.16)
and for an isentropic process,
E, = kp 1.17)

Note that in both cases the bulk modulus varies directly with pressure. For air under standard
atmospheric conditions with p = 14.7 psi (abs) and k = 1.40, the isentropic bulk modulus is
20.6 psi. A comparison of this figure with that for water under the same conditions
(E, = 312,000 psi) shows that air is approximately 15,000 times as compressible as water.
It is thus clear that in dealing with gases greater attention will need to be given to the effect
of compressibility on fluid behavior. However, as will be discussed further in later sections,
gases can often be treated as incompressible fluids if the changes in pressure are small.

A cubic foot of helium at an absolute pressure of 14.7 psi is compressed isentropically to
1 ft3. What is the final pressure?

GoLution

For an isentropic compression,

pi_Pr

pf pf
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The velocity at
which small distur-
bances propagate in
a fluid is called the
speed of sound.

where the subscripts i and f refer to initial and final states, respectively. Since we are inter-
ested in the final pressure, P it follows that

-(2)
pf p; Di

As the volume is reduced by one half, the density must double, since the mass of the gas re-
mains constant. Thus,

pr= (2)"%°(14.7 psi) = 46.5 psi (abs) (Ans)
\_

1.7.3 Speed of Sound

Another important consequence of the compressibility of fluids is that disturbances introduced
at some point in the fluid propagate at a finite velocity. For example, if a fluid is flowing in
a pipe and a valve at the outlet is suddenly closed (thereby creating a localized disturbance),
the effect of the valve closure is not felt instantaneously upstream. It takes a finite time for
the increased pressure created by the valve closure to propagate to an upstream location.
Similarly, a loud speaker diaphragm causes a localized disturbance as it vibrates, and the
small change in pressure created by the motion of the diaphragm is propagated through the
air with a finite velocity. The velocity at which these small disturbances propagate is called
the acoustic velocity or the speed of sound, c. It will be shown in Chapter 11 that the speed
of sound is related to changes in pressure and density of the fluid medium through the equation

_ [
=\ (118)

or in terms of the bulk modulus defined by Eq. 1.13

E,
Cc = (1.19)
p
Since the disturbance is small, there is negligible heat transfer and the process is assumed to
be isentropic. Thus, the pressure-density relationship used in Eq. 1.18 is that for an isentropic
process.
For gases undergoing an isentropic process, E, = kp (Eq. 1.17) so that

[kp
CcC = -
p

and making use of the ideal gas law, it follows that
¢ = VkRT (1.20)

Thus, for ideal gases the speed of sound is proportional to the square root of the absolute
temperature. For example, for air at 60 °F with k = 1.40 and R = 1716 ft - Ib/slug - °R it
follows that ¢ = 1117 ft/s. The speed of sound in air at various temperatures can be found
in Appendix B (Tables B.3 and B.4). Equation 1.19 is also valid for liquids, and values of
E, can be used to determine the speed of sound in liquids. For water at
20 °C, E, = 2.19 GN/m? and p = 998.2 kg/m? so that ¢ = 1481 m/s or 4860 ft/s. Note that
the speed of sound in water is much higher than in air. If a fluid were truly incompressible
(E, = o0) the speed of sound would be infinite. The speed of sound in water for various
temperatures can be found in Appendix B (Tables B.1 and B.2).
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A jet aircraft flies at a speed of 550 mph at an altitude of 35,000 ft, where the temperature
is —66 °F. Determine the ratio of the speed of the aircraft, V, to that of the speed of sound,
¢, at the specified altitude. Assume k = 1.40.

SoLution

From Eq. 1.20 the speed of sound can be calculated as

¢ = VART = V(1.40)(1716 ft - Ib/slug - °R)(—66 + 460) °R
= 973 fi/s

Since the air speed is
(550 mi/hr)(5280 ft/mi)

V= — 807 ft,
(3600 s/hr) /s
the ratio is
V_ BOTHS _ 829 (Ans)
¢ ofs

This ratio is called the Mach number, Ma. If Ma < 1.0 the aircraft is flying at subsonic
speeds, whereas for Ma > 1.0 it is flying at supersonic speeds. The Mach number is an im-
portant dimensionless parameter used in the study of the flow of gases at high speeds and
will be further discussed in Chapters 7, 9, and 11.

\

1.8 Vapor Pressure

A liquid boils when
the pressure is re-
duced to the vapor
pressure.

It is a common observation that liquids such as water and gasoline will evaporate if they are
simply placed in a container open to the atmosphere. Evaporation takes place because some
liquid molecules at the surface have sufficient momentum to overcome the intermolecular
cohesive forces and escape into the atmosphere. If the container is closed with a small air
space left above the surface, and this space evacuated to form a vacuum, a pressure will
develop in the space as a result of the vapor that is formed by the escaping molecules. When
an equilibrium condition is reached so that the number of molecules leaving the surface is
equal to the number entering, the vapor is said to be saturated and the pressure that the vapor
exerts on the liquid surface is termed the vapor pressure.

Since the development of a vapor pressure is closely associated with molecular activity,
the value of vapor pressure for a particular liquid depends on temperature. Values of vapor
pressure for water at various temperatures can be found in Appendix B (Tables B.1 and B.2),
and the values of vapor pressure for several common liquids at room temperatures are given
in Tables 1.5 and 1.6.

Boiling, which is the formation of vapor bubbles within a fluid mass, is initiated when
the absolute pressure in the fluid reaches the vapor pressure. As commonly observed in the
kitchen, water at standard atmospheric pressure will boil when the temperature reaches
212 °F (100 °C)—that is, the vapor pressure of water at 212 °F is 14.7 psi (abs). However,
if we attempt to boil water at a higher elevation, say 10,000 ft above sea level, where the
atmospheric pressure is 10.1 psi (abs), we find that boiling will start when the temperature
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In flowing liquids it
is possible for the
pressure in local-
ized regions to
reach vapor pres-
sure thereby caus-
ing cavitation.

is about 193 °F. At this temperature the vapor pressure of water is 10.1 psi (abs). Thus, boiling
can be induced at a given pressure acting on the fluid by raising the temperature, or at a
given fluid temperature by lowering the pressure.

An important reason for our interest in vapor pressure and boiling lies in the common
observation that in flowing fluids it is possible to develop very low pressure due to the fluid
motion, and if the pressure is lowered to the vapor pressure, boiling will occur. For example,
this phenomenon may occur in flow through the irregular, narrowed passages of a valve or
pump. When vapor bubbles are formed in a flowing fluid they are swept along into regions
of higher pressure where they suddenly collapse with sufficient intensity to actually cause
structural damage. The formation and subsequent collapse of vapor bubbles in a flowing fluid,
called cavitation, is an important fluid flow phenomenon to be given further attention in
Chapters 3 and 7.

1.9 Surface Tension

V1.5 Floating razor
blade

At the interface between a liquid and a gas, or between two immiscible liquids, forces develop
in the liquid surface which cause the surface to behave as if it were a “skin” or “membrane”
stretched over the fluid mass. Although such a skin is not actually present, this conceptual
analogy allows us to explain several commonly observed phenomena. For example, a steel
needle will float on water if placed gently on the surface because the tension developed in
the hypothetical skin supports the needle. Small droplets of mercury will form into spheres
when placed on a smooth surface because the cohesive forces in the surface tend to hold all
the molecules together in a compact shape. Similarly, discrete water droplets will form when
placed on a newly waxed surface. (See the photograph at the beginning of Chapter 1.)

These various types of surface phenomena are due to the unbalanced cohesive forces
acting on the liquid molecules at the fluid surface. Molecules in the interior of the fluid mass
are surrounded by molecules that are attracted to each other equally. However, molecules
along the surface are subjected to a net force toward the interior. The apparent physical
consequence of this unbalanced force along the surface is to create the hypothetical skin or
membrane. A tensile force may be considered to be acting in the plane of the surface along
any line in the surface. The intensity of the molecular attraction per unit length along any
line in the surface is called the surface tension and is designated by the Greek symbol o
(sigma). For a given liquid the surface tension depends on temperature as well as the other
fluid it is in contact with at the interface. The dimensions of surface tension are FL~' with
BG units of Ib/ft and ST units of N/m. Values of surface tension for some common liquids
(in contact with air) are given in Tables 1.5 and 1.6 and in Appendix B (Tables B.1 and B.2)
for water at various temperatures. The value of the surface tension decreases as the temper-
ature increases.

The pressure inside a drop of fluid can be calculated using the free-body diagram in
Fig. 1.7. If the spherical drop is cut in half (as shown) the force developed around the edge

AprR? o B FIGURE 1.7 Forces acting on one-half of a liquid drop.



Capillary action in
small tubes, which
involves a liquid—
gas—solid interface,
is caused by surface
tension.
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due to surface tension is 27rRo. This force must be balanced by the pressure difference, Ap,
between the internal pressure, p;, and the external pressure, p,, acting over the circular area,
R Thus,

27Ro = Ap wR?
or

20
Ap=pi—pe=" 1.21)

R
It is apparent from this result that the pressure inside the drop is greater than the pressure
surrounding the drop. (Would the pressure on the inside of a bubble of water be the same as
that on the inside of a drop of water of the same diameter and at the same temperature?)

Among common phenomena associated with surface tension is the rise (or fall) of a
liquid in a capillary tube. If a small open tube is inserted into water, the water level in the
tube will rise above the water level outside the tube as is illustrated in Fig. 1.8a. In this
situation we have a liquid—gas—solid interface. For the case illustrated there is an attraction
(adhesion) between the wall of the tube and liquid molecules which is strong enough to
overcome the mutual attraction (cohesion) of the molecules and pull them up the wall. Hence,
the liquid is said to wet the solid surface.

The height, &, is governed by the value of the surface tension, o, the tube radius, R,
the specific weight of the liquid, vy, and the angle of contact, 6, between the fluid and tube.
From the free-body diagram of Fig. 1.8b we see that the vertical force due to the surface
tension is equal to 27Ro cosf and the weight is y7R*h and these two forces must balance
for equilibrium. Thus,

ywR*h = 2mRo cosf
so that the height is given by the relationship

h— 20 cosb

R (1.22)

The angle of contact is a function of both the liquid and the surface. For water in contact
with clean glass 8 = 0°. It is clear from Eq. 1.22 that the height is inversely proportional to
the tube radius, and therefore the rise of a liquid in a tube as a result of capillary action
becomes increasingly pronounced as the tube radius is decreased.

}’ﬂth

B FIGURE 1.8 Effect of capillary action in small tubes. (a) Rise of column for a liquid
that wets the tube. (b) Free-body diagram for calculating column height. (c¢) Depression of col-
umn for a nonwetting liquid.
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EXAMP:.E

Surface tension ef-
fects play a role in
many fluid mechan-
ics problems associ-
ated with liquid-
gas, liquid-liquid,
or liquid-gas—solid
interfaces.

Pressures are sometimes determined by measuring the height of a column of liquid in a ver-
tical tube. What diameter of clean glass tubing is required so that the rise of water at 20 °C
in a tube due to capillary action (as opposed to pressure in the tube) is less than 1.0 mm?

SoLurion
From Eq. 1.22
h— 20 cosf
YR
so that
_ 20 cosf
vh

For water at 20 °C (from Table B.2), ¢ = 0.0728 N/m and y = 9.789 kN/m’. Since 6 ~ 0°
it follows that for 2~ = 1.0 mm,
2(0.0728 N/m)(1)

R= = 0.0149
(9.789 X 10° N/m*)(1.0 mm)(10~* m/mm) m

and the minimum required tube diameter, D, is

D = 2R = 0.0298 m = 29.8 mm (Ans)

\.

If adhesion of molecules to the solid surface is weak compared to the cohesion between
molecules, the liquid will not wet the surface and the level in a tube placed in a nonwetting
liquid will actually be depressed as shown in Fig. 1.8c. Mercury is a good example of a
nonwetting liquid when it is in contact with a glass tube. For nonwetting liquids the angle
of contact is greater than 90°, and for mercury in contact with clean glass 6 = 130°.

Surface tension effects play a role in many fluid mechanics problems including the
movement of liquids through soil and other porous media, flow of thin films, formation of
drops and bubbles, and the breakup of liquid jets. Surface phenomena associated with liquid—
gas, liquid-liquid, liquid—gas—solid interfaces are exceedingly complex, and a more detailed
and rigorous discussion of them is beyond the scope of this text. Fortunately, in many fluid
mechanics problems, surface phenomena, as characterized by surface tension, are not impor-
tant, since inertial, gravitational, and viscous forces are much more dominant.

1.10 A Brief Look Back in History

Before proceeding with our study of fluid mechanics, we should pause for a moment to
consider the history of this important engineering science. As is true of all basic scientific
and engineering disciplines, their actual beginnings are only faintly visible through the haze
of early antiquity. But, we know that interest in fluid behavior dates back to the ancient
civilizations. Through necessity there was a practical concern about the manner in which
spears and arrows could be propelled through the air, in the development of water supply and
irrigation systems, and in the design of boats and ships. These developments were of course
based on trial and error procedures without any knowledge of mathematics or mechanics.
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However, it was the accumulation of such empirical knowledge that formed the basis for
further development during the emergence of the ancient Greek civilization and the
subsequent rise of the Roman Empire. Some of the earliest writings that pertain to modern
fluid mechanics are those of Archimedes (287-212 B.c.), a Greek mathematician and inventor
who first expressed the principles of hydrostatics and flotation. Elaborate water supply
systems were built by the Romans during the period from the fourth century B.C. through the
early Christian period, and Sextus Julius Frontinus (A.D. 40-103), a Roman engineer,
described these systems in detail. However, for the next 1000 years during the Middle Ages
(also referred to as the Dark Ages), there appears to have been little added to further
understanding of fluid behavior.

Beginning with the Renaissance period (about the fifteenth century) a rather continuous
series of contributions began that forms the basis of what we consider to be the science of
fluid mechanics. Leonardo da Vinci (1452—1519) described through sketches and writings
many different types of flow phenomena. The work of Galileo Galilei (1564—1642) marked
the beginning of experimental mechanics. Following the early Renaissance period and during
the seventeenth and eighteenth centuries, numerous significant contributions were made.
These include theoretical and mathematical advances associated with the famous names of
Newton, Bernoulli, Euler, and d’Alembert. Experimental aspects of fluid mechanics were
also advanced during this period, but unfortunately the two different approaches, theoretical
and experimental, developed along separate paths. Hydrodynamics was the term associated
with the theoretical or mathematical study of idealized, frictionless fluid behavior, with the
term hydraulics being used to describe the applied or experimental aspects of real fluid
behavior, particularly the behavior of water. Further contributions and refinements were made
to both theoretical hydrodynamics and experimental hydraulics during the nineteenth century,
with the general differential equations describing fluid motions that are used in modern fluid
mechanics being developed in this period. Experimental hydraulics became more of a science,
and many of the results of experiments performed during the nineteenth century are still used
today.

At the beginning of the twentieth century both the fields of theoretical hydrodynamics
and experimental hydraulics were highly developed, and attempts were being made to
unify the two. In 1904 a classic paper was presented by a German professor, Ludwig Prandtl
(1857-1953), who introduced the concept of a “fluid boundary layer,” which laid the
foundation for the unification of the theoretical and experimental aspects of fluid mechanics.
Prandtl’s idea was that for flow next to a solid boundary a thin fluid layer (boundary layer)
develops in which friction is very important, but outside this layer the fluid behaves very
much like a frictionless fluid. This relatively simple concept provided the necessary impetus
for the resolution of the conflict between the hydrodynamicists and the hydraulicists. Prandtl
is generally accepted as the founder of modern fluid mechanics.

Also, during the first decade of the twentieth century, powered flight was first success-
fully demonstrated with the subsequent vastly increased interest in aerodynamics. Because
the design of aircraft required a degree of understanding of fluid flow and an ability to make
accurate predictions of the effect of air flow on bodies, the field of aerodynamics provided
a great stimulus for the many rapid developments in fluid mechanics that have taken place
during the twentieth century.

As we proceed with our study of the fundamentals of fluid mechanics, we will continue
to note the contributions of many of the pioneers in the field. Table 1.9 provides a chrono-
logical listing of some of these contributors and reveals the long journey that makes up the
history of fluid mechanics. This list is certainly not comprehensive with regard to all of the
past contributors, but includes those who are mentioned in this text. As mention is made in
succeeding chapters of the various individuals listed in Table 1.9, a quick glance at this table
will reveal where they fit into the historical chain.
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The rich history of
fluid mechanics is
fascinating, and
many of the contri-
butions of the
pioneers in the field
are noted in the
succeeding
chapters.

B TABLE 1.9

Chronological Listing of Some Contributors to the Science of Fluid

Mechanics Noted in the Text?

ARCHIMEDES (287-212 B.C.)
Established elementary principles of buoyancy
and flotation.

SEXTUS JULIUS FRONTINUS (A.D. 4()—103)
Wrote treatise on Roman methods of water
distribution.

LEONARDO da VINCI (1452-1519)
Expressed elementary principle of continuity;
observed and sketched many basic flow
phenomena; suggested designs for hydraulic
machinery.

GALILEO GALILEI (1564-1642)
Indirectly stimulated experimental hydraulics;
revised Aristotelian concept of vacuum.

EVANGELISTA TORRICELLI (1608-1647)
Related barometric height to weight of
atmosphere, and form of liquid jet to trajectory
of free fall.

BLAISE PASCAL (1623-1662)
Finally clarified principles of barometer,
hydraulic press, and pressure transmissibility.

ISAAC NEWTON (1642-1727)

Explored various aspects of fluid resistance—
inertial, viscous, and wave; discovered jet
contraction.

HENRI de PITOT (1695-1771)

Constructed double-tube device to indicate water
velocity through differential head.

DANIEL BERNOULLI (1700-1782)
Experimented and wrote on many phases of
fluid motion, coining name “hydrodynamics”;
devised manometry technique and adapted
primitive energy principle to explain velocity-
head indication; proposed jet propulsion.

LEONHARD EULER (1707-1783)

First explained role of pressure in fluid flow;
formulated basic equations of motion and so-
called Bernoulli theorem; introduced concept of
cavitation and principle of centrifugal machinery.
JEAN le ROND d’ALEMBERT (1717-1783)
Originated notion of velocity and acceleration
components, differential expression of
continuity, and paradox of zero resistance to
steady nonuniform motion.

ANTOINE CHEZY (1718-1798)

Formulated similarity parameter for predicting
flow characteristics of one channel from
measurements on another.

GIOVANNI BATTISTA VENTURI (1746—1822)
Performed tests on various forms of
mouthpieces—in particular, conical contractions
and expansions.

LOUIS MARIE HENRI NAVIER (1785-1836)
Extended equations of motion to include
“molecular” forces.

AUGUSTIN LOUIS de CAUCHY (1789-1857)
Contributed to the general field of theoretical
hydrodynamics and to the study of wave motion.

GOTTHILF HEINRICH LUDWIG HAGEN
(1797-1884)

Conducted original studies of resistance in and
transition between laminar and turbulent flow.

JEAN LOUIS POISEUILLE (1799-1869)
Performed meticulous tests on resistance of flow
through capillary tubes.

HENRI PHILIBERT GASPARD DARCY
(1803-1858)

Performed extensive tests on filtration and pipe
resistance; initiated open-channel studies carried
out by Bazin.

JULIUS WEISBACH (1806-1871)

Incorporated hydraulics in treatise on
engineering mechanics, based on original
experiments; noteworthy for flow patterns,
nondimensional coefficients, weir, and resistance
equations.

WILLIAM FROUDE (1810-1879)

Developed many towing-tank techniques, in
particular the conversion of wave and boundary
layer resistance from model to prototype scale.

ROBERT MANNING (1816-1897)
Proposed several formulas for open-channel
resistance.

GEORGE GABRIEL STOKES (1819-1903)
Derived analytically various flow relationships
ranging from wave mechanics to viscous
resistance—particularly that for the settling of
spheres.

ERNST MACH (1838-1916)
One of the pioneers in the field of supersonic
aerodynamics.

OSBORNE REYNOLDS (1842-1912)

Described original experiments in many fields—
cavitation, river model similarity, pipe
resistance—and devised two parameters for
viscous flow; adapted equations of motion of a
viscous fluid to mean conditions of turbulent
flow.

JOHN WILLIAM STRUTT, LORD RAYLEIGH
(1842-1919)

Investigated hydrodynamics of bubble collapse,
wave motion, jet instability, laminar flow
analogies, and dynamic similarity.

VINCENZ STROUHAL (1850-1922)
Investigated the phenomenon of “singing wires.”

EDGAR BUCKINGHAM (1867-1940)
Stimulated interest in the United States in the
use of dimensional analysis.
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MORITZ WEBER (1871-1951)

Emphasized the use of the principles of
similitude in fluid flow studies and formulated a
capillarity similarity parameter.

LUDWIG PRANDTL (1875-1953)

Introduced concept of the boundary layer and is
generally considered to be the father of present-

THEODOR VON KARMAN (1881-1963)
One of the recognized leaders of twentieth
century fluid mechanics. Provided major
contributions to our understanding of surface
resistance, turbulence, and wake phenomena.
PAUL RICHARD HEINRICH BLASIUS
(1883-1970)

day fluid mechanics.
LEWIS FERRY MOODY (1880-1953)

Provided many innovations in the field of hydraulic
machinery. Proposed a method of correlating

One of Prandtl’s students who provided an
analytical solution to the boundary layer
equations. Also, demonstrated that pipe
resistance was related to the Reynolds number.

pipe resistance data which is widely used.

“Adapted from Ref. 2; used by permission of the Iowa Institute of Hydraulic Research, The University of Iowa.

It is, of course, impossible to summarize the rich history of fluid mechanics in a few
paragraphs. Only a brief glimpse is provided, and we hope it will stir your interest. References
2 to 5 are good starting points for further study, and in particular Ref. 2 provides an excellent,
broad, easily read history. Try it—you might even enjoy it!
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Problems

Note: Unless specific values of required fluid properties are
given in the statement of the problem, use the values found in
the tables on the inside of the front cover. Problems designated
with an (*) are intended to be solved with the aid of a pro-
grammable calculator or a computer. Problems designated with
a (1) are “open-ended” problems and require critical thinking
in that to work them one must make various assumptions and
provide the necessary data. There is not a unique answer to
these problems.

In the E-book, answers to the even-numbered problems can
be obtained by clicking on the problem number. In the E-book,
access to the videos that accompany problems can be obtained
by clicking on the “video” segment (i.e., Video 1.3) of the prob-
lem statement. The lab-type problems can be accessed by click-
ing on the “click here” segment of the problem statement.

1.1 Determine the dimensions, in both the FLT system and
the MLT system, for (a) the product of mass times velocity,
(b) the product of force times volume, and (c) kinetic energy
divided by area.

1.2 Verify the dimensions, in both the FLT and MLT
systems, of the following quantities which appear in Table 1.1:
(a) angular velocity, (b) energy, (¢) moment of inertia (area),
(d) power, and (e) pressure.

1.3 Verify the dimensions, in both the FLT system and the
MLT system, of the following quantities which appear in Table
1.1: (a) acceleration, (b) stress, (¢) moment of a force, (d) vol-
ume, and (e) work.

1.4 If P is a force and x a length, what are the dimensions
(in the FLT system) of (a) dP/dx, (b) d*P/dx*, and (¢) [P dx?

1.5 If p is a pressure, V a velocity, and p a fluid density,
what are the dimensions (in the MLT system) of (a) p/p, (b)
pVp, and (c) p/pV?*?

1.6 If Vis a velocity, € a length, and » a fluid property
having dimensions of L*7~!, which of the following
combinations are dimensionless: (a) Vev, (b) V€/v, (¢) Vv,
@) v/ev?

1.7 Dimensionless combinations of quantities (commonly
called dimensionless parameters) play an important role in fluid
mechanics. Make up five possible dimensionless parameters by
using combinations of some of the quantities listed in Table 1.1.

1.8 The force, P, that is exerted on a spherical particle
moving slowly through a liquid is given by the equation
P =37uDV

where w is a fluid property (viscosity) having dimensions of
FL™°T, D is the particle diameter, and V is the particle velocity.
What are the dimensions of the constant, 37? Would you
classify this equation as a general homogeneous equation?

1.9 According to information found in an old hydraulics
book, the energy loss per unit weight of fluid flowing through
a nozzle connected to a hose can be estimated by the formula

h = (0.04 to 0.09)(D/d)*V*/2g

where /£ is the energy loss per unit weight, D the hose diameter,
d the nozzle tip diameter, V the fluid velocity in the hose, and
g the acceleration of gravity. Do you think this equation is valid
in any system of units? Explain.

1.10 The pressure difference, Ap, across a partial blockage
in an artery (called a stenosis) is approximated by the equation

I‘LV AO 2 2
Ap = K, D + K"(A, 1)pV
where V is the blood velocity, w the blood viscosity (FL™*T),
p the blood density (ML™3), D the artery diameter, A, the area
of the unobstructed artery, and A; the area of the stenosis.
Determine the dimensions of the constants K, and K,. Would
this equation be valid in any system of units?

1.11 Assume that the speed of sound, c, in a fluid depends
on an elastic modulus, E,, with dimensions FL. "2, and the fluid
density, p, in the form ¢ = (E,)(p)". If this is to be a
dimensionally homogeneous equation, what are the values for
a and b? Is your result consistent with the standard formula for
the speed of sound? (See Eq. 1.19.)

1.12 A formula for estimating the volume rate of flow, Q,
over the spillway of a dam is

0 = C\V2gB(H+ V¥2)"

where C is a constant, g the acceleration of gravity, B the
spillway width, H the depth of water passing over the spillway,
and V the velocity of water just upstream of the dam. Would
this equation be valid in any system of units? Explain.

¥ 1.13 Cite an example of a restricted homogeneous
equation contained in a technical article found in an engineering
journal in your field of interest. Define all terms in the equation,
explain why it is a restricted equation, and provide a complete
journal citation (title, date, etc.).

1.14 Make use of Table 1.3 to express the following
quantities in ST units: (a) 10.2 in./min, (b) 4.81 slugs, (c¢) 3.02
Ib, (d) 73.1 ft/s% (e) 0.0234 1b - s/ft%.

1.15 Make use of Table 1.4 to express the following
quantities in BG units: (a) 14.2 km, (b) 8.14 N/m’, (c)
1.61 kg/m’, (d) 0.0320 N - m/s, (e) 5.67 mm/hr.

1.16 Make use of Appendix A to express the following
quantities in SI units: (a) 160 acre, (b) 742 Btu, (¢) 240 miles,
(d) 79.1 hp, (e) 60.3 °F.

1.17 Clouds can weigh thousands of pounds due to their
liquid water content. Often this content is measured in grams
per cubic meter (g/m*). Assume that a cumulus cloud occupies
a volume of one cubic kilometer, and its liquid water content
is 0.2 g/m’. (a) What is the volume of this cloud in cubic
miles? (b) How much does the water in the cloud weigh in
pounds?

1.18 For Table 1.3 verify the conversion relationships for:
(a) area, (b) density, (c) velocity, and (d) specific weight. Use
the basic conversion relationships: 1ft = 0.3048 m; 11b =
4.4482 N; and 1 slug = 14.594 kg.



1.19 For Table 1.4 verity the conversion relationships for:
(a) acceleration, (b) density, (c) pressure, and (d) volume flow-
rate. Use the basic conversion relationships: 1 m = 3.2808 ft;
I N = 0.22481 1b; and 1 kg = 0.068521 slug.

1.20 Water flows from a large drainage pipe at a rate of
1200 gal/min. What is this volume rate of flow in (a) m?/s, (b)
liters/min, and (c) ft}/s?

1.21 A tank of oil has a mass of 30 slugs. (a) Determine
its weight in pounds and in newtons at the earth’s surface. (b)
What would be its mass (in slugs) and its weight (in pounds) if
located on the moon’s surface where the gravitational attraction
is approximately one-sixth that at the earth’s surface?

1.22 A certain object weighs 300 N at the earth’s surface.
Determine the mass of the object (in kilograms) and its weight
(in newtons) when located on a planet with an acceleration of
gravity equal to 4.0 ft/s>.

1.23 An important dimensionless parameter in certain types
of fluid flow problems is the Froude number defined as V/ \/g7
where V is a velocity, g the acceleration of gravity, and € a
length. Determine the value of the Froude number for
V=10ft/s, g =322ft/s>, and € = 2ft. Recalculate the
Froude number using SI units for V, g, and €. Explain the
significance of the results of these calculations.

1.24 The specific weight of a certain liquid is 85.3 Ib/ft’.
Determine its density and specific gravity.

1.25 A hydrometer is used to measure the specific gravity
of liquids. (See Video V2.6.) For a certain liquid a hydrometer
reading indicates a specific gravity of 1.15. What is the liquid’s
density and specific weight? Express your answer in SI units.

1.26 An open, rigid-walled, cylindrical tank contains 4 ft*
of water at 40 °F. Over a 24-hour period of time the water
temperature varies from 40 °F to 90 °F. Make use of the data
in Appendix B to determine how much the volume of water will
change. For a tank diameter of 2 ft, would the corresponding
change in water depth be very noticeable? Explain.

7127 Estimate the number of pounds of mercury it
would take to fill your bath tub. List all assumptions and show
all calculations.

1.28 A liquid when poured into a graduated cylinder is
found to weigh 8 N when occupying a volume of 500 ml (milli-
liters). Determine its specific weight, density, and specific gravity.

1.29 The information on a can of pop indicates that the can
contains 355 mL. The mass of a full can of pop is 0.369 kg
while an empty can weighs 0.153 N. Determine the specific
weight, density, and specific gravity of the pop and compare
your results with the corresponding values for water at 20 °C.
Express your results in SI units.

*1.30 The variation in the density of water, p, with tem-
perature, 7, in the range 20 °C = T = 50 °C, is given in the
following table.

Density (kg/ m®) | 998.2 | 997.1 | 995.7 | 994.1 | 992.2 | 990.2 | 988.1

Temperature(°C)| 20 | 25 | 30 | 35 | 40 | 45 | 50

Use these data to determine an empirical equation of the form
p = ¢, + ;T + ¢;T? which can be used to predict the density
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over the range indicated. Compare the predicted values with the
data given. What is the density of water at 42.1° C?

T 1.31 Estimate the number of kilograms of water
consumed per day for household purposes in your city. List all
assumptions and show all calculations.

1.32 The density of oxygen contained in a tank is 2.0 kg/m’
when the temperature is 25° C. Determine the gage pressure of
the gas if the atmospheric pressure is 97 kPa.

1.33 Some experiments are being conducted in a laboratory
in which the air temperature is 27 °C, and the atmospheric
pressure is 14.3 psia. Determine the density of the air. Express
your answers in slugs/ft® and in kg/m®,

1.34 A closed tank having a volume of 2 ft’ is filled with
0.30 Ib of a gas. A pressure gage attached to the tank reads 12 psi
when the gas temperature is 80 °F. There is some question as
to whether the gas in the tank is oxygen or helium. Which do
you think it is? Explain how you arrived at your answer.

T 135 The presence of raindrops in the air during a heavy
rainstorm increases the average density of the air/water mixture.
Estimate by what percent the average air/water density is greater
than that of just still air. State all assumptions and show
calculations.

1.36 A tire having a volume of 3 ft* contains air at a gage
pressure of 26 psi and a temperature of 70 °F. Determine the
density of the air and the weight of the air contained in the tire.

1.37 A rigid tank contains air at a pressure of 90 psia and
a temperature of 60 °F. By how much will the pressure increase
as the temperature is increased to 110 °F?

*1.38 Develop a computer program for calculating the
density of an ideal gas when the gas pressure in pascals (abs),
the temperature in degrees Celsius, and the gas constant in
J/kg - K are specified.

*1.39 Repeat Problem 1.38 for the case in which the
pressure is given in psi (gage), the temperature in degrees
Fahrenheit, and the gas constant in ft1b/slug-°R.

1.40 Make use of the data in Appendix B to determine the
dynamic vicosity of mercury at 75 °F. Express your answer in
BG units.

1.41 One type of capillary-tube viscometer is shown in
Video V1.3 and in Fig. P1.41 at the top of the following page.
For this device the liquid to be tested is drawn into the tube to
a level above the top etched line. The time is then obtained for
the liquid to drain to the bottom etched line. The kinematic
viscosity, v, in m?/s is then obtained from the equation v = KRt
where K is a constant, R is the radius of the capillary tube in
mm, and ¢ is the drain time in seconds. When glycerin at 20 °C
is used as a calibration fluid in a particular viscometer the drain
time is 1,430 s. When a liquid having a density of 970 kg/m’
is tested in the same viscometer the drain time is 900 s. What
is the dynamic viscosity of this liquid?

1.42 The viscosity of a soft drink was determined by using
a capillary tube viscometer similar to that shown in Fig. P1.41
and Video V1.3. For this device the kinematic viscosity, v, is
directly proportional to the time, ¢, that it takes for a given
amount of liquid to flow through a small capillary tube. That
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is, v = Kt. The following data were obtained from regular pop
and diet pop. The corresponding measured specific gravities
are also given. Based on these data, by what percent is the
absolute viscosity, u, of regular pop greater than that of diet

pop?

Regular pop Diet pop
1(s) 377.8 300.3
SG 1.044 1.003

1.43 The time, ¢, it takes to pour a liquid from a container
depends on several factors, including the kinematic viscosity, v,
of the liquid. (See Video V1.1.) In some laboratory tests various
oils having the same density but different viscosities were
poured at a fixed tipping rate from small 150 ml beakers. The
time required to pour 100 ml of the oil was measured, and it
was found that an approximate equation for the pouring time in
seconds was t =1 + 9 X 10% + 8 X 10°»? with v in m%s.
(a) Is this a general homogeneous equation? Explain. (b) Compare
the time it would take to pour 100 ml of SAE 30 oil from a 150
ml beaker at 0 °C to the corresponding time at a temperature of
60 °C. Make use of Fig. B.2 in Appendix B for viscosity data.

1.44 The viscosity of a certain fluid is 5 X 10™* poise.
Determine its viscosity in both SI and BG units.

1.45 The kinematic viscosity of oxygen at 20 °C and a pres-
sure of 150 kPa (abs) is 0.104 stokes. Determine the dynamic
viscosity of oxygen at this temperature and pressure.

*1.46 Fluids for which the shearing stress, 7, is not linearly
related to the rate of shearing strain, vy, are designated as non-
Newtonian fluids. Such fluids are commonplace and can exhibit
unusual behavior as shown in Video V1.4. Some experimental
data obtained for a particular non-Newtonian fluid at 80 °F are
shown below.

T(lb/ftz) |
vy |

| 211
| 50

| 7.82
| 100

| 185
| 150

| 317
| 200 |

0
0

Plot these data and fit a second-order polynomial to the data using
a suitable graphing program. What is the apparent viscosity of
this fluid when the rate of shearing strain is 70 s~'? Is this
apparent viscosity larger or smaller than that for water at the
same temperature?

1.47 Water flows near a flat surface and some measure-
ments of the water velocity, u, parallel to the surface, at different
heights, y, above the surface are obtained. At the surface y = 0.
After an analysis of the data, the lab technician reports that the
velocity distribution in the range 0 <y < 0.1 ft is given by
the equation

u=081+ 92y + 4.1 X 10%}

with u in ft/s when y is in ft. (a) Do you think that this equation
would be valid in any system of units? Explain. (b) Do you
think this equation is correct? Explain. You may want to look
at Video 1.2 to help you arrive at your answer.

1.48 Calculate the Reynolds numbers for the flow of water
and for air through a 4-mm-diameter tube, if the mean velocity
is 3 m/s and the temperature is 30 °C in both cases (see Example
1.4). Assume the air is at standard atmospheric pressure.

1.49 For air at standard atmospheric pressure the values of
the constants that appear in the Sutherland equation (Eq. 1.10)
are C = 1.458 X 10 °kg/(m-s-K'?) and S = 110.4 K. Use
these values to predict the viscosity of air at 10 °C and 90 °C
and compare with values given in Table B.4 in Appendix B.

*1.50 Use the values of viscosity of air given in Table B.4
at temperatures of 0, 20, 40, 60, 80, and 100 °C to determine
the constants C and S which appear in the Sutherland equation
(Eq. 1.10). Compare your results with the values given in Prob-
lem 1.49. (Hint: Rewrite the equation in the form

T2 1 S
PO
% C C

and plot 7%?/u versus T. From the slope and intercept of this
curve, C and S can be obtained.)

1.51 The viscosity of a fluid plays a very important role in
determining how a fluid flows. (See Video V1.1.) The value of
the viscosity depends not only on the specific fluid but also on
the fluid temperature. Some experiments show that when a
liquid, under the action of a constant driving pressure, is forced
with a low velocity, V, through a small horizontal tube, the
velocity is given by the equation V = K/u. In this equation K
is a constant for a given tube and pressure, and u is the dynamic
viscosity. For a particular liquid of interest, the viscosity is given
by Andrade’s equation (Eq. 1.11) with D = 5 X 1077 b - s/ft*
and B = 4000 °R. By what percentage will the velocity increase
as the liquid temperature is increased from 40 °F to 100 °F?
Assume all other factors remain constant.

*1.52 Use the value of the viscosity of water given in Table
B.2 at temperatures of 0, 20, 40, 60, 80, and 100 °C to determine
the constants D and B which appear in Andrade’s equation (Eq.
1.11). Calculate the value of the viscosity at 50 °C and compare
with the value given in Table B.2. (Hint: Rewrite the equation
in the form

1
Inp= (B)?+lnD



and plot In u versus 1/7. From the slope and intercept of this
curve, B and D can be obtained. If a nonlinear curve-fitting
program is available the constants can be obtained directly from
Eq. 1.11 without rewriting the equation.)

1.53  Crude oil having a viscosity of 9.52 X 107*1b - s/ft?
is contained between parallel plates. The bottom plate is fixed
and the upper plate moves when a force P is applied (see Fig.
1.3). If the distance between the two plates is 0.1 in., what value
of P is required to translate the plate with a velocity of 3 ft/s?
The effective area of the upper plate is 200 in.?

1.54 As shown in Video V1.2, the “no slip” condition
means that a fluid “sticks” to a solid surface. This is true for
both fixed and moving surfaces. Let two layers of fluid be
dragged along by the motion of an upper plate as shown in Fig.
P1.54. The bottom plate is stationary. The top fluid puts a shear
stress on the upper plate, and the lower fluid puts a shear stress
on the botton plate. Determine the ratio of these two shear
stresses.

~—3m/s —]
Flud1l  0.02m ———>/ ;=04 N-s/m?
EE—
Fluid2  0.02m Hp=0.2 N+ s/m?
\
[«-2 m/s~{

B FIGURE P1.54

1.55 There are many fluids that exhibit non-Newtonian
behavior (see, for example, Video V1.4). For a given fluid the
distinction between Newtonian and non-Newtonian behavior is
usually based on measurements of shear stress and rate of
shearing strain. Assume that the viscosity of blood is to be
determined by measurements of shear stress, 7, and rate of
shearing strain, du/dy, obtained from a small blood sample
tested in a suitable viscometer. Based on the data given below
determine if the blood is a Newtonian or non-Newtonian fluid.
Explain how you arrived at your answer.

TN/ [0.04]0.060.12 [0.18]0.30 [ 0.52 | 112 2.10
dwdy - 122514501 11.25122.5145.0190.0 1225 | 450

1.56 A 40-1b, 0.8-ft-diameter, 1-ft-tall cylindrical tank
slides slowly down a ramp with a constant speed of 0.1 ft/s as
shown in Fig. P1.56. The uniform-thickness oil layer on the
ramp has a viscosity of 0.2 Ib - s/ft>. Determine the angle, 6,
of the ramp.

0.002 ft

0.1 ft/s
Oil

B FIGURE P1.56
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1.57 A piston having a diameter of 5.48 in. and a length of
9.50 in. slides downward with a velocity V through a vertical
pipe. The downward motion is resisted by an oil film between
the piston and the pipe wall. The film thickness is 0.002 in.,
and the cylinder weighs 0.5 Ib. Estimate V if the oil viscosity
is 0.016 Ib - s/ft>. Assume the velocity distribution in the gap is
linear.

1.58 A Newtonian fluid having a specific gravity of 0.92
and a kinematic viscosity of 4 X 10™*m?/s flows past a fixed
surface. Due to the no-slip condition, the velocity at the fixed
surface is zero (as shown in Video V1.2), and the velocity
profile near the surface is shown in Fig. P1.58. Determine the
magnitude and direction of the shearing stress developed on the
plate. Express your answer in terms of U and &, with U and 6
expressed in units of meters per second and meters, respectively.

%

|

\

\
\
\

7
//

B FIGURE P1.58

1.59 When a viscous fluid flows past a thin sharp-edged
plate, a thin layer adjacent to the plate surface develops in which
the velocity, u, changes rapidly from zero to the approach
velocity, U, in a small distance, 6. This layer is called a
boundary layer. The thickness of this layer increases with the
distance x along the plate as shown in Fig. P1.59. Assume that
u="Uy/8 and 8 = 3.5 Vvx/U where v is the kinematic
viscosity of the fluid. Determine an expression for the force
(drag) that would be developed on one side of the plate of length
[ and width b. Express your answer in terms of /, b, v, and p,
where p is the fluid density.

U

Boundary layer
-« u=U yiay

yoo 0 |______ —

/,/”” g \uzU%

- * x

Plate | |

width=b | ¢ \

B FIGURE P1.60

*1.60 Standard air flows past a flat surface and velocity
measurements near the surface indicate the following distribution:

y() | 0005 | 001 | 0.02 | 0.04 | 006 | 008
w(tys) | 074 | o1st | 303 | 637 | 1021 | 1443
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The coordinate y is measured normal to the surface and u is the
velocity parallel to the surface. (a) Assume the velocity
distribution is of the form

u==Cy+ Cy»

and use a standard curve-fitting technique to determine the
constants C; and C,. (b) Make use of the results of part (a) to
determine the magnitude of the shearing stress at the wall
(y = 0) and at y = 0.05 ft.

1.61 The viscosity of liquids can be measured through the
use of a rotating cylinder viscometer of the type illustrated in
Fig. P1.61. In this device the outer cylinder is fixed and the
inner cylinder is rotated with an angular velocity, w. The torque
I required to develop w is measured and the viscosity is
calculated from these two measurements. Develop an equation
relating u, w, 7, €, R,, and R;. Neglect end effects and assume
the velocity distribution in the gap is linear.

Fixed

~— outer

Liquid C g cylinder
_\ e 7

Rotating
inner ¢
cylinder

R, —
[::Rnﬁ

®m FIGURE P1.61

1.62 The space between two 6-in.-long concentric cylinders
is filled with glycerin (viscosity = 8.5 X 107 1b - s/ft?). The
inner cylinder has a radius of 3 in. and the gap width between
cylinders is 0.1 in. Determine the torque and the power required
to rotate the inner cylinder at 180 rev/min. The outer cylinder
is fixed. Assume the velocity distribution in the gap to be linear.

1.63 One type of rotating cylinder viscometer, called a
Stormer viscometer, uses a falling weight, W', to cause the
cylinder to rotate with an angular velocity, w, as illustrated in
Fig. P1.63. For this device the viscosity, w, of the liquid is related
to W and w through the equation W = Kuw, where K is a
constant that depends only on the geometry (including the liquid
depth) of the viscometer. The value of K is usually determined
by using a calibration liquid (a liquid of known viscosity).

(a) Some data for a particular Stormer viscometer, obtained
using glycerin at 20 °C as a calibration liquid, are given
below. Plot values of the weight as ordinates and val-
ues of the angular velocity as abscissae. Draw the best
curve through the plotted points and determine K for the
viscometer.

W(b) | 022 | 066 | 110 | 154 | 220
w(ev/s) | 053 | 159 | 279 | 383 | 549

(b) A liquid of unknown viscosity is placed in the same vis-
cometer used in part (a), and the data given below are
obtained. Determine the viscosity of this liquid.

Wb) | 004 | 011 | 022 | 033 | 044
wiev/s) | 072 | 189 | 373 | 544 | 742

— Fixed outer
cylinder

B FIGURE P1.63

*1.64 The following torque-angular velocity data were
obtained with a rotating cylinder viscometer of the type
described in Problem 1.61.

Torque (ft - 1b) | 13.1 | 26.0 |39.5 | 52.7 | 64.9 |78.6

Angular ‘ ‘ ‘ ‘ ‘
velocity (rad/s) | 1.0 201 301 401 501 60
For this viscometer R, = 2.50in., R;=2.45in, and

¢ = 5.00 in. Make use of these data and a standard curve-fitting
program to determine the viscosity of the liquid contained in
the viscometer.

1.65 A 12-in.-diameter circular plate is placed over a fixed
bottom plate with a 0.1-in. gap between the two plates filled
with glycerin as shown in Fig. P1.65. Determine the torque
required to rotate the circular plate slowly at 2 rpm. Assume
that the velocity distribution in the gap is linear and that the
shear stress on the edge of the rotating plate is negligible.

Torque
- /

B FIGURE P1.65

Rotating plate

0.1 in. gap

T 1.66 Vehicle shock absorbers damp out oscillations
caused by road roughness. Describe how a temperature change
may affect the operation of a shock absorber.

1.67 A rigid-walled cubical container is completely filled
with water at 40 °F and sealed. The water is then heated to
100 °F. Determine the pressure that develops in the container
when the water reaches this higher temperature. Assume that
the volume of the container remains constant and the value of



the bulk modulus of the water remains constant and equal to
300,000 psi.

1.68 In a test to determine the bulk modulus of a liquid it
was found that as the absolute pressure was changed from 15
to 3000 psi the volume decreased from 10.240 to 10.138 in.?
Determine the bulk modulus for this liquid.

1.69 Calculate the speed of sound in m/s for (a) gasoline,
(b) mercury, and (c) seawater.

1.70 Air is enclosed by a rigid cylinder containing a piston.
A pressure gage attached to the cylinder indicates an initial
reading of 25 psi. Determine the reading on the gage when the
piston has compressed the air to one-third its original volume.
Assume the compression process to be isothermal and the local
atmospheric pressure to be 14.7 psi.

1.71 Often the assumption is made that the flow of a certain
fluid can be considered as incompressible flow if the density of
the fluid changes by less than 2%. If air is flowing through a
tube such that the air pressure at one section is 9.0 psi and at
a downstream section it is 8.6 psi at the same temperature, do
you think that this flow could be considered an imcompressible
flow? Support your answer with the necessary calculations.
Assume standard atmospheric pressure.

1.72 Oxygen at 30 °C and 300 kPa absolute pressure ex-
pands isothermally to an absolute pressure of 120 kPa. Deter-
mine the final density of the gas.

1.73 Natural gas at 70 °F and standard atmospheric pres-
sure of 14.7 psi is compressed isentropically to a new absolute
pressure of 70 psi. Determine the final density and temperature
of the gas.

1.74 Compare the isentropic bulk modulus of air at 101 kPa
(abs) with that of water at the same pressure.

*1.75 Develop a computer program for calculating the final
gage pressure of gas when the initial gage pressure, initial and
final volumes, atmospheric pressure, and the type of process
(isothermal or isentropic) are specified. Use BG units. Check
your program against the results obtained for Problem 1.70.

1.76 An important dimensionless parameter concerned
with very high speed flow is the Mach number, defined as V/c,
where V is the speed of the object such as an airplane or
projectile, and c is the speed of sound in the fluid surrounding
the object. For a projectile traveling at 800 mph through air at
50 °F and standard atmospheric pressure, what is the value of
the Mach number?

1.77 Jet airliners typically fly at altitudes between
approximately O to 40,000 ft. Make use of the data in Appendix
C to show on a graph how the speed of sound varies over this
range.

1.78 When a fluid flows through a sharp bend, low
pressures may develop in localized regions of the bend. Estimate
the minimum absolute pressure (in psi) that can develop without
causing cavitation if the fluid is water at 160 °F.

1.79 Estimate the minimum absolute pressure (in pascals)
that can be developed at the inlet of a pump to avoid cavitation
if the fluid is carbon tetrachloride at 20 °C.
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1.80 When water at 90 °C flows through a converging
section of pipe, the pressure is reduced in the direction of flow.
Estimate the minimum absolute pressure that can develop
without causing cavitation. Express your answer in both BG
and SI units.

1.81 A partially filled closed tank contains ethyl alcohol at
68 °F. If the air above the alcohol is evacuated, what is the
minimum absolute pressure that develops in the evacuated
space?

1.82 Estimate the excess pressure inside a raindrop having
a diameter of 3 mm.

1.83 A 12-mm diameter jet of water discharges vertically
into the atmosphere. Due to surface tension the pressure inside
the jet will be slightly higher than the surrounding atmospheric
pressure. Determine this difference in pressure.

1.84 As shown in Video V1.5, surface tension forces can
be strong enough to allow a double-edge steel razor blade to
“float” on water, but a single-edge blade will sink. Assume that
the surface tension forces act at an angle 6 relative to the water
surface as shown in Fig. P1.84. (a) The mass of the double-
edge blade is 0.64 X 10~ kg, and the total length of its sides
is 206 mm. Determine the value of 6 required to maintain
equilibrium between the blade weight and the resultant surface
tension force. (b) The mass of the single-edge blade is
2.61 X 10~ kg, and the total length of its sides is 154 mm.
Explain why this blade sinks. Support your answer with the
necessary calculations.

Surface tension
force

B FIGURE P1.84

1.85 To measure the water depth in a large open tank with
opaque walls, an open vertical glass tube is attached to the side
of the tank. The height of the water column in the tube is then
used as a measure of the depth of water in the tank. (a) For
a true water depth in the tank of 3 ft, make use of Eq. 1.22 (with
0 = 0°) to determine the percent error due to capillarity as the
diameter of the glass tube is changed. Assume a water
temperature of 80 °F. Show your results on a graph of percent
error versus tube diameter, D, in the range 0.1 in. < D < 1.0 in.
(b) If you want the error to be less than 1%, what is the smallest
tube diameter allowed?

1.86 Under the right conditions, it is possible, due to surface
tension, to have metal objects float on water. (See Video V1.5.)
Consider placing a short length of a small diameter steel (sp.
wt. =490 Ib/ft’) rod on a surface of water. What is the
maximum diameter that the rod can have before it will sink?
Assume that the surface tension forces act vertically upward.
Note: A standard paper clip has a diameter of 0.036 in. Partially
unfold a paper clip and see if you can get it to float on water.
Do the results of this experiment support your analysis?

1.87 An open, clean glass tube, having a diameter of 3 mm,
is inserted vertically into a dish of mercury at 20 °C. How far
will the column of mercury in the tube be depressed?
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1.88 An open 2-mm-diameter tube is inserted into a pan of
ethyl alcohol and a similar 4-mm-diameter tube is inserted into
a pan of water. In which tube will the height of the rise of the
fluid column due to capillary action be the greatest? Assume
the angle of contact is the same for both tubes.

*1.89 The capillary rise in a tube depends on the cleanliness
of both the fluid and the tube. Typically, values of & are less
than those predicted by Eq. 1.22 using values of o and 6 for
clean fluids and tubes. Some measurements of the height, A, to
which a water column rises in a vertical open tube of diameter
d are given below. The water was tap water at a temperature of
60 °F and no particular effort was made to clean the glass tube.
Fit a curve to these data and estimate the value of the product
o cosf. If it is assumed that o has the value given in Table 1.5,

what is the value of 67 If it is assumed that 6 is equal to 0°,
what is the value of o?

d(in) | 03 025 | 020 | 015 | 010 | 005
R(in) | 0133 | 0.165 | 0.198 | 0273 | 0.421 | 0.796

1.90 This problem involves the use of a Stormer viscometer
to determine whether a fluid is a Newtonian or a non-Newtonian
fluid. To proceed with this problem, click here in the E-book.

1.91 This problem involves the use of a capillary tube
viscometer to determine the kinematic viscosity of water as a
function of temperature. To proceed with this problem, click
here in the E-book.
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