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/ l TER Gpu\I\ Puoto: Floating iceberg: An 1ceberg isa large piece of fresh water ice that on nated S
.Snow in'a glacxer or ice shelf-and then broke off to float i in the ocean, Although the fresh water ice is hghter
' than the salt'water in the ocean, the difference in densities is relatively small. Hence only about one nmth of
o the volume of an iceberg protrudes above the ocean’s surface, so that what we see ﬂoatmg is literally © “Just the
‘up of the 1ceberg” (Photograph courtesy of Corbis Drgital Stocleorbrs Images) R

After cc)mpletmg this chapter, you should be able to:
B fdeterrmne the pressure at various locations in a fluid at rest.

' 7@ jexplam the concept of manometers and apply appropnate equatlons to
" determine pressures.

fr%[calculate the hydrostatic pressure force on a plane or curved submerged surface

= calculate the buoyant force and discuss the stab1hty of floating or submerged
vobjects

In thrs chapter we will consider an important class of problems in whlch the: ﬂmd is exther at rest
~or moving in such a manner that there is no relative motion between adjacent particles. In both.
‘ ‘mstances there will be no shearing stresses in the fluid, and the only forces that develop on the sur-
faces of the partlcles will be due to the pressure. Thus, our principal concern is to investigate pres-
sure and ifs variation throughout a fluid and the effect of pressure on submerged surfaces. The
absence of shearing stresses greatly simplifies the analysis and, as we will see, allows us to obtam
I atlvely srmple solutmns to many 1rnportant practrcal problems

Pressure at a Pdint,

As we bneﬂy dlscussed in Chapter 1, the term pressure is used to mdlcate the normal force per
~ bpit area at a given point acting on a given plane within the fluid mass of interest. A question that
- 1mmed1ate1y arises is how the pressure at a point varies with the orientation of the plane passing



The pressure at a
‘point in a fluid at
' rest is independent
of direction.-
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B FIGURE 2.1 Forceson an arbitrary wedge-shaped element of fluid.

p, 0x By

through the point. To answer this question, consider the free-body diagram, illustrated in Fig. 2.1,
that was obtained by removing a small triangular wedge of fluid from some arbitrary location
within a fluid mass. Since we are considering the situation in which there are no shearing stresses,
the only external forces acting on the wedge are due to the pressure and the weight. For simplic-
ity the forces in the x direction are not shown, and the z axis is taken as the vertical axis so the
weight acts in the negative z direction. Although we are primarily interested in fluids at rest, to
make the analysis as general as possible, we will allow the fluid element to have accelerated mo-
tion. The assumption of zero shearing stresses will still be valid so long as the fluid element moves
as a rigid body; that is, there is no relative motion between adjacent elements.

The equations of motion (Newton’s second law, F = ma) in the y and z directions are, re-
spectively,

. 8x 8y &z
sz:Py5X5Z”p35x8ssmt9:pTay »
8x 8y o Sx &v S
ze:pz5x5y—ps5x5scos(9—y x2y < = xzy Zaz

where p,, p,, and p, are the average pressures on the faces, y and p are the fluid specific weight
and density, respectively, and a,, a, the accelerations. Note that a pressure must be multiplied
by an appropriate area to obtain the force generated by the pressure. It follows from the geom-
etry that

8y = 8scos 6 8z = 8ssinf

so that the equations of motion can be rewritten as

Oy

Py = Ps = pay -
8z
p.— ps = (pa, + 7)"5

Since we are really interested in what is happening at a point, we take the limit as x, 8y, and &z
approach zero (while maintaining the angle §), and it follows that

Dy = Ps D= Ps

or p; = p, = p,. The angle 6 was arbitrarily chosen so we can conclude that the pressure at a point
in a fluid at rest, or in motion, is independent of direction as long as there are no shearing stresses
present. This important result is known as Pascal’s faw, named in honor of Blaise Pascal (1623—
1662), a French mathematician who made important contributions in the field of hydrostatics. Thus,
as shown by the photograph in the margin, at the junction of the side and bottom of the beaker, the
pressure is the same on the side as it is on the bottom. In Chapter 6 it will be shown that for mov-
ing fluids in which there is relative motion between particles (so that shearing stresses develop), the
normal stress at a point, which corresponds to pressure in fluids at rest, is not necessarily the same
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in all directions. In such cases the pressure is defined as the average of any three mutually per-
pendicular normal stresses at the point.

2.2 Basic Equation for Pressure Field

“ Thé pressure miy
“vary across a fluid
“particle,

Although we have answered the question of how the pressure at a point varies with direction, we
are now faced with an equally important question—how does the pressure in a fluid in which there
are no shearing stresses vary from point to point? To answer this question consider a small rectan-
gular element of fluid removed from some arbitrary position within the mass of fluid of interest
as illustrated in Fig. 2.2. There are two types of forces acting on this element: surface forces due
to the pressure, and a body force equal to the weight of the element. Other possible types of body
forces, such as those due to magnetic fields, will not be considered in this text.

If we let the pressure at the center of the element be designated as p, then the average pres-
sure on the various faces can be expressed in terms of p and its derivatives, as shown in Fig. 2.2.
We are actually using a Taylor series expansion of the pressure at the element center to approxi-
mate the pressures a short distance away and neglecting higher order terms that will vanish as we
let &x, 8y, and 8z approach zero. This is illustrated by the figure in the margin. For simplicity the
surface forces in the x direction are not shown. The resultant surface force in the y direction is

op 8y dp 8y
OF, = (p - 57)6}:& - (p + a_y? dx 62

or

y

ap
8F, = ——86x 8y 8z

dy
Similarly, for the x and z directions the resultant surface forces are
z

ap op
8F, = ——8x by 8z 8F, = —— 6x 8y 8z
ax dz

The resultant surface force acting on the element can be expressed in vector form as

8F, = 8F + 8F,j + 8Fk

[ . 9pde
(p+—a; 2)5x§y
z
i
| 8z
' Ip &y
[p- 2% 55— | § | <+ [p+ 2% o
dy i y
Fdegs
s
e A Ox y6x8ydz
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_9pdz
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B FIGURE 2.2 Surface and body forces acting on small fluid
element.
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face force acting on
- a-small fluid ele-

ment depends only .

on the pressure
gradient if there are
no.shearing .
stresses present.

23 Pressure Variation in a Fluid at Rest 41
or
P, . Ipa
oF, = —(—pi + 23y ~‘~U—k>8x 5y 82 @.1)
dx dy az

where 1, 3, and k are the unit vectors along the coordinate axes shown in Fig. 2.2. The group

of terms in parentheses in Eq. 2.1 represents in vector form the pressure gradient and can be
written as

. P, pa
Pi+ P54 Lo vy
ox ay 0z

where

and the symbol V is the gradient or “del” vector operator. Thus, the resultant surface force per
unit volume can be expressed as '

SF, - _y
8x 8y 8z - P
Since the z axis is vertical, the weight of the element is
~8Wk = —y 8x 8y 87k

where the negative sign indicates that the force due to the weight is downward (in the negative 7
direction). Newton’s second law, applied to the fluid element, can be expressed as

D 6F = bma

where 3 6F represents the resultant force acting on the element, a is the acceleration of the ele-
ment, and 8m is the element mass, which can be written as p Ox 8y 8z. It follows that

> 6F = 6F, — 8Wk = dma
or
—Vp dx 8y bz — 78x6y6212 = pdxdydza
and, therefore,
~Vp — vk = pa (2.2)

Equation 2.2 is the general equation of motion for a fluid in which there are no shearing stresses.
We will use this equation in Section 2.12 when we consider the pressure distribution in a mov-
ing fluid. For the present, however, we will restrict our attention to the special case of a fluid
at rest. '

2.3 Pressure Variation in a Fluid at Rest

For a fluid at rest a = 0 and Eq. 2.2 reduces to

Vp + vk =0
or in component form
) e d
Loy Z_oy 2., 2.3)
X dy 0z

These equations show that the pressure does not depend on x or y. Thus, as we move from
point to point in a horizontal plane (any plane parallel to the x—y plane), the pressure does not
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For liguids or gases
-at rest, the pressure
-gradient in the ver-

“tical dzrectzon at
“any point ina ﬂuzd

depends only on the

' specific weight of
the ﬂuzd at that
Spoints i

V2.1 Pressure on a

change. Since p depends only on z, the last of Egs. 2.3 can be written as the ordinary differ-
ential equation

a

p2 = —vy 2.4)

Equation 2.4 is the fundamental equation for fluids at rest and can be used to determine how
pressure changes with elevation. This equation and the figure in the margin indicate that the pres-
sure gradient in the vertical direction is negative; that is, the pressure decreases as we move up-
ward in a fluid at rest. There is no requirement that v be a constant. Thus, it is valid for fluids with
constant specific weight, such as liquids, as well as fluids whose specific weight may vary with
elevation, such as air or other gases. However, to proceed with the integration of Eq. 2.4 1t is nec-
essary to stipulate how the specific weight varies with z.

If the fluid is flowing (i.e., not at rest with a = 0), then the pressure variation is much more
complex than that given by Eq. 2.4. For example, the pressure distribution on your car as it is dri-
ven along the road varies in a complex manner Wlth x, y, and z. This idea is covered in detail in
Chapters 3, 6, and 9.

2.3.1 Incompressible Fluid

Since the specific weight is equal to the product of fluid density and acceleration of gravity
(v = pg), changes in 7y are caused either by a change in p or g. For most engineering applications
the variation in g is negligible, so our main concern is with the possible variation in the fluid den-
sity. In general, a fluid with constant density is called an incompressibie fiuid. For liquids the vari-
ation in density is usually negligible, even over large vertical distances, so that the assumption of
constant specific weight when dealing with liquids is a good one. For this instance, Eq. 2.4 can be

directly integrated
P2 2
f dp = —vy J dz
I 2

P = _')’(Zz - z)

to yield

or

P — =Yz~ z1) (2.5)

where p; and p, are pressures at the vertical elevations z; and z,, as is illustrated in Fig. 2.3.
Equation 2.5 can be written in the compact form

P = D= vh 2.6)
or
Py =7Yhtp, 2.7

where 4 is the distance, z, — z;, which is the depth of fluid measured downward from the location
of p,. This type of pressure distribution is commonly called a kydrostatic distribusion, and Eq. 2.7

Free surface
(pressure = py)

P

Y BFIGURE 2.3 Notation for
pressure variation in a fluid at rest with a
x free surface.
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shows that in an incompressible fluid at rest the pressure varies linearly with depth. The pressure
must increase with depth to “hold up” the fluid above it.

It can also be observed from Eq. 2.6 that the pressure difference between two points can be
specified by the distance A since

P17 P2
Y

In this case h is called the pressure iead and is interpreted as the height of a column of fluid of
specific weight vy required to give a pressure difference p, — p,. For example, a pressure differ-
ence of 10 psi can be specified in terms of pressure head as 23.1 ft of water (y = 62.4 Ib/ft%), or
518 mm of Hg (y = 133 kN/m’). As illustrated by the figure in the margin, a 23.1-ft-tall column
of water with a cross-sectional area of 1 in.? weighs 10 Ib.

h:

Giraffe’s blood pressure A giraffe’s long neck allows it to graze gions, giraffes have a tight sheath of thick skin over their lower
up to 6 m above the ground. It can also lower its head to drink at ~ limbs which acts like an elastic bandage in exactly the same way
ground level. Thus, in the circulatory system there is a significant  as do the g-suits of fighter pilots. In addition, valves in the upper
hydrostatic pressure effect due to this elevation change. To main-  neck prevent backflow into the head when the giraffe lowers its
tain blood to its head throughout this change in elevation, the gi-  head to ground level. It is also thought that blood vessels in the gi-
raffe must maintain a relatively high blood pressure at heart raffe’s kidney have a special mechanism to prevent large changes
level—approximately two and a half times that in humans. To in filtration rate when blood pressure increases or decreases with
prevent rupture of blood vessels in the high-pressure lower leg re-  its head movement. (See Problem 2.14.)

1

When one works with liquids there is often a free surface, as is illustrated in Fig. 2.3, and it
is convenient to use this surface as a reference plane. The reference pressure p, would correspond
to the pressure acting on the free surface (which would frequently be atmospheric pressure), and
thus if we let p, = p, in Eq. 2.7 it follows that the pressure p at any depth 4 below the free sur-
face is given by the equation: !

p=vh+ p, « 2.8)

As is demonstrated by Eq. 2.7 or 2.8, the pressure in a homogeneous, incompressible fluid
at rest depends on the depth of the fluid relative to some reference plane, and it is not influ-
enced by the size or shape of the tank or container in which the fluid is held. Thus, in Fig. 2.4

EFiGURE 2.4 Flud
pressure in containers of arbitrary
Specific weight y shape.
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the pressure is the same at all points along the line AB even though the containers may have
the very irregular shapes shown in the figure. The actual value of the pressure along AB de-
pends only on the depth, A, the surface pressure, py, and the specific weight, v, of the liquid in

the container.

tPLE 2.1

GIVEN  Because of a leak in a buried gasoline storage tank,
water has seeped in to the depth shown in Fig. E2.1. The specific
gravity of the gasoline is SG = 0.68.

FINE  Determine the pressure at the gasoline-water interface
and at the bottom of the tank. Express the pressure in units of
1b/ft?, 1b/in.%, and as a pressure head in feet of water.

SCLUTION

Since we are dealing with liquids at rest, the pressure distribution
will be hydrostatic, and therefore the pressure variation can be
found from the equation:

p=7vh+pg

‘With p, corresponding to the pressure at the free surface of the
gasoline, then the pressure at the interface is

P = SGyuoh + po
= (0.68)(62.4 Ib/£E)(17 ft) + pq
=721 + pg (Ib/ft?)

If we measure the pressure relative to atmospheric pressure (gage
pressure), it follows that py = 0, and therefore

py = 721 Ib/f? {Ansg)
721 b/

== 501 Ib/in? (Ans)

P = e /in MR

pi 721 b/t

= = 11.6 1t (ﬁﬁﬁﬁ}
Yoo  6241b/fC '

'_Opén“; B

17 ft

3ft

_f‘

EFIGURE E21

1t is noted that a rectangular column of water 11.6 ft tall and 1 ¢
in cross section weighs 721 1b. A “similar colunm w1th a l-m
cross section we1ghs 5.01 Ib. :

‘We can now apply the same relatmnshlp to determme the pres~
sure at the tank bottom; that is, :

7520 hHZO +p
= (62.4 1b/ft3)(3 ) + 721 Io/ft? (Ans)

= 908 1b/fe’
908 To/f . N
p.= m = 6.31 Ib/in” - {Ang)
e ) .
P OB e (Ans)

Yao 624 b/ff

COMMENT  Observe that if we wish to express these pres-
sures in terms of absolute pressure, we would have to add the lo-
cal atmospheric pressure ({in appropnate units) to the prevmus
results. A further d}scussmn of gage and absolute pressure is given
in Sectlon 2.5. : . :

The transmission of

The required equality of pressures at equal elevations thronghout a system is important for

pressure through-
out a stationary
fluid is the princi-
ple upon which
many hydraulic
devices are based.

the operation of hydraulic jacks (see Fig. 2.5a), lifts, and presses, as well as hydraulic controls on
aircraft and other types of heavy machinery. The fundamental idea behind such devices and systems
is demonstrated in Fig. 2.5b. A piston located at one end of a closed system filled with a liguid,
such as oil, can be used to change the pressure throughout the system, and thus transmit an applied
force F; to a second piston where the resulting force is F),. Since the pressure p acting on the faces
of both pistons is the same (the effect of elevation changes is usually negligible for this type of hy-
draulic device), it follows that F, = (A,/A,)F,. The piston area A, can be made much larger than
A, and therefore a large mechanical advantage can be developed; that is, a small force applied at
the smaller piston can be used to develop a large force at the larger piston. The applied force could
be created manually through some type of mechanical device, such as a hydraulic jack, or through
compressed air acting directly on the surface of the liquid, as is done in hydraulic lifts commonly
found in service stations. ’



» If the specific
weight of a fluid *

Varies significantly
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“point to point, the
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{a) (b)
FIGURE 2.5 (a) Hydraulic jack, () Transmission of fluid pressure.

2.3.2 Compressible Fluid

We normally think of gases such as air, oxygen, and nitrogen as being compressible fluids since
the density of the gas can change significantly with changes in pressure and temperature. Thus, al-
though Eq. 2.4 applies at a point in a gas, it is necessary to consider the possible variation in y
before the equation can be integrated. However, as was discussed in Chapter 1, the specific weights
of common gases are small when compared with those of liquids. For example, the specific weight

- of air at sea level and 60 °F is 0.0763 1b/ft*, whereas the specific weight of water under the same

conditions is 62.4 Ib/ft®. Since the specific weights of gases are comparatively small, it follows
from Eq. 2.4 that the pressure gradient in the vertical direction is correspondingly small, and even
over distances of several hundred feet the pressure will remain essentially constant for a gas. This
means we can neglect the effect of elevation changes on the pressure in gases in tanks, pipes, and
so forth in which the distances involved are small.

For those situations in which the variations in heights are large, on the order of thousands of
feet, attention must be given to the variation in the specific weight. As is described in Chapter 1,
the equation of state for an ideal (or perfect) gas is

14

P:E

where p is the absolute pressure, R is the gas constant, and T is the absolute temperature. This re-
lationship can be combined with Eq. 2.4 to give
d _ &

dz RT
and by separating variables

= 2.9)
Py 14 V4 R T

where g and R are assumed to be constant over the elevation change from z, to z,. Although the
acceleration of gravity, g, does vary with elevation, the variation is very small (see Tables C.1 and

C.2 in Appendix C), and g is usually assumed constant at some average value for the range of el-
evation involved.

f“_@: m?2 - _grﬂ
Z

i
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1 Before completing the integration, one must specify the nature of the variation of tempera-
Isothermal ture with elevation. For example, if we assume that the temperature has a constant value T, over
S os \ the range z; to z, (isothermal conditions), it then follows from Eq. 2.9 that
B ~ 8\ T 4
Incompressible P> =D eXP'i"‘ ( RT, )} (2.10)
0635000 10,000
-, This equation provides the desired pressure—elevation relationship for an isothermal layer. As shown

in the margin figure, even for a 10,000-ft altitude change the difference between the constant tem-
perature (isothermal) and the constant density (incompressible) results are relatively minor. For
nonisothermal conditions ‘a similar procedure can be followed if the temperature—elevation rela-
tionship is known, as is discussed in the followmg section.

XAMPLE 2.2

GIVERN  In 2007 the Burj Dubai skyscraper being built in the
United Arab Emirates reached the stage in its construction where
it became the world’s tallest building. When completed it is ex-
pected to be at least 2275 ft tall, although its final height remains
a secret.

FIMD  (a) Estimate the ratio of the pressure at the projected 2275-
1t top of the building to the pressure at its base, assuming the air to be
at a common temperature of 59 °F. (b) Compare the pressure calcu-
lated in part (a) with that obtained by assuming the air to be incom-
pressible with y = 0.0765 Ib/ft’ at 14.7 psi (abs) (values for air at
standard sea level conditions).

SoLuTioN

For the assumed isothermal conditions, and treating air as a com-
pressible fluid, Eq. 2.10 can be applied to yield

P2 oo {wg(Zz - zl)}
Pi RT,

(32.2 f/s%)(2275 fi)
exp { (1716 ft - Ib/slug - °R)[(59 + 460)°R]}
0.921 (Ans)

BFIGURE E2.2  (Figure
courtesy of Emaar Properties, Dubai, -

If the air is treated as an incompressible fluid we can apply
Eg. 2.5. In this case

UAE.)
p2=p1— ¥z ~2)
or : ‘
fluid and mcompressﬂ)le ﬂmd analyses yleld essenually the
h__ R same result,
151 Py - We see that for both calculations the presstre decreases by ap-
(0.0765 1b/)(2275 ft) , proximately 8% as we go from ground level to thetop of this tallest
=1~ = (0.918 {Ans) y : '

building. It does not require a very large pressure difference to sup-
port a 2275-ft-tall column of fluid as light as air. This result supports
the earlier statement that the changes in pressures in air and other
COMMERMTS  Note that there is little difference between  gases due fo elevation changes are very small, even for distances of

(14.7 Ib/in.2)(144 in >/

the two results. Since the pressure difference between the bot-
tom and top of the building is small, it follows that the varia-
tion in fluid density is small and, therefore, the compressible

hundreds of feet. Thus, the pressure differences between the top and
bottom of a horizontal pipe cartying a gas, or in a gas storage tank,
are negligible since the distances involved are very small.
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Standard Atmosphere

The standard
atmosphere is an
idealized repre-
sentation of mean

“ conditions in the
earth’s atmosphere.

300 -
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L Aurora
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Altitude z, km

50 b~

L Giane Tayer 1T

Thunder storm
N ommercial jel

An important application of Eq. 2.9 relates to the variation in pressure in the earth’s atmosphere.
Ideally, we would like to have measurements of pressure versus altitude over the specific range for
the specific conditions (temperature, reference pressure) for which the pressure is to be determined.
However, this type of information is usually not available. Thus, a “standard atmosphere” has been
determined that can be used in the design of aircraft, missiles, and spacecraft, and in comparing
their performance under standard conditions. The concept of a standard atmosphere was first de-
veloped in the 1920s, and since that time many national and international committees and organi-
zations have pursued the development of such a standard. The currently accepted standard atmos-
phere is based on a report published in 1962 and updated in 1976 (see Refs. 1 and 2), defining the
so-called /.5, standard atmosphere, which is an idealized representation of middle-latitude, year-
round mean conditions of the earth’s atmosphere. Several important properties for standard atmos-
pheric conditions at sea level are listed in Table 2.1, and Fig. 2.6 shows the temperature profile for
the U.S. standard atmosphere. As is shown in this figure the temperature decreases with altitude
in the region nearest the earth’s surface (troposphere), then becomes essentially constant in the next
layer (stratosphere), and subsequently starts to increase in the next layer. Typical events that occur
in the atmosphere are shown in the figure in the margin.

Since the temperature variation is represented by a series of linear segments, it is possible
to integrate Bq. 2.9 to obtain the corresponding pressure variation. For example, in the troposphere,
which extends to an altitude of about 11 km (~36,000 ft), the temperature variation is of the form

T=T,- Bz 2.11)

g TABLE 2.1
Properties of U.S. Standard Atmosphere at Sea Level*

Property SI Units BG Units
Temperature, T 288.15 K (15°C) 518.67 °R (59.00 °F)
Pressure, p 101.33 kPa (abs) 2116.2 1b/ft* (abs)
[14.696 1b/in.? (abs)]
Density, p 1.225 kg/m° 0.002377 slugs/fe*
Specific weight, ¥ 12.014 N/m® 0.07647 b/ft®

Viscosity, @ 1.789 X 1075 N - s/m’ 3.737 X 1077 1b - s/t

*Acceleration of gravity at sea level = 9.807 m/s? = 32.174 ft/s%

§
ite]
50 o
47.3 km
; {p=0.1 kPa)
i o
40 SRR, NURISRR— :’O
<
c ; :32.2 km (p = 0.9 kPa)
) H
[} ;
hel i
= :
< 20— T S . T
, o1 20.1km(p=55kPa)
Stratosphere 0 :
; © : :
10 * PLliowmp=226kpa |
‘ - . p=101.3 kPa (abs)
Troposphere 15: <
0 : 1 f : BFIGURE 2 iati
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of temperature with altitude in the

Temperature T, °C U.S. standard atmosphere.
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where T, is the temperature at sea level (z = 0) and B is the lapse rate (the rate of change of tem-
perature with elevation). For the standard atmosphere in the troposphere, 8 = 0.00650 K/m
or 0.00357 °R/ft.

Equation 2.11 used with Eq. 2.9 yields

B B E_Z_ g/RB
p= pa<l Ta> (2.12)

where p, is the absolute pressure at z = 0. With p,, T, and g obtained from Table 2.1, and with
the gas constant R = 286.9 J/kg - K or 1716 ft - Ib/slug - °R, the pressure variation throughout the
troposphere can be determined from Eq. 2.12. This calculation shows that at the outer edge of the
troposphere, where the temperature is —56.5 °C, the absolute pressure is about 23 kPa (3.3 psia).
It is to be noted that modern jetliners cruise at approximately this altitude. Pressures at other al-
titades are shown in Fig. 2.6, and tabulated values for temperature, acceleration of gravity, pres-
sure, density, and viscosity for the U.S. standard atmosphere are given in Tables C.1 and C.2 in
Appendix C.

2.5 Measurement of Pressure

Pressure is desig-
nated as either ab-
solute pressure or  ~
gage pressure.

Since pressure is a very important characteristic of a fluid field, it is not surprising that numer-
ous devices and techniques are used in its measurement. As is noted briefly in Chapter 1, the
pressure at a point within a fluid mass will be designated as either an abselufe pressure Or a
gage pressure. Absolute pressure is measured relative to a perfect vacuum (absolute zero pres-
sure), whereas gage pressure is measured relative to the local atmospheric pressure. Thus, a gage
pressure of zero corresponds to a pressure that is equal to the local atmospheric pressure.
Absolute pressures are always positive, but gage pressures can be either positive or negative
depending on whether the pressure is above atmospheric pressure (a positive value) or below
atmospheric pressure (a negative value). A negative gage pressure is also referred to as a suction
or vacuumn pressure. For example, 10 psi (abs) could be expressed as —4.7 psi (gage), if the lo-
cal atmospheric pressure is 14.7 psi, or alternatively 4.7 psi suction or 4.7 psi vacuum. The con-
cept of gage and absolute pressure is illustrated graphically in Fig. 2.7 for two typical pressures
located at points 1 and 2.

In addition to the reference used for the pressure measurement, the units used to express
the value are obviously of importance. As is described in Section 1.5, pressure is a force per unit
area, and the units in the BG system are b/t or 1b/in.2, commonly abbreviated psf or psi, re-
spectively. In the SI system the units are N/m? this combination is called the pascal and written
as Pa (1 N/m? = 1Pa). As noted earlier, pressure can also be expressed as the height of a col-
umn of liquid. Then, the units will refer to the height of the column (in., ft, mm, m, etc.), and in
addition, the liquid in the column must be specified (H,0, Hg, etc.). For example, standard atmos- -
pheric pressure can be expressed as 760 mm Hg (abs). In this text, pressures will be assumed to
be gage pressures unless specifically designated absolute. For example, 10 psi or 100 kPa would
be gage pressures, whereas 10 psia or 100 kPa (abs) would refer to absolute pressures. It is to be

8

Gage pressure @ 1

Local atmospheric

@

§ pressure reference

8 2

a ® Gage pressure @ 2
Absolute pressure (suction or vacuum)

@1

Absolute pressure
@2

M FriGURE 2.7 Graphical
representation of gage and absolute
Absolute zero reference pressure. :
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2.5 Measurement of Pressure

EFIGURE 2.6 Mercury barometer.

noted that pressure differences are independent of the reference, so that no special notation is re-
quired in this case.

The measurement of atmospheric pressure is usually accomplished with a mercury »aren-
efer, which in its simplest form consists of a glass tube closed at one end with the open end im-
mersed in a container of mercury as shown in Fig. 2.8. The tube is initially filled with mercury
(inverted with its open end up) and then turned upside down (open end down), with the open end
in the container of mercury. The column of mercury will come to an equilibrium position where
its weight plus the force due to the vapor pressure (which develops in the space above the column)
balances the force due to the atmospheric pressure. Thus,

Pam = YA + Duspor (2.13)

where vy is the specific weight of mercury. For most practical purposes the contribution of the va-
por pressure can be neglected since it is very small [for mercury, ‘p\,ap(,r = 0.000023 Ib/in.? (abs) at
a temperature of 68 °F], so that p,,, = yA. It is conventional to specify atmospheric pressure in
terms of the height, 4, in millimeters or inches of mercury. Note that if water were used instead of
mercury, the height of the column would have to be approximately 34 ft rather than 29.9 in. of
mercury for an atmospheric pressure of 14.7 psia! This is shown to scale in the figure in the mar-
gin. The concept of the mercury barometer is an old one, with the invention of this device attrib-
uted to Evangelista Torricelli in about 1644.

XAMPLE 2.3

GIVEN A mountain lake has an average~température of 10 °Cand
a maximum depth of 40 m. The barometric pressure is 598 mm Hg.

| SoLuTion

§§Nﬁ Determine the absolute pressure (in pascals) at the deepest
part of the lake:. -

The pressure in the lake at any depth, 2, is gi{ren by the equation
p=7vh+po S

where p, is the pressure at the surface. Since we want the absolute
pressure, py will be the local barometric pressure expressed in a
consistent system of units; that is

Prarometric

= 598 mm = 0.598 m
'YHg ;

and for vy, = 133 kN/m’
’ Po = (0.598 m){133 kN/m®) ='79.5 kKN/m? -

From Table B2, y;i;o = 9.804 kKN/m’ at 10 °C and therefore
O p = (9.804 kN/m’)(40 m) + 79.5 kN/m?
= 392 kKN/m? + 79.5 KN/m?
- =472kPa(abs) (Ans)

COMMENT  This simple example illustrates the need for

close attention to the units used in the calculation of pressure; that
is, be sure to use a consistent unit system, and be careful not to

~ add a pressure head (m) to a pressure (Pa).
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Weather, barometers, and bars One of the most important
indicators of weather conditions is atmospheric pressure. In
general, a falling or low pressure indicates bad weather; rising
or high pressure, good weather. During the evening TV
weather report in the United States, atmospheric pressure is
given as so many inches (commonly around 30 in.). This value
is actually the height of the mercury column in a mercury
barometer adjusted to sea level. To determine the true atmos-
pheric pressure at a particular location, the elevation relative to
sea level must be known. Another unit used by meteorologists
to indicate atmospheric pressure is the bar, first used in

weather reporting in 1914, and defined as 10° N/m?. The defi-
nition of a bar is probably related to the fact that standard sea-
level pressure is 1.0133 X 10° N/m? that is, only slightly
larger than one bar. For typical weather patterns, “sea-level
equivalent” atmospheric pressure remains close to one bar.
However, for extreme weather conditions associated with tor-
nadoes, hurricanes, or typhoons, dramatic changes can occur.
The lowest atmospheric sea-level pressure ever recorded was
associated with a typhoon, Typhoon Tip, in the Pacific Ocean
on October 12, 1979. The value was 0.870 bars (25.8 in. Hg).
(See Problem 2.19.) -

2.6 Manometry

A standard technique for measuring pressure involves the use of liquid columns in vertical or inclined

Manometérs use . . . . .
: tubes. Pressure measuring devices based on this technique are called manomerers, The mercury

vertical or inclined . . :
Ligieid colurins 10, barometer is an example of one type of manometer, but there are many other configurations possi-
measiire pressure. ble, depending on the particular application. Three common types of manometers include the piezome-

ter tube, the U-tube manometer, and the inclined-tube manometer.

2.6.1 Piezometer Tube

The simplest type of manometer consists of a vertical tube, open at the top, and attached to the
container in which the pressure is desired, as illustrated in Fig. 2.9. The figure in the margin shows
an important device whose operation is based upon this principle. It is a sphygmomanometer, the
traditional instrument used to measure blood pressure.

Since manometers involve columns of fluids at rest, the fundamental equation describing
their use is Eq. 2.8

p=7vh+pg

which gives the pressure at any elevation within a homogeneous fluid in terms of a reference pres-
sure p, and the vertical distance /1 between p and p,. Remember that in a fluid at rest pressure will
increase as we move downward and will decrease as we move upward. Application of this equa-
tion to the piezometer tube of Fig. 2.9 indicates that the pressure p, can be determined by a mea-
surement of A, through the relationship

Pa = il

where 1y, is the specific weight of the liquid in the container. Note that since the tube is open at
the top, the pressure p; can be set equal to zero (we are now using gage pressure), with the height

Open

ern

PR & 2.9 Piezometer tube.

A



The contribution of
gas-columns in
manometers is Usu-
ally negligible
since the weight of
the gas is so small.

RS BN
V2.2 Blood pres-
sure medsurement
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Open

n

fluid) |

BFIGURE 2140 Simple U-tube manometer.

h, measured from the meniscus at the upper surface to point (1). Since point (1) and point A within
the container are at the same elevation, p, = p;.

Although the piezometer tube is a very simple and accurate pressure measuring device, it has
several disadvantages. It is only suitable if the pressure in the container is greater than atmospheric
pressure (otherwise air would be sucked into the system), and the pressure to be measured must be
relatively small so the required height of the column is reasonable. Also, the fluid in the container in
which the pressure is to be measured must be a liquid rather than a gas.

2.6.2 U-Tube Manometer

To overcome the difficulties noted previously, another type of manometer which is widely used
consists of a tube formed into the shape of a U, as is shown in Fig. 2.10. The fluid in the manome-
ter is called the gage fluid. To find the pressure p, in terms of the various column heights, we start
at one end of the system and work our way around to the other end, simply utilizing Eq. 2.8. Thus,
for the U-tube manometer shown in Fig. 2.10, we will start at point A and work around to the open
end. The pressure at points A and (1) are the same, and as we move from point (1) to (2) the pres-
sure will increase by 7y,4,. The pressure at point (2) is equal to the pressure at point (3), since the
pressures at equal elevations in a continuous mass of fluid at rest must be the same. Note that we
could not simply “jump across” from point (1) to a point at the same elevation in the right-hand
tube since these would not be points within the same continuous mass of fluid. With the pressure
at point (3) specified, we now move to the open end where the pressure is zero. As we move ver-
tically upward the pressure decreases by an amount ,h,. In equation form these various steps can
be expressed as

Pat viby — vy = 0

and, therefore, the pressure p, can be written in terms of the column heights as

Pa = Yoy — vily (2.14)

A major advantage of the U-tube manometer lies in the fact that the gage fluid can be different
from the fluid in the container in which the pressure is to be determined. For example, the fluid
in A in Fig. 2.10 can be either a liquid or a gas. If A does contain a gas, the contribution of

the gas column, vk, is almost always negligible so that p, = p,, and in this instance Eq. 2.14
becomes

Pa = Yoo

Thus, for a given pressure the height, h,, is governed by the specific weight, v,, of the gage fluid
used in the manometer. If the pressure p, is large, then a heavy gage fluid, such as mercury, can
be used and a reasonable column height (not too long) can still be maintained. Alternatively, if the
pressure p, is small, a lighter gage fluid, such as water, can be used so that a relatively large col-
umn height (which is easily read) can be achieved.
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XAMPLE 2.4

{31YEN A closed tank contains compressed air and oil
(SG; = 0.90) as is shown in Fig. E2.4. A U-tube manometer using
mercury (SGy, =
umn heights are iy = 36 in., b, = 6in,, and h; = 9in.

FIND  Determine the pressure reading (in psi) of the gage.

SoLuTiOoN

13.6) is connected to the tank as shown. The col- -

manomeéter system and working around to the other we will start
at the air—oil interface in the tank and p:oceed to the open end
where the pressure is zero. The pressure at leVel (1)is -

D1 = Pair + '}'oﬂ(hl + hZ)

points are at the same elevation i in a homogeneous fluid af rest. As
we move from level (2) to the open end, the pressure must de-
crease by yy,hs, and at the open end the pressure is zero. Thus the
manometer equatxon can be expressed as

Pair F Vol + ho) — yughs =0

or ,
Pair + (SGo)(yuo)(s + hp) — (SGHg)('YHzo)hS =0 »
For the values given ST
' 36+6 .\
—f
12 )

Pair = "—,(0.9)(62.4 ll;/ft35<
+ (13.6)(62.4 1b/ft3)<19—2ft>

0 that

Do = 440 b/t

Following the general procedure of startmg at one end of the i

B FIGURE E2.4

This pressure is equal to the pressure at level (2) since these two :

Pressure
gage

‘Since the specific weight of the air above the oil is mueh smaller
‘than the specific weight of the oil, the gage should read the pres-

 COMIMENTS  Note that the air pressure is a function of the

sure we have calculated; that is,

440 1b/f¢

pgage = m = 3.06 pSi -

~ {Ans}

height of the mercury in the manometer and the depth of the oil
(both in the tank and in the tube). It is not just the mercury in the
manometer that is important.

‘ Assume that the gage pressure remains at 3.06 psx but the
manometer is altered so that it contains only oil. That is, the mer-
cury'is replaced by oil. A simple calculation shows that in this
case the vertical oil-filled tube would need to be 23 = 11.3 ft tall,
rather than the original i; = 9 in. There is an obvious advantage
of using a heavy fluid such as mercury in manometers‘

Manometers are of-
ten used to measure
the difference in
pressure between
two points.

The U-tube manometer is also widely used to measure the difference in pressure between
two containers or two points in a given system. Consider a manometer connected between con-
tainers A and B as is shown in Fig. 2.11. The difference in pressure between A and B can be found

BFriGuURE 20141
manometer.

Differential U-tube



T

Vs

Pp®

temperature.

XAMPLE 2.5

GIVEN  As will be discussed in Chapter 3, the volume rate of
flow, 0, through a pipe can be determined by means of a flow noz-
zle located in the pipe as illustrated in Fig. BE2.5a. The nozzle cre-
ates a pressure drop, py — pi; along the pipe which is related to the
flow through the equation @ = KVpy — Pp, where K is a constant
depending on the pipe and nozzle size. The pressure drop is fre-
quently measured with a differential U-tube manometer of the type
ilustrated. . '

SoLuTion

by again starting at one end of the s

Pa ™

(a) ~ Although the fluid in the pipe is moving, the fluids in the
columns of the manometer are at rest so that the pressure variation
in the manometer tubes is hydrostatic. If we start at point A and
move vertically upward to level (1), the pressure will decrease by
.k, and will be equal to the pressure at (2) and at (3). We can now
move from (3) to (4) where the pressure has been further reduced
by v,h,. The pressures at levels (4) and (5) are equal, and as we
move from (5) to B.the pressure will increase by vi(hs + h,):
Thus, in equation form E

Pa = Y Yl + 71(h1 + ) = pg
o . : S
A
j

{ A
{Ans

pa—Ps= hz(’)’z -7

COMMENT It is to be noted that the only column height
of importance is the differential reading, h,. The differential
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ystem and working around to the other end. For example, at
A the pressure is p,, which is equal to p;, and as we move to point (2) the pressure increases by
v,hy. The pressure at p; is equal to p;, and as we move upward to point (4) the pressure decreases
by Y-k, Similarly, as we continue to move upward from point (4) to (5) the pressure decreases by
+v3hs. Finally, ps = pp, since they are at equal elevations. Thus,

Pa F vih — Yoo — 3l = Ps

. Or, as indicated in the figure in the margin, we could start at B and work our way around to A to
obtain the same result. In either case, the pressure difference is

Py = Yohy t ¥ahs — Vil

When the time comes to substitute in numbers, be sure to use a consistent system of units!
Capillarity due to surface tension at the various fluid interfaces in the manometer is usu-
ally not considered, since for a simple U-tube with a meniscus in each leg, the capillary effects
cancel (assuming the surface tensions and tube diameters are the same at each meniscus), or we
: can make the capillary rise negligible by using relatively large bore tubes (with diameters of
about 0.5 in. or larger; see Section 1.9). Two common gage fluids are water and mercury. Both
give a well-defined meniscus (a very important characteristic for a gage fluid) and have well-
known properties. Of course, the gage fluid must be immiscible with respect to the other flo-
ids in contact with it. For highly accurate measurements, special attention should be given to
temperature since the various specific weights of the fluids in the manometer will vary with

FIND  (a) Determine an equation for py =~ pg in terms of the
specific weight of the flowing fluid, 7y, the specific weight of
the gage fluid, 7,, and the various heights indicated. (b) For
v, = 9.80 KN/m®,y, = 15.6 kN/m’, b, = 1.0m, and iy, = 0.5 m,
what is the value of the pressure drop, ps — ps?

Flow % — % )
™~
Flow nozzle B .

ErFriGuURE E2ba

manometer cohld be placed 0.5 or 5.0 m above the pipe (h = 0.5 m
ork; =5.0m), and the ’value of hz would remain the sarme.. -

(b) The specific value of the pressure drop for theydatka givén is

pa — Py = (0.5 m)(15.6 kN/m’ — 9.80 KN/m?)
= 290 kPa » '{Am}

COMMENT By repeating the calculations for manometer
fluids with different specific weights, 7,, the results shown in
Fig. E2.5b are obtained. Note that relatively small pressure




differences can be meaéured if the manometer fluid has nearly 3

the same specific weight as the flowing fluid. It is the difference ©(15.6 KN/, 2.90 kPa)
in the specific weights, ¥, — Y1, that is important. : ;
Hence, by réwriting the answer as 4, = (p, ~ pp)/(y2 — v1)
it is seen that even if the value of p, = pp is small, the value of A, o 2l
can be large enough to provide an accurate reading provided the D—‘{
value of y, — 7, is also small. ' ' ff
‘ S
1
Y2 =1
0 ’ g n ; - :
8 10 12 14 16
k o, KN/M® - ;

BEFIGURE E25b

Inclined-tube
manometers can be
used to measure
small pressure dif-
ferences accurately.

6 deg

2.6.3 Inclined-Tube Manometer

To measure small pressure changes, a manometer of the type shown in Fig. 2.12 is frequently used.
One leg of the manometer is inclined at an angle §, and the differential reading £, is measured
along the inclined tube. The difference in pressure p, — pg can be expressed as

Pat Vil — v fysin@ — y3hy = py
or

Pa — P = YVolysin® + yihy — yihy (2.15)

where it is to be noted the pressure difference between points (1) and (2) is due to the vertical dis-
tance between the points, which can be expressed as €, sin 8. Thus, for relatively small angles the
differential reading along the inclined tube can be made large even for small pressure differences.
The inclined-tube manometer is often used to measure small differences in gas pressures so that
if pipes A and B contain a gas then

Pa — P = Yolysin@
or
Ps — Ps

= (2.16)
¥, sin 8

where the contributions of the gas columns A, and k; have been neglected. Equation 2.16 and the
figure in the margin show that the differential reading €, (for a given pressure difference) of the in-
clined-tube manometer can be increased over that obtained with a conventional U-tube manome-

ter by the factor 1/sin 6. Recall that sin 8 —0 as 8 — 0.

BEFIGURE 2.12 Inclined-tube manometer.
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2.7 Mechanical and Electronic Pressure Measuring Devices

A Bourdon tube
pressire gage uses
a hollow, elastic,
and curved tube to
medsure pressure.

AN
V2.3 Bourdon gage

Although manometers are widely used, they are not well suited for measuring very high pressures,
or pressures that are changing rapidly with time. In addition, they require the measurement of one
or more column heights, which, although not particularly difficult, can be time consuming. To over-
come some of these problems numerous other types of pressure measuring instruments have been
developed. Most of these make use of the idea that when a pressure acts on an elastic structure the
structure will deform, and this deformation can be related to the magnitude of the pressure. Prob-
ably the most familiar device of this kind is the Bourdon pressure gage, which is shown in
Fig. 2.13a. The essential mechanical element in this gage is the hollow, elastic curved tube (Bour-
don tube) which is connected to the pressure source as shown in Fig. 2.13b. As the pressure within
the tube increases the tube tends to straighten, and although the deformation is small, it can be
translated into the motion of a pointer on a dial as illustrated. Since it is the difference in pressure
between the outside of the tube (atmospheric pressure) and the inside of the tube that causes the
movement of the tube, the indicated pressure is gage pressure. The Bourdon gage must be cali-
brated so that the dial reading can directly indicate the pressure in suitable units such as psi, psf,
or pascals. A zero reading on the gage indicates that the measured pressure is equal to the local
atmospheric pressure. This type of gage can be used to measure a negative gage pressure (vacuum)
as well as positive pressures.

The aneroid barometer is another type of mechanical gage that is used for measuring atmos-
pheric pressure. Since atmospheric pressure is specified as an absolute pressure, the conventional
Bourdon gage is not suitable for this measurement. The common aneroid barometer contains a hol-
low, closed, elastic element which is evacuated so that the pressure inside the element is near
absolute zero. As the external atmospheric pressure changes, the element deflects, and this motion
can be translated into the movement of an attached dial. As with the Bourdon gage, the dial can
be calibrated to give atmospheric pressure directly, with the usual units being millimeters or inches
of mercury.

For many applications in which pressure measurements are required, the pressure must be
measured with a device that converts the pressure into an electrical output. For example, it may be
desirable to continuously monitor a pressure that is changing with time. This type of pressure mea-
suring device is called a pressure transducer, and many different designs are used. One possible
type of transducer is one in which a Bourdon tube is connected to a linear variable differential
transformer (LVDT), as is illustrated in Fig. 2.14. The core of the LVDT is connected to the free
end of the Bourdon tube so that as a pressure is applied the resulting motion of the end of the tube
moves the core through the coil and an output voltage develops. This voltage is a linear function
of the pressure and could be recorded on an oscillograph or digitized for storage or processing on
a computer.

(a) b)

WEIGURE 243 (0 Liquidfilled Bourdon pressure gages for various pressure ranges.
(b) Internal elements of Bourdon gages. The “C-shaped” Bourdon tube is shown on the left, and the
“goiled spring” Bourden tube for high pressures of 1000 psi and above is shown on the right.
(Photographs courtesy of Weiss Instruments, Inc.)
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-/ ™~Bourdon C-tube

Output
L A

Pressure line

#FIGUBE 2.14 Pressure

L transducer which combines a linear variable
differential transformer (LVDT) with a
Input Bourdon gage. (From Ref. 4, used by
Spring permission.)

Tire pressure warning Proper tire inflation on vehicles is im-
portant for more than ensuring long tread life. It is critical in pre-
venting accidents such as rollover accidents caused by underinfla-
tion of tires. The National Highway Traffic Safety Administration
is developing a regulation regarding four-tire tire-pressure moni-

system fits within the tire and contains a pressure transducer
(usually either a piezo-resistive or a capacitive type trans-
ducer) and a transmitter that sends the information to an elec-
tronic control unit within the vehicle. Information about tire
pressure and a warning when the tire is underinflated is dis-

toring systems that can warn a driver when a tire is more than 25 played on the instrument panel. The environment (hot, cold,
percent underinflated. Some of these devices are currently in  vibration) in which these devices must operate, their small
operation on select vehicles; it is expected that they will soon  size, and required low cost provide challenging constraints for
be required on all vehicles. A typical tire-pressure monitoring  the design engineer.

One disadvantage of a pressure transducer using a Bourdon tube as the elastic sensing ele-
ment is that it is limited to the measurement of pressures that are static or only changing slowly
(quasistatic). Because of the relatively large mass of the Bourdon tube, it cannot respond to rapid
changes in pressure. To overcome this difficulty, a different type of transducer is used in which the
sensing element is a thin, elastic diaphragm which is in contact with the fluid. As the pressure
changes, the diaphragm deflects, and this deflection can be sensed and converted into an electri-
cal voltage. One way to accomplish this is to locate strain gages either on the surface of the di-
aphragm not in contact with the fluid, or on an element attached to the diaphragm. These gages
can accurately sense the small strains induced in the diaphragm and provide an output voltage pro-
portional to pressure. This type of transducer is capable of measuring accurately both small and

It is relatively com- '
Plicated 1o make -

fccu?te p re;sm;l .. large pressures, as well as both static and dynamic pressures. For example, strain-gage pressure
ransaucers for.ine . . . . .

‘ i transducers of the type shown in Fig. 2.15 are used to measure arterial blood pressure, which is a
measurement of

relatively small pressure that varies periodically with a fundamental frequency of about 1 Hz. The
transducer is usually connected to the blood vessel by means of a liquid-filled, small diameter tube
called a pressure catheter. Although the strain-gage type of transducers can be designed to have
very good frequency response (up to approximately 10 kHz), they become less sensitive at the
higher frequencies since the diaphragm must be made stiffer to achieve the higher frequency re-
sponse. As an alternative, the diaphragm can be constructed of a piezoelectric crystal to be used as
both the elastic element and the sensor. When a pressure is applied to the crystal, a voltage devel-
ops because of the deformation of the crystal. This voltage is directly related to the applied pres-
sure. Depending on the design, this type of transducer can be used to measure both very low and
high pressures (up to approximately 100,000 psi) at high frequencies. Additional information on
pressure transducers can be found in Refs. 3, 4, and 5.

pressures that vary -
rapidly with time. .

B

E
=
%
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Diaphragm

(a)

Diaphragm
stop

Armature

Diaphragm

Link pin

Beam (strain gages deposited on beam)

(b)

WEFEFIGURE 2.5 (2 Two different sized strain-gage pressure transducers
(Spectramed Models P10EZ and P23XL) commonly used to measure physiological
pressures, Plastic domes are filled with fluid and connected to blood vessels through a
needle or catheter. (Photograph ceurtesy of Spectramed, Inc.) (b) Schematic diagram of
the P23XL transducer with the dome removed. Deflection of the diaphragm due to
pressure is measured with a silicon beam on which strain gages and an associated
bridge circuit have been deposited.

2.8 Hydrostatic Force on a Plane Surface

%

V2.’4‘ Hoov‘e}' dc‘zm‘

When a surface is submerged in a fluid, forces develop on the surface due to the fluid. The deter-
mination of these forces is important in the design of storage tanks, ships, dams, and other hy-
draulic structures. For fluids at rest we know that the force must be perpendicular to the surface
since there are no shearing stresses present. We also know that the pressure will vary linearly with
depth as shown in Fig. 2.16 if the fluid is incompressible. For a horizontal surface, such as the bot-
tom of a liquid-filled tank (Fig. 2.16a), the magnitude of the resultant force is simply Fr = pA,
where p is the uniform pressure on the bottom and A is the area of the bottom. For the open tank
shown, p = yh. Note that if atmospheric pressure acts on both sides of the bottom, as is illustrated,
the resultant force on the bottom is simply due to the liquid in the tank. Since the pressure is con-
stant and uniformly distributed over the bottom, the resultant force acts through the centroid of the
area as shown in Fig. 2.16a. As shown in Fig. 2.16b, the pressure on the ends of the tank is not

uniformly distributed. Determination of the resultant force for situations such as this is presented
below.




58 Chapter 2 # Fluid Statics

The resultant force k

of a static fluid on a.
plane surface is due
to the hydrostatic . -

pressure distribution .

on the surface.

Free surface Free surface

p=0 N\, ¥

p=0

{(a) Pressure on tank bottom (b) Pressure on tank ends

B FIGURE 246 (2 Pressure distribution and resultant hydrostatic force on the
bottom of an open tank. (b) Pressure distribution on the ends of an open tank.

For the more general case in which a submerged plane surface is inclined, as is illustrated
in Fig. 2.17, the determination of the resultant force acting on the surface is more involved. For
the present we will assume that the fluid surface is open to the atmosphere. Let the plane in which
the surface lies intersect the free surface at 0 and make an angle 6 with this surface as in Fig. 2.17.
The x~y coordinate system is defined so that 0 is the origin and y = 0 (i.¢., the x-axis) is directed
along the surface as shown. The area can have an arbitrary shape as shown. We wish to determine
the direction, location, and magnitude of the resultant force acting on one side of this area due to
the liquid in contact with the area. At any given depth, &, the force acting on dA (the differential
area of Fig. 2.17) is dF = yh dA and is perpendicular to the surface. Thus, the magnitude of the
resultant force can be found by summing these differential forces over the entire surface. In equa-
tion form

Fp= JyhdA= {yysin&dA
A A

Free surface

Centroid, ¢

s Location of
resultant force
(center of pressure, CP)

B Fi4 U RE 217 Notation for hydrostatic force on an inclined plane
surface of arbitrary shape.
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where k = y sin 6. For constant y and 6

Fr=" s'm@{ ydA (2.17)
A

The integral appearing in Eq. 2.17 is the first moment of the area with respect to the x axis, so we

can write
j ydA = y.A
A

where v, is the y coordinate of the centroid of area A measured from the x axis which passes through 0.

Equation 2.17 can thus be written as

Fp = YAy sin 6

or more simply as

The magnitude of

the resultant fluid "

force is equal 10 the Fr = ’Yhf A 218

ngcs:;;sgl;? ZZ; where h, is the vertical distance from the fluid surface to the centroid of the area. Note that the

area multiplied by magnitude of the force is independent of the angle 8. As indicated by the figure in the margin, it
' depends only on the specific weight of the fluid, the total area, and the depth of the centroid of

the total ared. R ;
the area below the surface. In effect, Eq. 2.18 indicates that the magnitude of the resultant force

is equal to the pressure at the centroid of the area multiplied by the total area. Since all the differ-
ential forces that were summed to obtain Fp are perpendicular to the surface, the resultant Fg must

also be perpendicular to the surface.
Although our intuition might suggest that the resultant force should pass through the cen-
troid of the area, this is not actually the case. The y coordinate, yg, of the resultant force can be

determined by summation of moments around the x axis. That is, the moment of the resultant force

must equal the moment of the distributed pressure force, or
Fryr = J y dF = { v sin 6 y* dA
A A
and, therefore, since Fp = yAy, sin 6.
J' y dA
A

y -
B yA

area (moment of inertia), I with re-

The integral in the numerator is the second moment of the
aining the surface and the free surface

spect to an axis formed by the intersection of the plane cont

(x axis). Thus, we can write
I,

y =
fyA
Use can now be made of the paralle] axis theorem t0 express I, as
L= L+ AY;

where I is the second moment of the area with respect to an axis passing through its centroid and

parallel to the x axis. Thus,

b,
‘; +y 2.19)

the resultant force does not pass through the
IJ/y.A > 0.
d in a similar manner by sum-

As shown by Eq. 2.19 and the figure in the margin,
centroid but for nonhorizontal surfaces is always below it, since

The x coordinate, Xg, for the resultant force can be determine

ming moments about the y axis. Thus,

Frxg = [ v sin 8 xy dA
A
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i resl fdﬁ? ﬂm i and, therefore,

force does 10t pass-
f]ktihroughk_the?(;'éﬁ—;: S xy dA I
troid of the area. - Xg = Ja_ =2

where I, 18 the product of inertia with respect {0 the x and y axes. Again, using the parallel axis
theorem," We can write

g = o T X (2.20)

where Ly 1 the product of inertia with respect to an orthogonal coordinate system passing through
the centroid of the ared and formed by 2 translation of the x—Y coordinate system. If the submerged
area 18 symmetrical with respect to an axis passing through the centroid and parallel to either the
x or y axes, the resultant force must lie along the line X = Xo since Ly i identically zero in this
case. The point through which the resultant force acts is called the center of pressure. Tt is to be
noted from Egs. 719 and 2.20 that as Y. increases the center of pressure mMOVES closer to the cen-
troid of the area. Since y. = h./sin 0, the distance Y will increase if the depth of submergence, hes
increases, of, for a given depth, the arca is rotated so that the angle, 8, decreases. Thus, the hydro-
static force on the right—hand side of the gate shown in the margin figure acts closer to the cen-
roid of the gate than the force on the left-hand side. Centroidal coordinates and moments of iner-
tia for some common areas are given in Fig. 2.18.

A=bha

a A =nR?
2
143
I =ba 7 = E_R:
a = 12 Ixc - ch Y
2 _ 1 3
‘ , Ip= ﬁab I,=0
L& SEP R—
2 . 2 Ly =
(a) Rectangle (») Circle
_ xR
A=

(¢) Semicircle

=I,= 0.05488R"

x

L= _0.01647R"

(e) Quarter circle

BnEIGU ®E 248 Geometric properties of some common shapes.

e ——
Recall that the parallel axis theorem for the product of inertia of an arca states that the product of inertia with respect fo an orthogc
set of axes (- coordinate system) is equal to the product of inertia with Tespect to an orthogonal set of axes parallel 10 the original

and passing through the centroid of the ared, plus the product of the area and the X and y coordinates of the centroid of the area. T
= [+ AXYe
Axy xy¢ 5
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2.8 Hydrostatic Force on a Plane Surface

The Three Gorges Dam The Three Gorges Dam being con-
structed on China’s Yangtze River will contain the world’s
largest hydroelectric power plant when in full operation. The
dam is of the concrete gravity type, having a length of 2309 me-
ters with a height of 185 meters. The main elements of the pro-
ject include the dam, two power plants, and navigation facilities
consisting of a ship lock and lift. The power plants will contain
26 Francis type turbines, each with a capacity of 700 megawatts.
The spillway section, which is the center section of the dam, is
483 meters long with 23 bottom outlets and 22 surface sluice

gates. The maximum discharge capacity is 102,500 cubic meters
per second. After more than 10 years of construction, the dam
gates were finally closed, and on June 10, 2003, the reservoir
had been filled to its interim level of 135 meters. Due to the
large depth of water at the dam and the huge extent of the stor-
age pool, hydrostatic pressure forces have been a major factor
considered by engineers. When filied to its normal pool level of
175 meters, the total reservoir storage capacity is 39.3 billion
cubic meters. The project is scheduled for completion in 2009.
(See Problem 2.79.)

X%ﬁ%?%ﬁ 2.6

?J E&g The 4—m—d1ameter crrcular gate of Frg B2. 6a is lo-
cated in the inclined wall of a large reservoir containing water
('y = 9.80 kN/m®). The gate is mounted on a shaft along its hor-
,1zonta1 drameter and the water depth is 10 mabove the shaft.

Fggﬁ’\é@ Determine

(a) the magnitude and location of the resultant force exerted
on the gate by the water and

(b) the moment that would have to be apphed to the shaft to
open the gate.

| §emr§@§s

(a) “To find the magmtude of the force of the water we can apply
Eq 2.18,.
—7 yh A

and since the vertical distance from the ﬂurd surface o the cen-
troid of the area is 10 m, 1t follows that

= (9:80 X 10° N/m®)(10 m)(477'rn) -

T =1230 X 10°N = = L23MN “’Ans}

' To locate the point {center of pressure) through which Fp aots
- we use Egs. 2. 19 and 2.20,

]xyc+ Ir+
xrR_ycA Teoome oA e

For the coordmate system shown, xz = 0 since the area is'sym-
metrical, and the center of pressure must lie along the drameter A-
A To obtam yR, we have from Frg 2.18

7TR4
‘ Ixc ZT
and y, is shown in Fig. E2.6b. Thus,
S (@/eemy 0m
8 (10 m/sin 60°)(dm m?) | sin 60°

=00866m + 11.55m = 11.6m

7A " Center of e 0

pressre -~ : At
(@ L

B FLGURE E2.8ac

and the distance (along the gate) below the shaft to the center of

pressurc s

Yo =y =0. 0866 m : <‘sn‘gé

We.can conclude from this analysrs that the force on the gate due
to the water has a magmtude of 1.23 MN and acts through a pomt
along its diameter A-A at a drstance of 0. 0866 m (along the gate)
below the shaft. The force i is perpendxcular to the: gate surface as
shown in Fig. E2. 6b

COMMENT By repeatmg the calculatrons for various values
of the depth to the centroid, &, the results shown in Frg E2.6d are
obtained. Note that as the depth increases, the drstance between
the center of pressure and the centrord decreases

(b)- 'The moment required to open the gate can be obtamed with

- the aid of the free body diagram of F1g E2 6¢. In this dlagram W
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is the weight of the gate and O, and O, are the horizontal and
vertical reactions of the shaft on the gate. We can now sum mo-
ments about the shaft

M =0
and,‘therefore, :
M= Fg(yg — yc)

= (1230 X 10° N)(0. 0866 m)
= 1.07 X 10°N-m S {Ans)

Yg=Yer M
©
w

o
o

(10m, 0.0886 m)

0 5 10 15
k., m

BFIiGURE ERSI

20 25 30

XAMPLE 2.7

GIVEM  An aquarium contains seawater (y = 64.0 Ib/ft’) to a
depth of 1.ft as shown in Fig. E2.7a. To repair some damage to
one corner of the tank, a triangular section is replaced with a new
secnon as illustrated in Fig. E2. 7b

SorLution

FiND  Determine

(a) the magnitude of the force of the seawater on this triangular

area, and

(b) the location of this force.

(a) - The various distances needed to solve this problem are
shown in Fig. E2.7¢. Since the surface of interest lies in a ver-

tical plane, y, = h, = 0.9 ft, and from Eq 2.18 the magnitude
of the force is

=+vyhA
= (64.0 1b/ft3)(0 9ft)[(0 3 ft)2/2] 25916 {Ans)

COMPMENT  Note that this force is independent of the tank

length. The result is the same 1f the tank i is 0.251t,25 ft,0r25 miles
long.

Bq.2.19,

XC

BFIGURE E27s (Photograph courtesy

of Tenecor Tanks, Inc.)

(b) The y coordinate of the center of pressure (CP) is found from

(c)
W EIGURE E2TEd

‘Median line

0.15f '0.15#

@




(03 £)(0.3 £t 00081
* 36 36

fitt
s0 that .
‘ 0.0081/36 ft*
= e+ 00 ft
R 09 8)(0.09/28) ‘
= 0.00556 ft + 0.9 ft = 0906 ft
Similarly, from Bq. 220 i
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2.9 Pressure Prism

soihat
O O0RL AL R e
_ _OO008URI 5 gooo78fc  (Ans)
R Gomeeszm) 0 e

COMMENT T,hus,k we conclude that the center of pressure is
0.00278 ft to the right of and 0.00556 ft below the centroid of the -

atea, Tf this point is plotted, we find that it lies on the median line -
for the area as illustrated in Fig. E2.7d. Since we can think of the

XR Lo total drea as consisting of a number of smaﬂrectangular strips of
T YA ~area 6A (and the fluid force on each of these small areas acts
and from Fig. 2.18 ' through its center), it follows that the resultant of all these parallel
: coiioe , . forces must lic along the median, L '
(0.3 £6)(0.3 £t)? 03 g = Q0081 o,
xye T g9 ’ ( - t) i 7

2.9

Pressure Prism

The magnitude of

Joree is equal to the
volume of the pres-
sure prism and
passes through its
centroid.

the resultant fluid -

An informative and useful graphical interpretation can be made for the force developed by a flaid
acting on a plane rectangular area. Consider the pressure distribution along a vertical wall of a tank
of constant width b, which contains a liquid having a specific weight . Since the pressure must
vary linearly with depth, we can represent the variation as is shown in Fig. 2.19a, where the pres-
sure is equal to zero at the upper surface and equal to yh at the bottom. It is apparent from this
diagram that the average pressure occurs at the depth %/2, and therefore the resultant force acting

on the rectangular area A = bh is
h
R Pav Y (2>

which is the same result as obtained from Eq. 2.18. The pressure distribution shown in Fig. 2.19a
applies across the vertical surface so we can draw the three-dimensional representation of the pres-
sure distribution as shown in Fig. 2.19b. The base of this “volume” in pressure-area space is the
plane surface of interest, and its altitude at each point is the pressure. This volume is called the pres-
sure prism, and it is clear that the magnitude of the resultant force acting on the rectangular surface
is equal to the volume of the pressure prism. Thus, for the prism of Fig. 2.19b the fluid force is

1 h
Fr = volume = > (yh)(bh) = y(—z—>A

where bh is the area of the rectangular surface, A.

The resultant force must pass through the centroid of the pressure prism. For the volume un-
der consideration the centroid is located along the vertical axis of symmetry of the surface, and at
a distance of h/3 above the base (since the centroid of a triangle is located at h/3 above its base).
This result can readily be shown to be consistent with that obtained from Egs. 2.19 and 2.20.

BriGURE 2%
Pressure prism for vertical
rectangular area.




