

CHAPTER OPENING PHOTO: *Floating iceberg*: An iceberg is a large piece of fresh water ice that originated as snow in a glacier or ice shelf and then broke off to float in the ocean. Although the fresh water ice is lighter than the salt water in the ocean, the difference in densities is relatively small. Hence, only about one ninth of the volume of an iceberg protrudes above the ocean's surface, so that what we see floating is literally "just the tip of the iceberg." (Photograph courtesy of Corbis Digital Stock/Corbis Images)

Learning Objectives

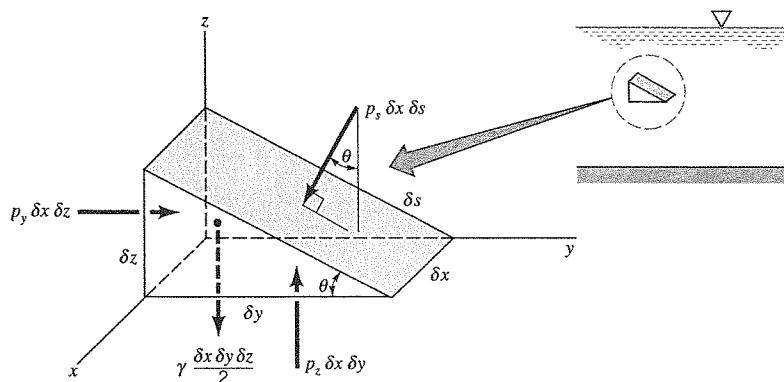
After completing this chapter, you should be able to:

- determine the pressure at various locations in a fluid at rest.
- explain the concept of manometers and apply appropriate equations to determine pressures.
- calculate the hydrostatic pressure force on a plane or curved submerged surface.
- calculate the buoyant force and discuss the stability of floating or submerged objects.

In this chapter we will consider an important class of problems in which the fluid is either at rest or moving in such a manner that there is no relative motion between adjacent particles. In both instances there will be no shearing stresses in the fluid, and the only forces that develop on the surfaces of the particles will be due to the pressure. Thus, our principal concern is to investigate pressure and its variation throughout a fluid and the effect of pressure on submerged surfaces. The absence of shearing stresses greatly simplifies the analysis and, as we will see, allows us to obtain relatively simple solutions to many important practical problems.

2.1 Pressure at a Point

As we briefly discussed in Chapter 1, the term pressure is used to indicate the normal force per unit area at a given point acting on a given plane within the fluid mass of interest. A question that immediately arises is how the pressure at a point varies with the orientation of the plane passing



■ FIGURE 2.1 Forces on an arbitrary wedge-shaped element of fluid.

through the point. To answer this question, consider the free-body diagram, illustrated in Fig. 2.1, that was obtained by removing a small triangular wedge of fluid from some arbitrary location within a fluid mass. Since we are considering the situation in which there are no shearing stresses, the only external forces acting on the wedge are due to the pressure and the weight. For simplicity the forces in the x direction are not shown, and the z axis is taken as the vertical axis so the weight acts in the negative z direction. Although we are primarily interested in fluids at rest, to make the analysis as general as possible, we will allow the fluid element to have accelerated motion. The assumption of zero shearing stresses will still be valid so long as the fluid element moves as a rigid body; that is, there is no relative motion between adjacent elements.

The equations of motion (Newton's second law, $\mathbf{F} = m\mathbf{a}$) in the y and z directions are, respectively,

$$\begin{aligned}\sum F_y &= p_y \delta x \delta z - p_s \delta x \delta s \sin \theta = \rho \frac{\delta x \delta y \delta z}{2} a_y \\ \sum F_z &= p_z \delta x \delta y - p_s \delta x \delta s \cos \theta - \gamma \frac{\delta x \delta y \delta z}{2} = \rho \frac{\delta x \delta y \delta z}{2} a_z\end{aligned}$$

where p_s , p_y , and p_z are the average pressures on the faces, γ and ρ are the fluid specific weight and density, respectively, and a_y , a_z the accelerations. Note that a pressure must be multiplied by an appropriate area to obtain the force generated by the pressure. It follows from the geometry that

$$\delta y = \delta s \cos \theta \quad \delta z = \delta s \sin \theta$$

so that the equations of motion can be rewritten as

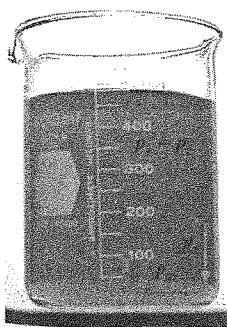
$$\begin{aligned}p_y - p_s &= \rho a_y \frac{\delta y}{2} \\ p_z - p_s &= (\rho a_z + \gamma) \frac{\delta z}{2}\end{aligned}$$

Since we are really interested in what is happening at a point, we take the limit as δx , δy , and δz approach zero (while maintaining the angle θ), and it follows that

$$p_y = p_s \quad p_z = p_s$$

or $p_s = p_y = p_z$. The angle θ was arbitrarily chosen so we can conclude that *the pressure at a point in a fluid at rest, or in motion, is independent of direction as long as there are no shearing stresses present*. This important result is known as *Pascal's law*, named in honor of Blaise Pascal (1623–1662), a French mathematician who made important contributions in the field of hydrostatics. Thus, as shown by the photograph in the margin, at the junction of the side and bottom of the beaker, the pressure is the same on the side as it is on the bottom. In Chapter 6 it will be shown that for moving fluids in which there is relative motion between particles (so that shearing stresses develop), the normal stress at a point, which corresponds to pressure in fluids at rest, is not necessarily the same

The pressure at a point in a fluid at rest is independent of direction.



in all directions. In such cases the pressure is defined as the *average* of any three mutually perpendicular normal stresses at the point.

2.2 Basic Equation for Pressure Field

Although we have answered the question of how the pressure at a point varies with direction, we are now faced with an equally important question—how does the pressure in a fluid in which there are no shearing stresses vary from point to point? To answer this question consider a small rectangular element of fluid removed from some arbitrary position within the mass of fluid of interest as illustrated in Fig. 2.2. There are two types of forces acting on this element: *surface forces* due to the pressure, and a *body force* equal to the weight of the element. Other possible types of body forces, such as those due to magnetic fields, will not be considered in this text.

If we let the pressure at the center of the element be designated as p , then the average pressure on the various faces can be expressed in terms of p and its derivatives, as shown in Fig. 2.2. We are actually using a Taylor series expansion of the pressure at the element center to approximate the pressures a short distance away and neglecting higher order terms that will vanish as we let δx , δy , and δz approach zero. This is illustrated by the figure in the margin. For simplicity the surface forces in the x direction are not shown. The resultant surface force in the y direction is

$$\delta F_y = \left(p - \frac{\partial p}{\partial y} \frac{\delta y}{2} \right) \delta x \delta z - \left(p + \frac{\partial p}{\partial y} \frac{\delta y}{2} \right) \delta x \delta z$$

or

$$\delta F_y = -\frac{\partial p}{\partial y} \delta x \delta y \delta z$$

Similarly, for the x and z directions the resultant surface forces are

$$\delta F_x = -\frac{\partial p}{\partial x} \delta x \delta y \delta z \quad \delta F_z = -\frac{\partial p}{\partial z} \delta x \delta y \delta z$$

The resultant surface force acting on the element can be expressed in vector form as

$$\delta \mathbf{F}_s = \delta F_x \hat{\mathbf{i}} + \delta F_y \hat{\mathbf{j}} + \delta F_z \hat{\mathbf{k}}$$

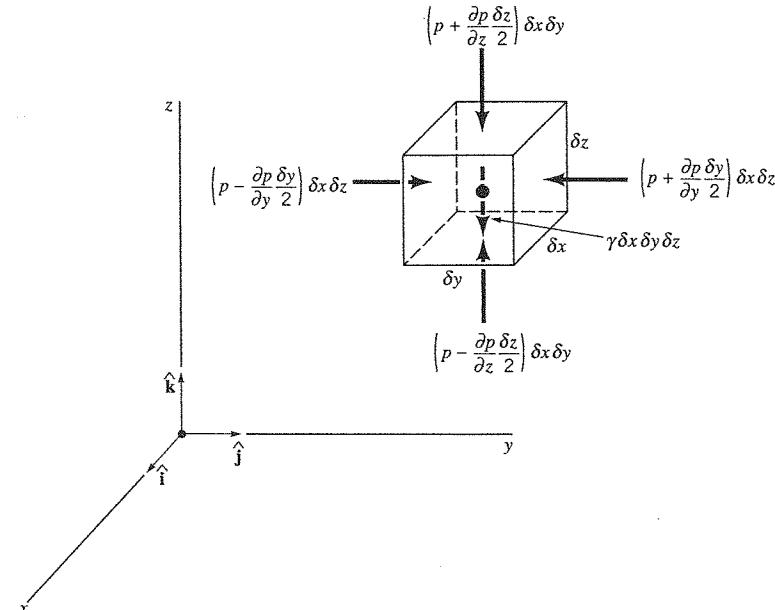


FIGURE 2.2 Surface and body forces acting on small fluid element.

The resultant surface force acting on a small fluid element depends only on the pressure gradient if there are no shearing stresses present.

or

$$\delta \mathbf{F}_s = -\left(\frac{\partial p}{\partial x} \hat{\mathbf{i}} + \frac{\partial p}{\partial y} \hat{\mathbf{j}} + \frac{\partial p}{\partial z} \hat{\mathbf{k}}\right) \delta x \delta y \delta z \quad (2.1)$$

where $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$ are the unit vectors along the coordinate axes shown in Fig. 2.2. The group of terms in parentheses in Eq. 2.1 represents in vector form the *pressure gradient* and can be written as

$$\frac{\partial p}{\partial x} \hat{\mathbf{i}} + \frac{\partial p}{\partial y} \hat{\mathbf{j}} + \frac{\partial p}{\partial z} \hat{\mathbf{k}} = \nabla p$$

where

$$\nabla(\) = \frac{\partial(\)}{\partial x} \hat{\mathbf{i}} + \frac{\partial(\)}{\partial y} \hat{\mathbf{j}} + \frac{\partial(\)}{\partial z} \hat{\mathbf{k}}$$

and the symbol ∇ is the *gradient* or “del” vector operator. Thus, the resultant surface force per unit volume can be expressed as

$$\frac{\delta \mathbf{F}_s}{\delta x \delta y \delta z} = -\nabla p$$

Since the z axis is vertical, the weight of the element is

$$-\delta W \hat{\mathbf{k}} = -\gamma \delta x \delta y \delta z \hat{\mathbf{k}}$$

where the negative sign indicates that the force due to the weight is downward (in the negative z direction). Newton's second law, applied to the fluid element, can be expressed as

$$\sum \delta \mathbf{F} = \delta m \mathbf{a}$$

where $\sum \delta \mathbf{F}$ represents the resultant force acting on the element, \mathbf{a} is the acceleration of the element, and δm is the element mass, which can be written as $\rho \delta x \delta y \delta z$. It follows that

$$\sum \delta \mathbf{F} = \delta \mathbf{F}_s - \delta W \hat{\mathbf{k}} = \delta m \mathbf{a}$$

or

$$-\nabla p \delta x \delta y \delta z - \gamma \delta x \delta y \delta z \hat{\mathbf{k}} = \rho \delta x \delta y \delta z \mathbf{a}$$

and, therefore,

$$-\nabla p - \gamma \hat{\mathbf{k}} = \rho \mathbf{a} \quad (2.2)$$

Equation 2.2 is the general equation of motion for a fluid in which there are no shearing stresses. We will use this equation in Section 2.12 when we consider the pressure distribution in a moving fluid. For the present, however, we will restrict our attention to the special case of a fluid at rest.

2.3 Pressure Variation in a Fluid at Rest

For a fluid at rest $\mathbf{a} = 0$ and Eq. 2.2 reduces to

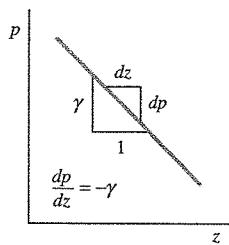
$$\nabla p + \gamma \hat{\mathbf{k}} = 0$$

or in component form

$$\frac{\partial p}{\partial x} = 0 \quad \frac{\partial p}{\partial y} = 0 \quad \frac{\partial p}{\partial z} = -\gamma \quad (2.3)$$

These equations show that the pressure does not depend on x or y . Thus, as we move from point to point in a horizontal plane (any plane parallel to the x - y plane), the pressure does not

For liquids or gases at rest, the pressure gradient in the vertical direction at any point in a fluid depends only on the specific weight of the fluid at that point.



change. Since p depends only on z , the last of Eqs. 2.3 can be written as the ordinary differential equation

$$\frac{dp}{dz} = -\gamma \quad (2.4)$$

Equation 2.4 is the fundamental equation for fluids at rest and can be used to determine how pressure changes with elevation. This equation and the figure in the margin indicate that the pressure gradient in the vertical direction is negative; that is, the pressure decreases as we move upward in a fluid at rest. There is no requirement that γ be a constant. Thus, it is valid for fluids with constant specific weight, such as liquids, as well as fluids whose specific weight may vary with elevation, such as air or other gases. However, to proceed with the integration of Eq. 2.4 it is necessary to stipulate how the specific weight varies with z .

If the fluid is flowing (i.e., not at rest with $a = 0$), then the pressure variation is much more complex than that given by Eq. 2.4. For example, the pressure distribution on your car as it is driven along the road varies in a complex manner with x , y , and z . This idea is covered in detail in Chapters 3, 6, and 9.

2.3.1 Incompressible Fluid

Since the specific weight is equal to the product of fluid density and acceleration of gravity ($\gamma = \rho g$), changes in γ are caused either by a change in ρ or g . For most engineering applications the variation in g is negligible, so our main concern is with the possible variation in the fluid density. In general, a fluid with constant density is called an *incompressible fluid*. For liquids the variation in density is usually negligible, even over large vertical distances, so that the assumption of constant specific weight when dealing with liquids is a good one. For this instance, Eq. 2.4 can be directly integrated

$$\int_{p_1}^{p_2} dp = -\gamma \int_{z_1}^{z_2} dz$$

to yield

$$p_2 - p_1 = -\gamma(z_2 - z_1)$$

or

$$p_1 - p_2 = \gamma(z_2 - z_1) \quad (2.5)$$

where p_1 and p_2 are pressures at the vertical elevations z_1 and z_2 , as is illustrated in Fig. 2.3.

Equation 2.5 can be written in the compact form

$$p_1 - p_2 = \gamma h \quad (2.6)$$

or

$$p_1 = \gamma h + p_2 \quad (2.7)$$

where h is the distance, $z_2 - z_1$, which is the depth of fluid measured downward from the location of p_2 . This type of pressure distribution is commonly called a *hydrostatic distribution*, and Eq. 2.7

V2.1 Pressure on a car

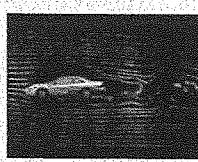
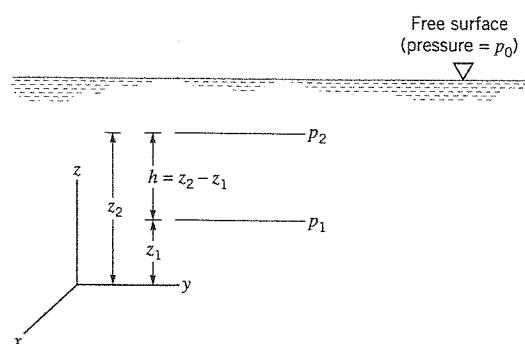
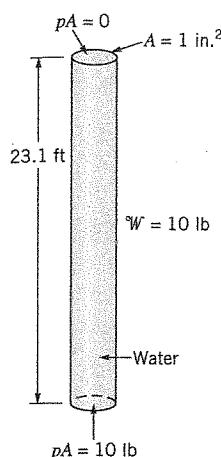


FIGURE 2.3 Notation for pressure variation in a fluid at rest with a free surface.



shows that in an incompressible fluid at rest the pressure varies linearly with depth. The pressure must increase with depth to "hold up" the fluid above it.

It can also be observed from Eq. 2.6 that the pressure difference between two points can be specified by the distance h since

$$h = \frac{p_1 - p_2}{\gamma}$$

In this case h is called the *pressure head* and is interpreted as the height of a column of fluid of specific weight γ required to give a pressure difference $p_1 - p_2$. For example, a pressure difference of 10 psi can be specified in terms of pressure head as 23.1 ft of water ($\gamma = 62.4 \text{ lb/ft}^3$), or 518 mm of Hg ($\gamma = 133 \text{ kN/m}^3$). As illustrated by the figure in the margin, a 23.1-ft-tall column of water with a cross-sectional area of 1 in.^2 weighs 10 lb.

Fluids in the News

Giraffe's blood pressure A giraffe's long neck allows it to graze up to 6 m above the ground. It can also lower its head to drink at ground level. Thus, in the circulatory system there is a significant *hydrostatic pressure* effect due to this elevation change. To maintain blood to its head throughout this change in elevation, the giraffe must maintain a relatively high blood pressure at heart level—approximately two and a half times that in humans. To prevent rupture of blood vessels in the high-pressure lower leg re-

gions, giraffes have a tight sheath of thick skin over their lower limbs which acts like an elastic bandage in exactly the same way as do the g-suits of fighter pilots. In addition, valves in the upper neck prevent backflow into the head when the giraffe lowers its head to ground level. It is also thought that blood vessels in the giraffe's kidney have a special mechanism to prevent large changes in filtration rate when blood pressure increases or decreases with its head movement. (See Problem 2.14.)

When one works with liquids there is often a free surface, as is illustrated in Fig. 2.3, and it is convenient to use this surface as a reference plane. The reference pressure p_0 would correspond to the pressure acting on the free surface (which would frequently be atmospheric pressure), and thus if we let $p_2 = p_0$ in Eq. 2.7 it follows that the pressure p at any depth h below the free surface is given by the equation:

$$p = \gamma h + p_0 \quad (2.8)$$

As is demonstrated by Eq. 2.7 or 2.8, the pressure in a homogeneous, incompressible fluid at rest depends on the depth of the fluid relative to some reference plane, and it is *not* influenced by the *size* or *shape* of the tank or container in which the fluid is held. Thus, in Fig. 2.4

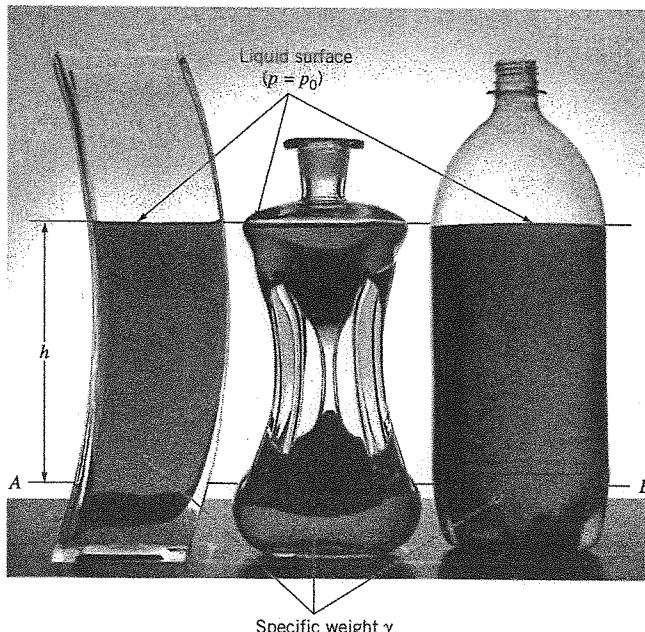


FIGURE 2.4 Fluid pressure in containers of arbitrary shape.

the pressure is the same at all points along the line AB even though the containers may have the very irregular shapes shown in the figure. The actual value of the pressure along AB depends only on the depth, h , the surface pressure, p_0 , and the specific weight, γ , of the liquid in the container.

EXAMPLE 2.1 Pressure-Depth Relationship

GIVEN Because of a leak in a buried gasoline storage tank, water has seeped in to the depth shown in Fig. E2.1. The specific gravity of the gasoline is $SG = 0.68$.

FIND Determine the pressure at the gasoline–water interface and at the bottom of the tank. Express the pressure in units of lb/ft^2 , $\text{lb}/\text{in.}^2$, and as a pressure head in feet of water.

SOLUTION

Since we are dealing with liquids at rest, the pressure distribution will be hydrostatic, and therefore the pressure variation can be found from the equation:

$$p = \gamma h + p_0$$

With p_0 corresponding to the pressure at the free surface of the gasoline, then the pressure at the interface is

$$\begin{aligned} p_1 &= SG\gamma_{H_2O}h + p_0 \\ &= (0.68)(62.4 \text{ lb}/\text{ft}^3)(17 \text{ ft}) + p_0 \\ &= 721 + p_0 \text{ (lb}/\text{ft}^2) \end{aligned}$$

If we measure the pressure relative to atmospheric pressure (gage pressure), it follows that $p_0 = 0$, and therefore

$$p_1 = 721 \text{ lb}/\text{ft}^2 \quad (\text{Ans})$$

$$p_1 = \frac{721 \text{ lb}/\text{ft}^2}{144 \text{ in.}^2/\text{ft}^2} = 5.01 \text{ lb}/\text{in.}^2 \quad (\text{Ans})$$

$$\frac{p_1}{\gamma_{H_2O}} = \frac{721 \text{ lb}/\text{ft}^2}{62.4 \text{ lb}/\text{ft}^3} = 11.6 \text{ ft} \quad (\text{Ans})$$

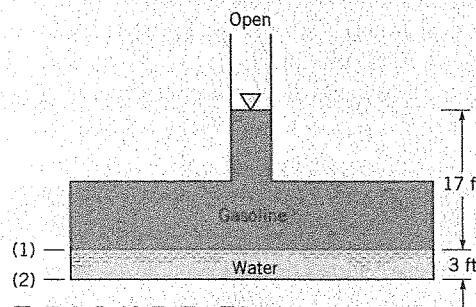


FIGURE E2.1

It is noted that a rectangular column of water 11.6 ft tall and 1 ft² in cross section weighs 721 lb. A similar column with a 1-in.² cross section weighs 5.01 lb.

We can now apply the same relationship to determine the pressure at the tank bottom; that is,

$$\begin{aligned} p_2 &= \gamma_{H_2O}h_{H_2O} + p_1 \\ &= (62.4 \text{ lb}/\text{ft}^3)(3 \text{ ft}) + 721 \text{ lb}/\text{ft}^2 \quad (\text{Ans}) \\ &= 908 \text{ lb}/\text{ft}^2 \end{aligned}$$

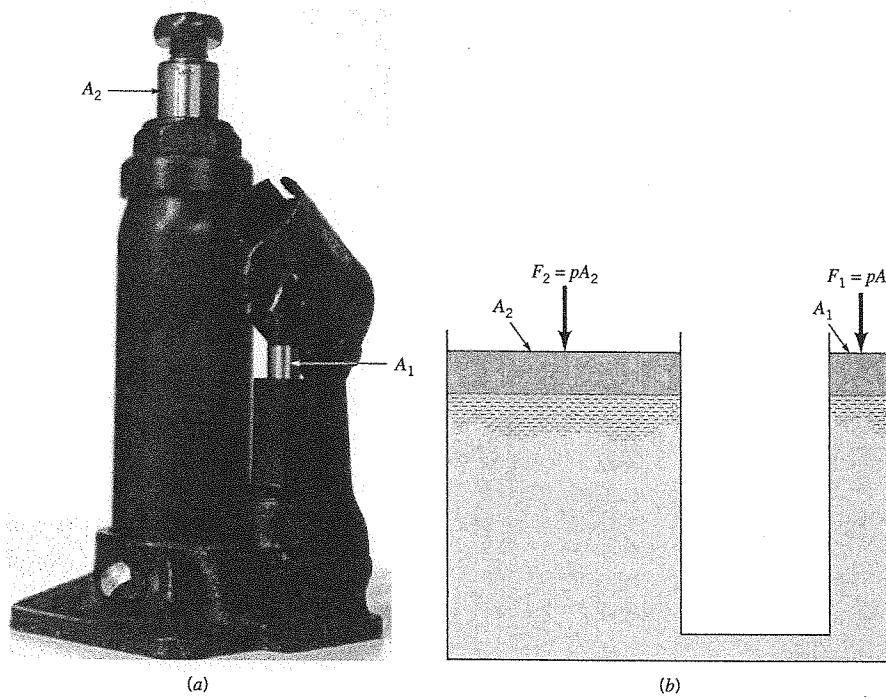
$$p_2 = \frac{908 \text{ lb}/\text{ft}^2}{144 \text{ in.}^2/\text{ft}^2} = 6.31 \text{ lb}/\text{in.}^2 \quad (\text{Ans})$$

$$\frac{p_2}{\gamma_{H_2O}} = \frac{908 \text{ lb}/\text{ft}^2}{62.4 \text{ lb}/\text{ft}^3} = 14.6 \text{ ft} \quad (\text{Ans})$$

COMMENT Observe that if we wish to express these pressures in terms of *absolute* pressure, we would have to add the local atmospheric pressure (in appropriate units) to the previous results. A further discussion of gage and absolute pressure is given in Section 2.5.

The transmission of pressure throughout a stationary fluid is the principle upon which many hydraulic devices are based.

The required equality of pressures at equal elevations throughout a system is important for the operation of hydraulic jacks (see Fig. 2.5a), lifts, and presses, as well as hydraulic controls on aircraft and other types of heavy machinery. The fundamental idea behind such devices and systems is demonstrated in Fig. 2.5b. A piston located at one end of a closed system filled with a liquid, such as oil, can be used to change the pressure throughout the system, and thus transmit an applied force F_1 to a second piston where the resulting force is F_2 . Since the pressure p acting on the faces of both pistons is the same (the effect of elevation changes is usually negligible for this type of hydraulic device), it follows that $F_2 = (A_2/A_1)F_1$. The piston area A_2 can be made much larger than A_1 and therefore a large mechanical advantage can be developed; that is, a small force applied at the smaller piston can be used to develop a large force at the larger piston. The applied force could be created manually through some type of mechanical device, such as a hydraulic jack, or through compressed air acting directly on the surface of the liquid, as is done in hydraulic lifts commonly found in service stations.



■ FIGURE 2.5 (a) Hydraulic jack, (b) Transmission of fluid pressure.

2.3.2 Compressible Fluid

We normally think of gases such as air, oxygen, and nitrogen as being compressible fluids since the density of the gas can change significantly with changes in pressure and temperature. Thus, although Eq. 2.4 applies at a point in a gas, it is necessary to consider the possible variation in γ before the equation can be integrated. However, as was discussed in Chapter 1, the specific weights of common gases are small when compared with those of liquids. For example, the specific weight of air at sea level and 60 °F is 0.0763 lb/ft³, whereas the specific weight of water under the same conditions is 62.4 lb/ft³. Since the specific weights of gases are comparatively small, it follows from Eq. 2.4 that the pressure gradient in the vertical direction is correspondingly small, and even over distances of several hundred feet the pressure will remain essentially constant for a gas. This means we can neglect the effect of elevation changes on the pressure in gases in tanks, pipes, and so forth in which the distances involved are small.

For those situations in which the variations in heights are large, on the order of thousands of feet, attention must be given to the variation in the specific weight. As is described in Chapter 1, the equation of state for an ideal (or perfect) gas is

$$\rho = \frac{p}{RT}$$

where p is the absolute pressure, R is the gas constant, and T is the absolute temperature. This relationship can be combined with Eq. 2.4 to give

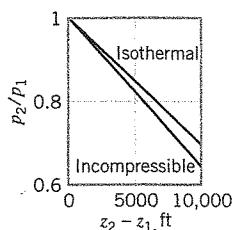
$$\frac{dp}{dz} = -\frac{gp}{RT}$$

and by separating variables

$$\int_{p_1}^{p_2} \frac{dp}{p} = \ln \frac{p_2}{p_1} = -\frac{g}{R} \int_{z_1}^{z_2} \frac{dz}{T} \quad (2.9)$$

where g and R are assumed to be constant over the elevation change from z_1 to z_2 . Although the acceleration of gravity, g , does vary with elevation, the variation is very small (see Tables C.1 and C.2 in Appendix C), and g is usually assumed constant at some average value for the range of elevation involved.

If the specific weight of a fluid varies significantly as we move from point to point, the pressure will no longer vary linearly with depth.



Before completing the integration, one must specify the nature of the variation of temperature with elevation. For example, if we assume that the temperature has a constant value T_0 over the range z_1 to z_2 (*isothermal* conditions), it then follows from Eq. 2.9 that

$$p_2 = p_1 \exp \left[-\frac{g(z_2 - z_1)}{RT_0} \right] \quad (2.10)$$

This equation provides the desired pressure–elevation relationship for an isothermal layer. As shown in the margin figure, even for a 10,000-ft altitude change the difference between the constant temperature (isothermal) and the constant density (incompressible) results are relatively minor. For nonisothermal conditions a similar procedure can be followed if the temperature–elevation relationship is known, as is discussed in the following section.

EXAMPLE 2.2 Incompressible and Isothermal Pressure–Depth Variations

GIVEN In 2007 the Burj Dubai skyscraper being built in the United Arab Emirates reached the stage in its construction where it became the world's tallest building. When completed it is expected to be at least 2275 ft tall, although its final height remains a secret.

FIND (a) Estimate the ratio of the pressure at the projected 2275-ft top of the building to the pressure at its base, assuming the air to be at a common temperature of 59 °F. (b) Compare the pressure calculated in part (a) with that obtained by assuming the air to be incompressible with $\gamma = 0.0765 \text{ lb}/\text{ft}^3$ at 14.7 psi (abs) (values for air at standard sea level conditions).

SOLUTION

For the assumed isothermal conditions, and treating air as a compressible fluid, Eq. 2.10 can be applied to yield

$$\begin{aligned} \frac{p_2}{p_1} &= \exp \left[-\frac{g(z_2 - z_1)}{RT_0} \right] \\ &= \exp \left\{ -\frac{(32.2 \text{ ft/s}^2)(2275 \text{ ft})}{(1716 \text{ ft} \cdot \text{lb}/\text{slug} \cdot {}^\circ\text{R})([59 + 460] {}^\circ\text{R})} \right\} \\ &= 0.921 \quad (\text{Ans}) \end{aligned}$$

If the air is treated as an incompressible fluid we can apply Eq. 2.5. In this case

$$p_2 = p_1 - \gamma(z_2 - z_1)$$

or

$$\begin{aligned} \frac{p_2}{p_1} &= 1 - \frac{\gamma(z_2 - z_1)}{p_1} \\ &= 1 - \frac{(0.0765 \text{ lb}/\text{ft}^3)(2275 \text{ ft})}{(14.7 \text{ lb}/\text{in.}^2)(144 \text{ in.}^2/\text{ft}^2)} = 0.918 \quad (\text{Ans}) \end{aligned}$$

COMMENTS Note that there is little difference between the two results. Since the pressure difference between the bottom and top of the building is small, it follows that the variation in fluid density is small and, therefore, the compressible

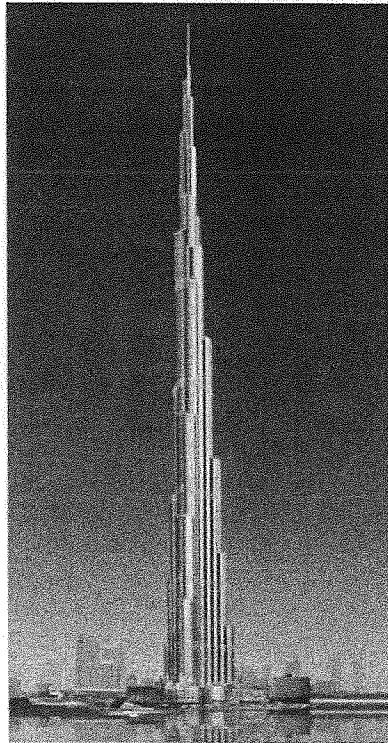


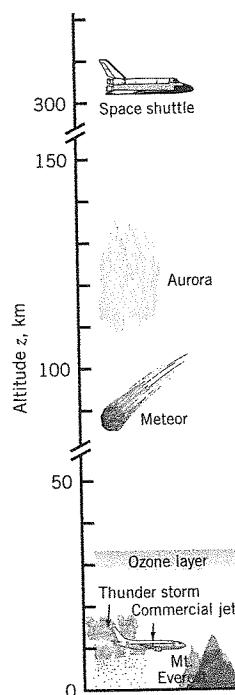
FIGURE E2.2 (Figure courtesy of Emaar Properties, Dubai, UAE.)

fluid and incompressible fluid analyses yield essentially the same result.

We see that for both calculations the pressure decreases by approximately 8% as we go from ground level to the top of this tallest building. It does not require a very large pressure difference to support a 2275-ft-tall column of fluid as light as air. This result supports the earlier statement that the changes in pressures in air and other gases due to elevation changes are very small, even for distances of hundreds of feet. Thus, the pressure differences between the top and bottom of a horizontal pipe carrying a gas, or in a gas storage tank, are negligible since the distances involved are very small.

2.4 Standard Atmosphere

The standard atmosphere is an idealized representation of mean conditions in the earth's atmosphere.



An important application of Eq. 2.9 relates to the variation in pressure in the earth's atmosphere. Ideally, we would like to have measurements of pressure versus altitude over the specific range for the specific conditions (temperature, reference pressure) for which the pressure is to be determined. However, this type of information is usually not available. Thus, a "standard atmosphere" has been determined that can be used in the design of aircraft, missiles, and spacecraft, and in comparing their performance under standard conditions. The concept of a standard atmosphere was first developed in the 1920s, and since that time many national and international committees and organizations have pursued the development of such a standard. The currently accepted standard atmosphere is based on a report published in 1962 and updated in 1976 (see Refs. 1 and 2), defining the so-called *U.S. standard atmosphere*, which is an idealized representation of middle-latitude, year-round mean conditions of the earth's atmosphere. Several important properties for standard atmospheric conditions at *sea level* are listed in Table 2.1, and Fig. 2.6 shows the temperature profile for the U.S. standard atmosphere. As is shown in this figure the temperature decreases with altitude in the region nearest the earth's surface (*troposphere*), then becomes essentially constant in the next layer (*stratosphere*), and subsequently starts to increase in the next layer. Typical events that occur in the atmosphere are shown in the figure in the margin.

Since the temperature variation is represented by a series of linear segments, it is possible to integrate Eq. 2.9 to obtain the corresponding pressure variation. For example, in the troposphere, which extends to an altitude of about 11 km (~36,000 ft), the temperature variation is of the form

$$T = T_a - \beta z \quad (2.11)$$

TABLE 2.1
Properties of U.S. Standard Atmosphere at Sea Level^a

Property	SI Units	BG Units
Temperature, T	288.15 K (15 °C)	518.67 °R (59.00 °F)
Pressure, p	101.33 kPa (abs)	2116.2 lb/ft ² (abs) [14.696 lb/in. ² (abs)]
Density, ρ	1.225 kg/m ³	0.002377 slugs/ft ³
Specific weight, γ	12.014 N/m ³	0.07647 lb/ft ³
Viscosity, μ	1.789×10^{-5} N · s/m ²	3.737×10^{-7} lb · s/ft ²

^aAcceleration of gravity at sea level = 9.807 m/s² = 32.174 ft/s².

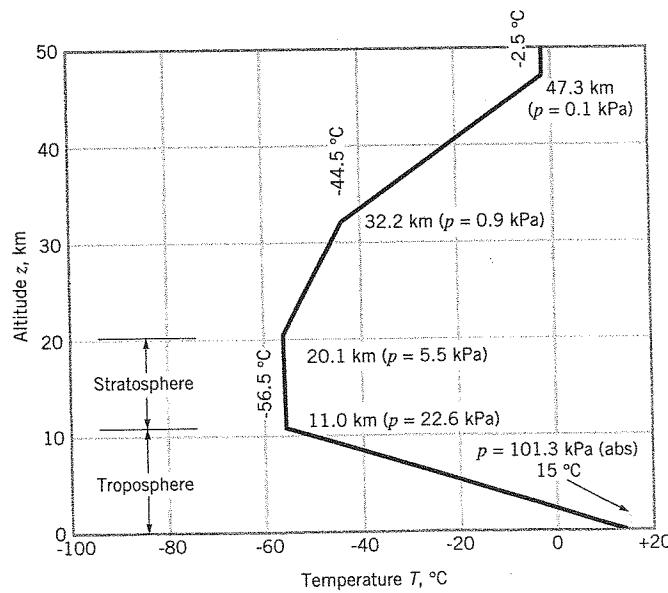


FIGURE 2.6 Variation of temperature with altitude in the U.S. standard atmosphere.

where T_a is the temperature at sea level ($z = 0$) and β is the *lapse rate* (the rate of change of temperature with elevation). For the standard atmosphere in the troposphere, $\beta = 0.00650 \text{ K/m}$ or $0.00357 \text{ }^{\circ}\text{R/ft}$.

Equation 2.11 used with Eq. 2.9 yields

$$p = p_a \left(1 - \frac{\beta z}{T_a}\right)^{g/R\beta} \quad (2.12)$$

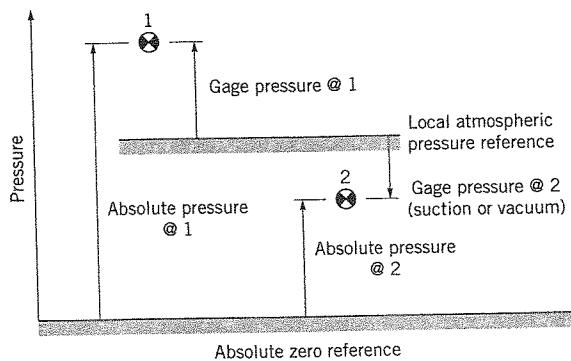
where p_a is the absolute pressure at $z = 0$. With p_a , T_a , and g obtained from Table 2.1, and with the gas constant $R = 286.9 \text{ J/kg} \cdot \text{K}$ or $1716 \text{ ft} \cdot \text{lb/slug} \cdot {^{\circ}\text{R}}$, the pressure variation throughout the troposphere can be determined from Eq. 2.12. This calculation shows that at the outer edge of the troposphere, where the temperature is $-56.5 \text{ }^{\circ}\text{C}$, the absolute pressure is about 23 kPa (3.3 psia). It is to be noted that modern jetliners cruise at approximately this altitude. Pressures at other altitudes are shown in Fig. 2.6, and tabulated values for temperature, acceleration of gravity, pressure, density, and viscosity for the U.S. standard atmosphere are given in Tables C.1 and C.2 in Appendix C.

2.5 Measurement of Pressure

Pressure is designated as either absolute pressure or gage pressure.

Since pressure is a very important characteristic of a fluid field, it is not surprising that numerous devices and techniques are used in its measurement. As is noted briefly in Chapter 1, the pressure at a point within a fluid mass will be designated as either an *absolute pressure* or a *gage pressure*. Absolute pressure is measured relative to a perfect vacuum (absolute zero pressure), whereas gage pressure is measured relative to the local atmospheric pressure. Thus, a gage pressure of zero corresponds to a pressure that is equal to the local atmospheric pressure. Absolute pressures are always positive, but gage pressures can be either positive or negative depending on whether the pressure is above atmospheric pressure (a positive value) or below atmospheric pressure (a negative value). A negative gage pressure is also referred to as a *suction* or *vacuum* pressure. For example, 10 psi (abs) could be expressed as -4.7 psi (gage), if the local atmospheric pressure is 14.7 psi, or alternatively 4.7 psi suction or 4.7 psi vacuum. The concept of gage and absolute pressure is illustrated graphically in Fig. 2.7 for two typical pressures located at points 1 and 2.

In addition to the reference used for the pressure measurement, the *units* used to express the value are obviously of importance. As is described in Section 1.5, pressure is a force per unit area, and the units in the BG system are lb/ft^2 or lb/in^2 , commonly abbreviated psf or psi , respectively. In the SI system the units are N/m^2 ; this combination is called the pascal and written as Pa ($1 \text{ N}/\text{m}^2 = 1 \text{ Pa}$). As noted earlier, pressure can also be expressed as the height of a column of liquid. Then, the units will refer to the height of the column (in., ft, mm, m, etc.), and in addition, the liquid in the column must be specified (H_2O , Hg , etc.). For example, standard atmospheric pressure can be expressed as 760 mm Hg (abs). *In this text, pressures will be assumed to be gage pressures unless specifically designated absolute.* For example, 10 psi or 100 kPa would be gage pressures, whereas 10 psia or 100 kPa (abs) would refer to absolute pressures. It is to be



■ FIGURE 2.7 Graphical representation of gage and absolute pressure.

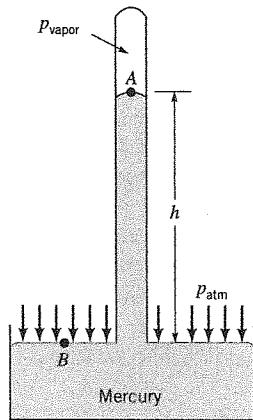
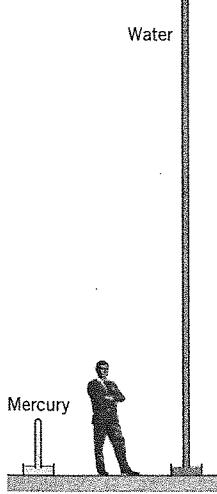


FIGURE 2.8 Mercury barometer.

noted that *pressure differences* are independent of the reference, so that no special notation is required in this case.

The measurement of atmospheric pressure is usually accomplished with a mercury *barometer*, which in its simplest form consists of a glass tube closed at one end with the open end immersed in a container of mercury as shown in Fig. 2.8. The tube is initially filled with mercury (inverted with its open end up) and then turned upside down (open end down), with the open end in the container of mercury. The column of mercury will come to an equilibrium position where its weight plus the force due to the vapor pressure (which develops in the space above the column) balances the force due to the atmospheric pressure. Thus,

$$p_{\text{atm}} = \gamma h + p_{\text{vapor}} \quad (2.13)$$



where γ is the specific weight of mercury. For most practical purposes the contribution of the vapor pressure can be neglected since it is very small [for mercury, $p_{\text{vapor}} = 0.000023 \text{ lb/in.}^2$ (abs) at a temperature of 68 °F], so that $p_{\text{atm}} \approx \gamma h$. It is conventional to specify atmospheric pressure in terms of the height, h , in millimeters or inches of mercury. Note that if water were used instead of mercury, the height of the column would have to be approximately 34 ft rather than 29.9 in. of mercury for an atmospheric pressure of 14.7 psia! This is shown to scale in the figure in the margin. The concept of the mercury barometer is an old one, with the invention of this device attributed to Evangelista Torricelli in about 1644.

EXAMPLE 2.3 Barometric Pressure

GIVEN A mountain lake has an average temperature of 10 °C and a maximum depth of 40 m. The barometric pressure is 598 mm Hg.

FIND Determine the absolute pressure (in pascals) at the deepest part of the lake.

SOLUTION

The pressure in the lake at any depth, h , is given by the equation

$$p = \gamma h + p_0$$

where p_0 is the pressure at the surface. Since we want the absolute pressure, p_0 will be the local barometric pressure expressed in a consistent system of units; that is

$$\frac{p_{\text{barometric}}}{\gamma_{\text{Hg}}} = 598 \text{ mm} = 0.598 \text{ m}$$

and for $\gamma_{\text{Hg}} = 133 \text{ kN/m}^3$

$$p_0 = (0.598 \text{ m})(133 \text{ kN/m}^3) = 79.5 \text{ kN/m}^2$$

From Table B.2, $\gamma_{\text{H}_2\text{O}} = 9.804 \text{ kN/m}^3$ at 10 °C and therefore

$$\begin{aligned} p &= (9.804 \text{ kN/m}^3)(40 \text{ m}) + 79.5 \text{ kN/m}^2 \\ &= 392 \text{ kN/m}^2 + 79.5 \text{ kN/m}^2 \\ &= 472 \text{ kPa (abs)} \end{aligned} \quad (\text{Ans})$$

COMMENT This simple example illustrates the need for close attention to the units used in the calculation of pressure; that is, be sure to use a *consistent* unit system, and be careful not to add a pressure head (m) to a pressure (Pa).

Fluids in the News

Weather, barometers, and bars One of the most important indicators of weather conditions is *atmospheric pressure*. In general, a falling or low pressure indicates bad weather; rising or high pressure, good weather. During the evening TV weather report in the United States, atmospheric pressure is given as so many inches (commonly around 30 in.). This value is actually the height of the mercury column in a mercury *barometer* adjusted to sea level. To determine the true atmospheric pressure at a particular location, the elevation relative to sea level must be known. Another unit used by meteorologists to indicate atmospheric pressure is the *bar*, first used in

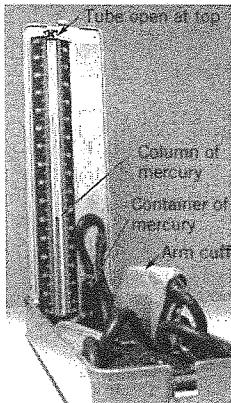
weather reporting in 1914, and defined as 10^5 N/m^2 . The definition of a bar is probably related to the fact that standard sea-level pressure is $1.0133 \times 10^5 \text{ N/m}^2$, that is, only slightly larger than one bar. For typical weather patterns, “sea-level equivalent” atmospheric pressure remains close to one bar. However, for extreme weather conditions associated with tornadoes, hurricanes, or typhoons, dramatic changes can occur. The lowest atmospheric sea-level pressure ever recorded was associated with a typhoon, Typhoon Tip, in the Pacific Ocean on October 12, 1979. The value was 0.870 bars (25.8 in. Hg). (See Problem 2.19.)

2.6 Manometry

Manometers use vertical or inclined liquid columns to measure pressure.

A standard technique for measuring pressure involves the use of liquid columns in vertical or inclined tubes. Pressure measuring devices based on this technique are called *manometers*. The mercury barometer is an example of one type of manometer, but there are many other configurations possible, depending on the particular application. Three common types of manometers include the piezometer tube, the U-tube manometer, and the inclined-tube manometer.

2.6.1 Piezometer Tube



The simplest type of manometer consists of a vertical tube, open at the top, and attached to the container in which the pressure is desired, as illustrated in Fig. 2.9. The figure in the margin shows an important device whose operation is based upon this principle. It is a sphygmomanometer, the traditional instrument used to measure blood pressure.

Since manometers involve columns of fluids at rest, the fundamental equation describing their use is Eq. 2.8

$$p = \gamma h + p_0$$

which gives the pressure at any elevation within a homogeneous fluid in terms of a reference pressure p_0 and the vertical distance h between p and p_0 . Remember that in a fluid at rest pressure will *increase* as we move *downward* and will decrease as we move *upward*. Application of this equation to the piezometer tube of Fig. 2.9 indicates that the pressure p_A can be determined by a measurement of h_1 through the relationship

$$p_A = \gamma_1 h_1$$

where γ_1 is the specific weight of the liquid in the container. Note that since the tube is open at the top, the pressure p_0 can be set equal to zero (we are now using gage pressure), with the height

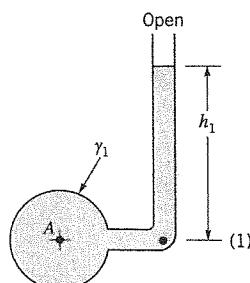


FIGURE 2.9 Piezometer tube.

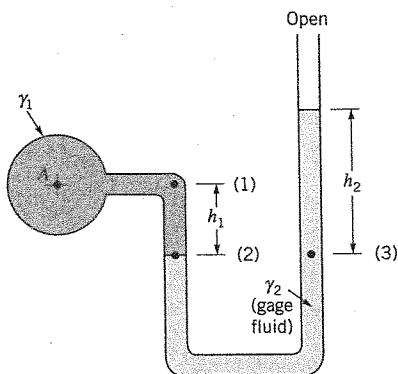


FIGURE 2.10 Simple U-tube manometer.

h_1 measured from the meniscus at the upper surface to point (1). Since point (1) and point A within the container are at the same elevation, $p_A = p_1$.

Although the piezometer tube is a very simple and accurate pressure measuring device, it has several disadvantages. It is only suitable if the pressure in the container is greater than atmospheric pressure (otherwise air would be sucked into the system), and the pressure to be measured must be relatively small so the required height of the column is reasonable. Also, the fluid in the container in which the pressure is to be measured must be a liquid rather than a gas.

2.6.2 U-Tube Manometer

To overcome the difficulties noted previously, another type of manometer which is widely used consists of a tube formed into the shape of a U, as is shown in Fig. 2.10. The fluid in the manometer is called the *gage fluid*. To find the pressure p_A in terms of the various column heights, we start at one end of the system and work our way around to the other end, simply utilizing Eq. 2.8. Thus, for the U-tube manometer shown in Fig. 2.10, we will start at point A and work around to the open end. The pressure at points A and (1) are the same, and as we move from point (1) to (2) the pressure will increase by $\gamma_1 h_1$. The pressure at point (2) is equal to the pressure at point (3), since the pressures at equal elevations in a continuous mass of fluid at rest must be the same. Note that we could not simply "jump across" from point (1) to a point at the same elevation in the right-hand tube since these would not be points within the same continuous mass of fluid. With the pressure at point (3) specified, we now move to the open end where the pressure is zero. As we move vertically upward the pressure decreases by an amount $\gamma_2 h_2$. In equation form these various steps can be expressed as

$$p_A + \gamma_1 h_1 - \gamma_2 h_2 = 0$$

and, therefore, the pressure p_A can be written in terms of the column heights as

$$p_A = \gamma_2 h_2 - \gamma_1 h_1 \quad (2.14)$$

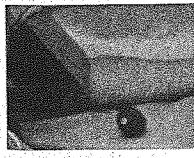
A major advantage of the U-tube manometer lies in the fact that the gage fluid can be different from the fluid in the container in which the pressure is to be determined. For example, the fluid in A in Fig. 2.10 can be either a liquid or a gas. If A does contain a gas, the contribution of the gas column, $\gamma_1 h_1$, is almost always negligible so that $p_A \approx p_2$, and in this instance Eq. 2.14 becomes

$$p_A = \gamma_2 h_2$$

Thus, for a given pressure the height, h_2 , is governed by the specific weight, γ_2 , of the gage fluid used in the manometer. If the pressure p_A is large, then a heavy gage fluid, such as mercury, can be used and a reasonable column height (not too long) can still be maintained. Alternatively, if the pressure p_A is small, a lighter gage fluid, such as water, can be used so that a relatively large column height (which is easily read) can be achieved.

The contribution of gas columns in manometers is usually negligible since the weight of the gas is so small.

V2.2 Blood pressure measurement



EXAMPLE 2.4 | Simple U-Tube Manometer

GIVEN A closed tank contains compressed air and oil ($SG_{\text{oil}} = 0.90$) as is shown in Fig. E2.4. A U-tube manometer using mercury ($SG_{\text{Hg}} = 13.6$) is connected to the tank as shown. The column heights are $h_1 = 36$ in., $h_2 = 6$ in., and $h_3 = 9$ in.

FIND Determine the pressure reading (in psi) of the gage.

SOLUTION

Following the general procedure of starting at one end of the manometer system and working around to the other, we will start at the air–oil interface in the tank and proceed to the open end where the pressure is zero. The pressure at level (1) is

$$p_1 = p_{\text{air}} + \gamma_{\text{oil}}(h_1 + h_2)$$

This pressure is equal to the pressure at level (2), since these two points are at the same elevation in a homogeneous fluid at rest. As we move from level (2) to the open end, the pressure must decrease by $\gamma_{\text{Hg}}h_3$, and at the open end the pressure is zero. Thus, the manometer equation can be expressed as

$$p_{\text{air}} + \gamma_{\text{oil}}(h_1 + h_2) - \gamma_{\text{Hg}}h_3 = 0$$

or

$$p_{\text{air}} + (SG_{\text{oil}})(\gamma_{\text{H}_2\text{O}})(h_1 + h_2) - (SG_{\text{Hg}})(\gamma_{\text{H}_2\text{O}})h_3 = 0$$

For the values given

$$\begin{aligned} p_{\text{air}} &= -(0.9)(62.4 \text{ lb}/\text{ft}^3) \left(\frac{36 + 6}{12} \text{ ft} \right) \\ &\quad + (13.6)(62.4 \text{ lb}/\text{ft}^3) \left(\frac{9}{12} \text{ ft} \right) \end{aligned}$$

so that

$$p_{\text{air}} = 440 \text{ lb}/\text{ft}^2$$

Manometers are often used to measure the difference in pressure between two points.

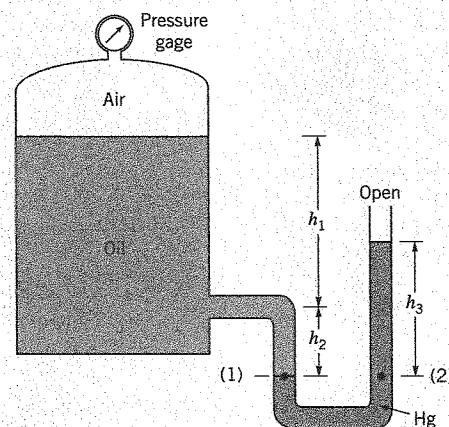


FIGURE E2.4

Since the specific weight of the air above the oil is much smaller than the specific weight of the oil, the gage should read the pressure we have calculated; that is,

$$p_{\text{gage}} = \frac{440 \text{ lb}/\text{ft}^2}{144 \text{ in.}^2/\text{ft}^2} = 3.06 \text{ psi} \quad (\text{Ans})$$

COMMENTS Note that the air pressure is a function of the height of the mercury in the manometer and the depth of the oil (both in the tank and in the tube). It is not just the mercury in the manometer that is important.

Assume that the gage pressure remains at 3.06 psi, but the manometer is altered so that it contains only oil. That is, the mercury is replaced by oil. A simple calculation shows that in this case the vertical oil-filled tube would need to be $h_3 = 11.3$ ft tall, rather than the original $h_3 = 9$ in. There is an obvious advantage of using a heavy fluid such as mercury in manometers.

The U-tube manometer is also widely used to measure the *difference* in pressure between two containers or two points in a given system. Consider a manometer connected between containers A and B as is shown in Fig. 2.11. The difference in pressure between A and B can be found

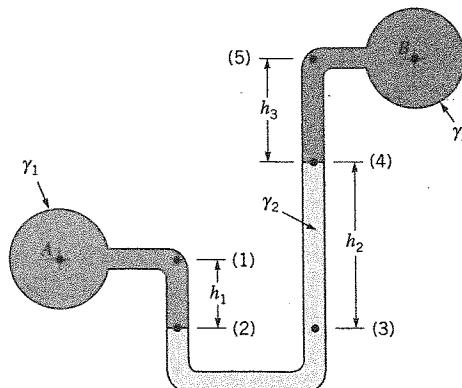
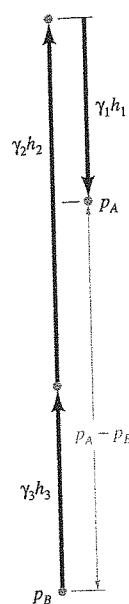


FIGURE 2.11 Differential U-tube manometer.



by again starting at one end of the system and working around to the other end. For example, at A the pressure is p_A , which is equal to p_1 , and as we move to point (2) the pressure increases by $\gamma_1 h_1$. The pressure at (2) is equal to p_3 , and as we move upward to point (4) the pressure decreases by $\gamma_2 h_2$. Similarly, as we continue to move upward from point (4) to (5) the pressure decreases by $\gamma_3 h_3$. Finally, $p_5 = p_B$, since they are at equal elevations. Thus,

$$p_A + \gamma_1 h_1 - \gamma_2 h_2 - \gamma_3 h_3 = p_B$$

Or, as indicated in the figure in the margin, we could start at B and work our way around to A to obtain the same result. In either case, the pressure difference is

$$p_A - p_B = \gamma_2 h_2 + \gamma_3 h_3 - \gamma_1 h_1$$

When the time comes to substitute in numbers, be sure to use a consistent system of units!

Capillarity due to surface tension at the various fluid interfaces in the manometer is usually not considered, since for a simple U-tube with a meniscus in each leg, the capillary effects cancel (assuming the surface tensions and tube diameters are the same at each meniscus), or we can make the capillary rise negligible by using relatively large bore tubes (with diameters of about 0.5 in. or larger; see Section 1.9). Two common gage fluids are water and mercury. Both give a well-defined meniscus (a very important characteristic for a gage fluid) and have well-known properties. Of course, the gage fluid must be immiscible with respect to the other fluids in contact with it. For highly accurate measurements, special attention should be given to temperature since the various specific weights of the fluids in the manometer will vary with temperature.

EXAMPLE 2.5 U-Tube Manometer

GIVEN As will be discussed in Chapter 3, the volume rate of flow, Q , through a pipe can be determined by means of a flow nozzle located in the pipe as illustrated in Fig. E2.5a. The nozzle creates a pressure drop, $p_A - p_B$, along the pipe which is related to the flow through the equation $Q = K\sqrt{p_A - p_B}$, where K is a constant depending on the pipe and nozzle size. The pressure drop is frequently measured with a differential U-tube manometer of the type illustrated.

SOLUTION

(a) Although the fluid in the pipe is moving, the fluids in the columns of the manometer are at rest so that the pressure variation in the manometer tubes is hydrostatic. If we start at point A and move vertically upward to level (1), the pressure will decrease by $\gamma_1 h_1$ and will be equal to the pressure at (2) and at (3). We can now move from (3) to (4) where the pressure has been further reduced by $\gamma_2 h_2$. The pressures at levels (4) and (5) are equal, and as we move from (5) to B the pressure will increase by $\gamma_1(h_1 + h_2)$. Thus, in equation form

$$p_A - \gamma_1 h_1 - \gamma_2 h_2 + \gamma_1(h_1 + h_2) = p_B$$

or

$$p_A - p_B = h_2(\gamma_2 - \gamma_1) \quad (\text{Ans})$$

COMMENT It is to be noted that the only column height of importance is the differential reading, h_2 . The differential

FIND (a) Determine an equation for $p_A - p_B$ in terms of the specific weight of the flowing fluid, γ_1 , the specific weight of the gage fluid, γ_2 , and the various heights indicated. (b) For $\gamma_1 = 9.80 \text{ kN/m}^3$, $\gamma_2 = 15.6 \text{ kN/m}^3$, $h_1 = 1.0 \text{ m}$, and $h_2 = 0.5 \text{ m}$, what is the value of the pressure drop, $p_A - p_B$?

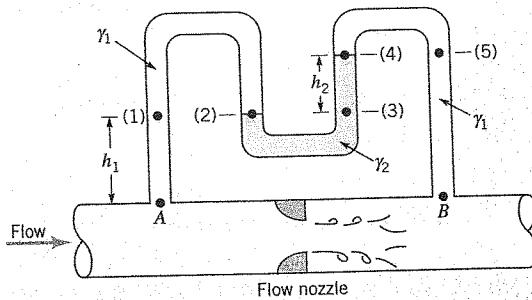


FIGURE E2.5a

manometer could be placed 0.5 or 5.0 m above the pipe ($h_1 = 0.5 \text{ m}$ or $h_1 = 5.0 \text{ m}$), and the value of h_2 would remain the same.

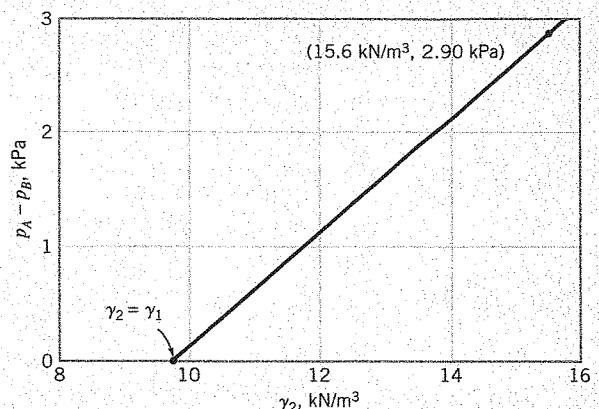
(b) The specific value of the pressure drop for the data given is

$$\begin{aligned} p_A - p_B &= (0.5 \text{ m})(15.6 \text{ kN/m}^3 - 9.80 \text{ kN/m}^3) \\ &= 2.90 \text{ kPa} \end{aligned} \quad (\text{Ans})$$

COMMENT By repeating the calculations for manometer fluids with different specific weights, γ_2 , the results shown in Fig. E2.5b are obtained. Note that relatively small pressure

differences can be measured if the manometer fluid has nearly the same specific weight as the flowing fluid. It is the difference in the specific weights, $\gamma_2 - \gamma_1$, that is important.

Hence, by rewriting the answer as $h_2 = (p_A - p_B)/(\gamma_2 - \gamma_1)$ it is seen that even if the value of $p_A - p_B$ is small, the value of h_2 can be large enough to provide an accurate reading provided the value of $\gamma_2 - \gamma_1$ is also small.



■ FIGURE E2.5b

2.6.3 Inclined-Tube Manometer

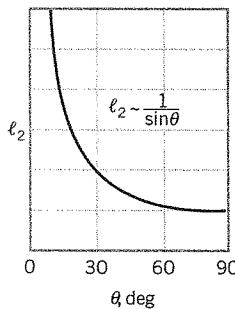
To measure small pressure changes, a manometer of the type shown in Fig. 2.12 is frequently used. One leg of the manometer is inclined at an angle θ , and the differential reading ℓ_2 is measured along the inclined tube. The difference in pressure $p_A - p_B$ can be expressed as

$$p_A + \gamma_1 h_1 - \gamma_2 \ell_2 \sin \theta - \gamma_3 h_3 = p_B$$

or

$$p_A - p_B = \gamma_2 \ell_2 \sin \theta + \gamma_3 h_3 - \gamma_1 h_1 \quad (2.15)$$

Inclined-tube manometers can be used to measure small pressure differences accurately.



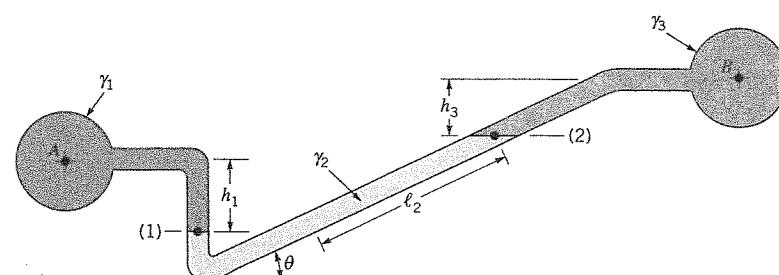
where it is to be noted the pressure difference between points (1) and (2) is due to the *vertical* distance between the points, which can be expressed as $\ell_2 \sin \theta$. Thus, for relatively small angles the differential reading along the inclined tube can be made large even for small pressure differences. The inclined-tube manometer is often used to measure small differences in gas pressures so that if pipes A and B contain a gas then

$$p_A - p_B = \gamma_2 \ell_2 \sin \theta$$

or

$$\ell_2 = \frac{p_A - p_B}{\gamma_2 \sin \theta} \quad (2.16)$$

where the contributions of the gas columns h_1 and h_3 have been neglected. Equation 2.16 and the figure in the margin show that the differential reading ℓ_2 (for a given pressure difference) of the inclined-tube manometer can be increased over that obtained with a conventional U-tube manometer by the factor $1/\sin \theta$. Recall that $\sin \theta \rightarrow 0$ as $\theta \rightarrow 0$.

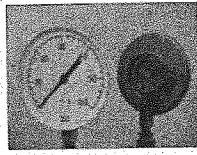


■ FIGURE 2.12 Inclined-tube manometer.

2.7 Mechanical and Electronic Pressure Measuring Devices

A Bourdon tube pressure gage uses a hollow, elastic, and curved tube to measure pressure.

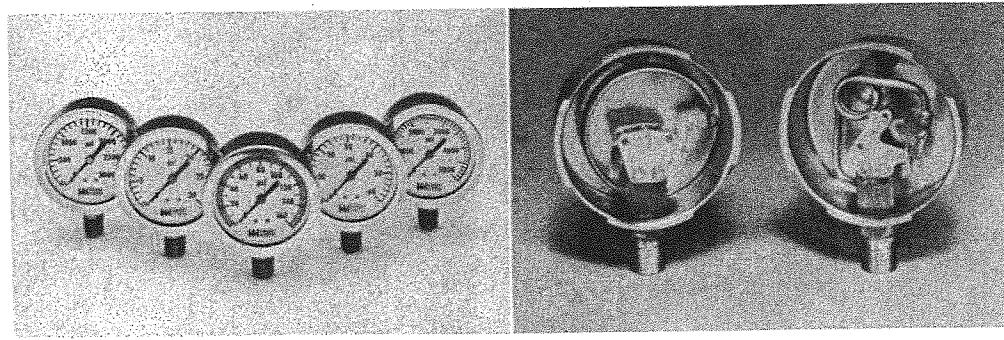
V2.3 Bourdon gage



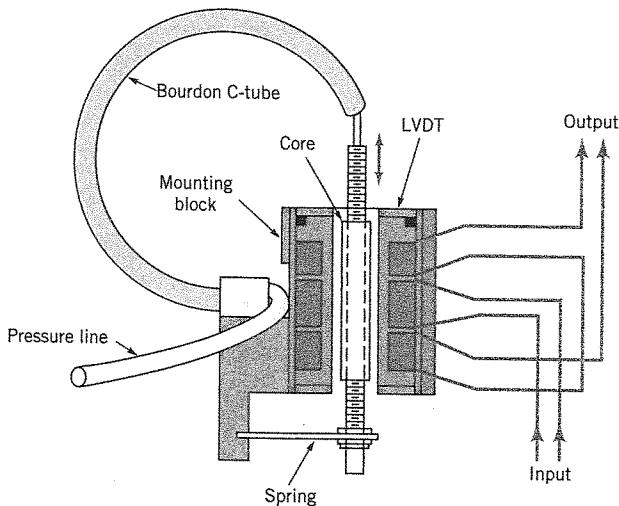
Although manometers are widely used, they are not well suited for measuring very high pressures, or pressures that are changing rapidly with time. In addition, they require the measurement of one or more column heights, which, although not particularly difficult, can be time consuming. To overcome some of these problems numerous other types of pressure measuring instruments have been developed. Most of these make use of the idea that when a pressure acts on an elastic structure the structure will deform, and this deformation can be related to the magnitude of the pressure. Probably the most familiar device of this kind is the *Bourdon* pressure gage, which is shown in Fig. 2.13a. The essential mechanical element in this gage is the hollow, elastic curved tube (Bourdon tube) which is connected to the pressure source as shown in Fig. 2.13b. As the pressure within the tube increases the tube tends to straighten, and although the deformation is small, it can be translated into the motion of a pointer on a dial as illustrated. Since it is the difference in pressure between the outside of the tube (atmospheric pressure) and the inside of the tube that causes the movement of the tube, the indicated pressure is gage pressure. The Bourdon gage must be calibrated so that the dial reading can directly indicate the pressure in suitable units such as psi, psf, or pascals. A zero reading on the gage indicates that the measured pressure is equal to the local atmospheric pressure. This type of gage can be used to measure a negative gage pressure (vacuum) as well as positive pressures.

The *aneroid* barometer is another type of mechanical gage that is used for measuring atmospheric pressure. Since atmospheric pressure is specified as an absolute pressure, the conventional Bourdon gage is not suitable for this measurement. The common aneroid barometer contains a hollow, closed, elastic element which is evacuated so that the pressure inside the element is near absolute zero. As the external atmospheric pressure changes, the element deflects, and this motion can be translated into the movement of an attached dial. As with the Bourdon gage, the dial can be calibrated to give atmospheric pressure directly, with the usual units being millimeters or inches of mercury.

For many applications in which pressure measurements are required, the pressure must be measured with a device that converts the pressure into an electrical output. For example, it may be desirable to continuously monitor a pressure that is changing with time. This type of pressure measuring device is called a *pressure transducer*, and many different designs are used. One possible type of transducer is one in which a Bourdon tube is connected to a linear variable differential transformer (LVDT), as is illustrated in Fig. 2.14. The core of the LVDT is connected to the free end of the Bourdon tube so that as a pressure is applied the resulting motion of the end of the tube moves the core through the coil and an output voltage develops. This voltage is a linear function of the pressure and could be recorded on an oscilloscope or digitized for storage or processing on a computer.



■ FIGURE 2.13 (a) Liquid-filled Bourdon pressure gages for various pressure ranges. (b) Internal elements of Bourdon gages. The "C-shaped" Bourdon tube is shown on the left, and the "coiled spring" Bourdon tube for high pressures of 1000 psi and above is shown on the right. (Photographs courtesy of Weiss Instruments, Inc.)



■ FIGURE 2.14 Pressure transducer which combines a linear variable differential transformer (LVDT) with a Bourdon gage. (From Ref. 4, used by permission.)

Fluids in the News

Tire pressure warning Proper tire inflation on vehicles is important for more than ensuring long tread life. It is critical in preventing accidents such as rollover accidents caused by underinflation of tires. The National Highway Traffic Safety Administration is developing a regulation regarding four-tire tire-pressure monitoring systems that can warn a driver when a tire is more than 25 percent underinflated. Some of these devices are currently in operation on select vehicles; it is expected that they will soon be required on all vehicles. A typical tire-pressure monitoring

system fits within the tire and contains a *pressure transducer* (usually either a piezo-resistive or a capacitive type transducer) and a transmitter that sends the information to an electronic control unit within the vehicle. Information about tire pressure and a warning when the tire is underinflated is displayed on the instrument panel. The environment (hot, cold, vibration) in which these devices must operate, their small size, and required low cost provide challenging constraints for the design engineer.

It is relatively complicated to make accurate pressure transducers for the measurement of pressures that vary rapidly with time.

One disadvantage of a pressure transducer using a Bourdon tube as the elastic sensing element is that it is limited to the measurement of pressures that are static or only changing slowly (quasistatic). Because of the relatively large mass of the Bourdon tube, it cannot respond to rapid changes in pressure. To overcome this difficulty, a different type of transducer is used in which the sensing element is a thin, elastic diaphragm which is in contact with the fluid. As the pressure changes, the diaphragm deflects, and this deflection can be sensed and converted into an electrical voltage. One way to accomplish this is to locate strain gages either on the surface of the diaphragm not in contact with the fluid, or on an element attached to the diaphragm. These gages can accurately sense the small strains induced in the diaphragm and provide an output voltage proportional to pressure. This type of transducer is capable of measuring accurately both small and large pressures, as well as both static and dynamic pressures. For example, strain-gage pressure transducers of the type shown in Fig. 2.15 are used to measure arterial blood pressure, which is a relatively small pressure that varies periodically with a fundamental frequency of about 1 Hz. The transducer is usually connected to the blood vessel by means of a liquid-filled, small diameter tube called a pressure catheter. Although the strain-gage type of transducers can be designed to have very good frequency response (up to approximately 10 kHz), they become less sensitive at the higher frequencies since the diaphragm must be made stiffer to achieve the higher frequency response. As an alternative, the diaphragm can be constructed of a piezoelectric crystal to be used as both the elastic element and the sensor. When a pressure is applied to the crystal, a voltage develops because of the deformation of the crystal. This voltage is directly related to the applied pressure. Depending on the design, this type of transducer can be used to measure both very low and high pressures (up to approximately 100,000 psi) at high frequencies. Additional information on pressure transducers can be found in Refs. 3, 4, and 5.

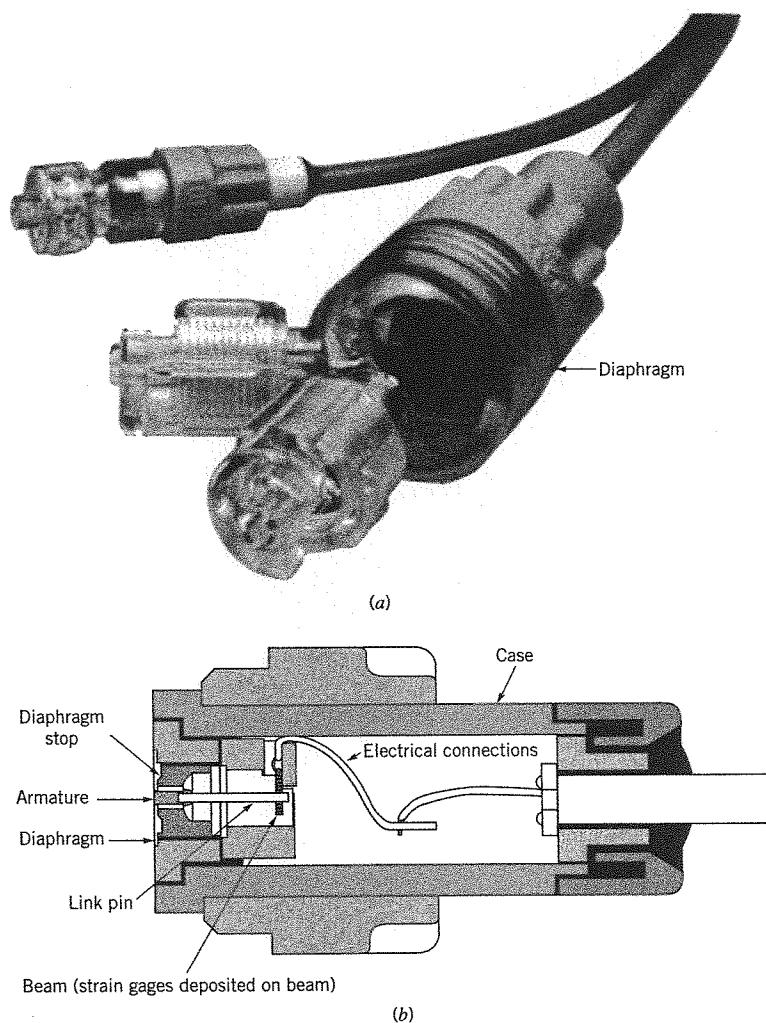
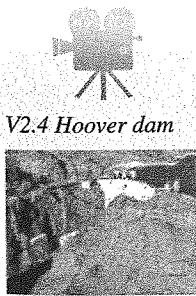
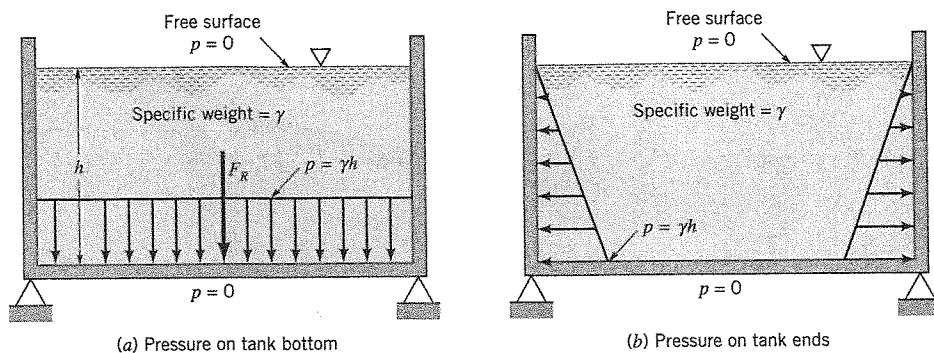


FIGURE 2.15 (a) Two different sized strain-gage pressure transducers (Spectramed Models P10EZ and P23XL) commonly used to measure physiological pressures. Plastic domes are filled with fluid and connected to blood vessels through a needle or catheter. (Photograph courtesy of Spectramed, Inc.) (b) Schematic diagram of the P23XL transducer with the dome removed. Deflection of the diaphragm due to pressure is measured with a silicon beam on which strain gages and an associated bridge circuit have been deposited.

2.8 Hydrostatic Force on a Plane Surface



When a surface is submerged in a fluid, forces develop on the surface due to the fluid. The determination of these forces is important in the design of storage tanks, ships, dams, and other hydraulic structures. For fluids at rest we know that the force must be *perpendicular* to the surface since there are no shearing stresses present. We also know that the pressure will vary linearly with depth as shown in Fig. 2.16 if the fluid is incompressible. For a horizontal surface, such as the bottom of a liquid-filled tank (Fig. 2.16a), the magnitude of the resultant force is simply $F_R = pA$, where p is the uniform pressure on the bottom and A is the area of the bottom. For the open tank shown, $p = \gamma h$. Note that if atmospheric pressure acts on both sides of the bottom, as is illustrated, the *resultant* force on the bottom is simply due to the liquid in the tank. Since the pressure is constant and uniformly distributed over the bottom, the resultant force acts through the centroid of the area as shown in Fig. 2.16a. As shown in Fig. 2.16b, the pressure on the ends of the tank is not uniformly distributed. Determination of the resultant force for situations such as this is presented below.

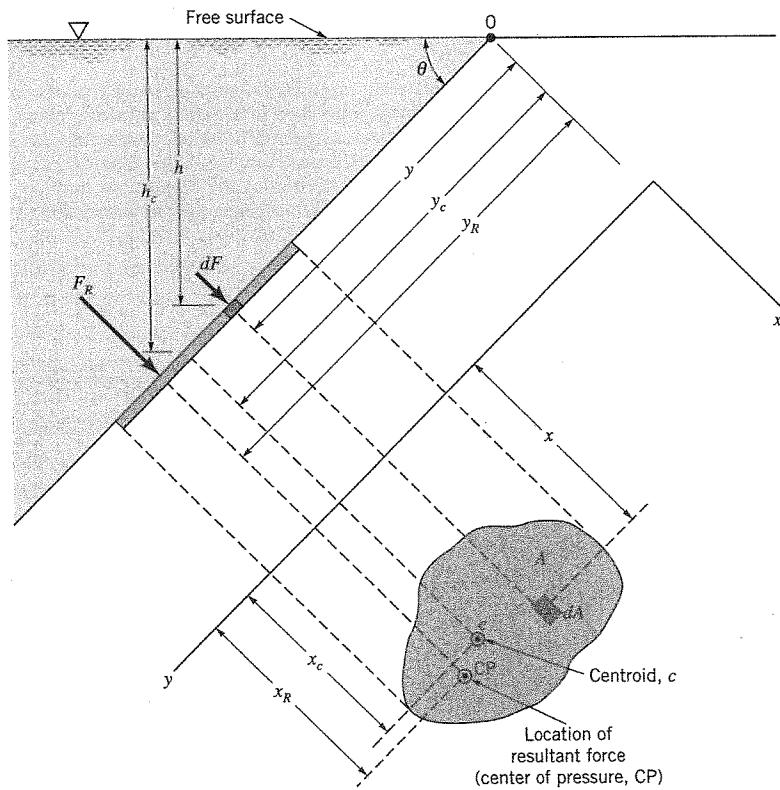


■ FIGURE 2.16 (a) Pressure distribution and resultant hydrostatic force on the bottom of an open tank. (b) Pressure distribution on the ends of an open tank.

The resultant force of a static fluid on a plane surface is due to the hydrostatic pressure distribution on the surface.

For the more general case in which a submerged plane surface is inclined, as is illustrated in Fig. 2.17, the determination of the resultant force acting on the surface is more involved. For the present we will assume that the fluid surface is open to the atmosphere. Let the plane in which the surface lies intersect the free surface at 0 and make an angle θ with this surface as in Fig. 2.17. The x - y coordinate system is defined so that 0 is the origin and $y = 0$ (i.e., the x -axis) is directed along the surface as shown. The area can have an arbitrary shape as shown. We wish to determine the direction, location, and magnitude of the resultant force acting on one side of this area due to the liquid in contact with the area. At any given depth, h , the force acting on dA (the differential area of Fig. 2.17) is $dF = \gamma h dA$ and is perpendicular to the surface. Thus, the magnitude of the resultant force can be found by summing these differential forces over the entire surface. In equation form

$$F_R = \int_A \gamma h dA = \int_A \gamma y \sin \theta dA$$



■ FIGURE 2.17 Notation for hydrostatic force on an inclined plane surface of arbitrary shape.

where $h = y \sin \theta$. For constant γ and θ

$$F_R = \gamma \sin \theta \int_A y \, dA \quad (2.17)$$

The integral appearing in Eq. 2.17 is the *first moment of the area* with respect to the x axis, so we can write

$$\int_A y \, dA = y_c A$$

where y_c is the y coordinate of the centroid of area A measured from the x axis which passes through 0. Equation 2.17 can thus be written as

$$F_R = \gamma A y_c \sin \theta$$

or more simply as

$$F_R = \gamma h_c A \quad (2.18)$$

The magnitude of the resultant fluid force is equal to the pressure acting at the centroid of the area multiplied by the total area.

where h_c is the vertical distance from the fluid surface to the centroid of the area. Note that the magnitude of the force is independent of the angle θ . As indicated by the figure in the margin, it depends only on the specific weight of the fluid, the total area, and the depth of the centroid of the area below the surface. In effect, Eq. 2.18 indicates that the magnitude of the resultant force is equal to the pressure at the centroid of the area multiplied by the total area. Since all the differential forces that were summed to obtain F_R are perpendicular to the surface, the resultant F_R must also be perpendicular to the surface.

Although our intuition might suggest that the resultant force should pass through the centroid of the area, this is not actually the case. The y coordinate, y_R , of the resultant force can be determined by summation of moments around the x axis. That is, the moment of the resultant force must equal the moment of the distributed pressure force, or

$$F_R y_R = \int_A y \, dF = \int_A \gamma \sin \theta y^2 \, dA$$

and, therefore, since $F_R = \gamma A y_c \sin \theta$

$$y_R = \frac{\int_A y^2 \, dA}{y_c A}$$

The integral in the numerator is the *second moment of the area (moment of inertia)*, I_x , with respect to an axis formed by the intersection of the plane containing the surface and the free surface (x axis). Thus, we can write

$$y_R = \frac{I_x}{y_c A}$$

Use can now be made of the parallel axis theorem to express I_x as

$$I_x = I_{xc} + A y_c^2$$

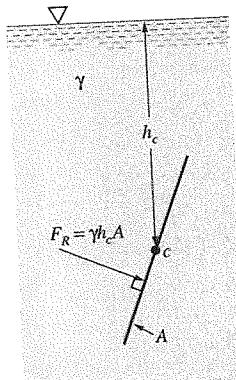
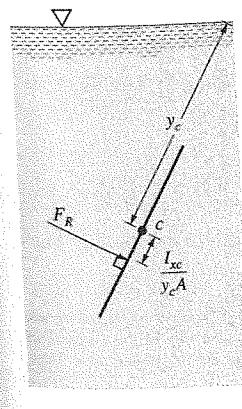
where I_{xc} is the second moment of the area with respect to an axis passing through its *centroid* and parallel to the x axis. Thus,

$$y_R = \frac{I_{xc}}{y_c A} + y_c \quad (2.19)$$

As shown by Eq. 2.19 and the figure in the margin, the resultant force does not pass through the centroid but for nonhorizontal surfaces is always *below* it, since $I_{xc}/y_c A > 0$.

The x coordinate, x_R , for the resultant force can be determined in a similar manner by summing moments about the y axis. Thus,

$$F_R x_R = \int_A \gamma \sin \theta x y \, dA$$



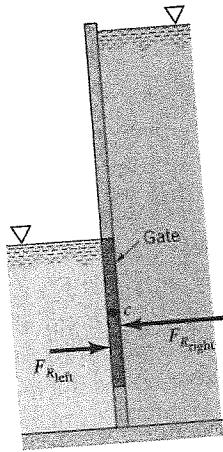
The resultant fluid force does not pass through the centroid of the area.

and, therefore,

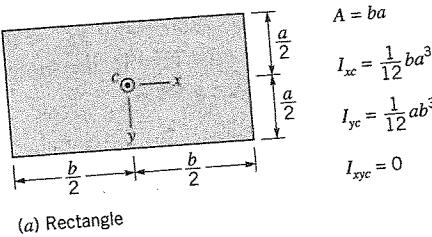
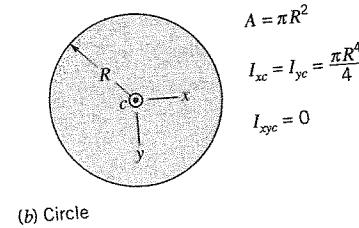
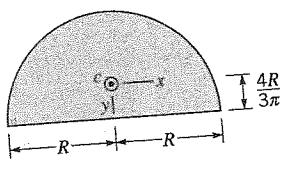
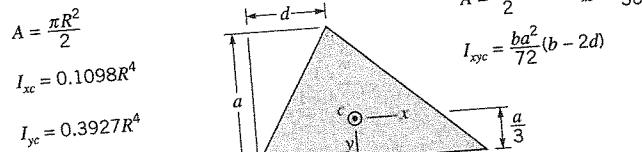
$$x_R = \frac{\int_A xy \, dA}{y_c A} = \frac{I_{xy}}{y_c A}$$

where I_{xy} is the product of inertia with respect to the x and y axes. Again, using the parallel axis theorem,¹ we can write

$$x_R = \frac{I_{xyc}}{y_c A} + x_c \quad (2.20)$$



where I_{xyc} is the product of inertia with respect to an orthogonal coordinate system passing through the *centroid* of the area and formed by a translation of the x - y coordinate system. If the submerged area is symmetrical with respect to an axis passing through the centroid and parallel to either the x or y axes, the resultant force must lie along the line $x = x_c$, since I_{xyc} is identically zero in this case. The point through which the resultant force acts is called the *center of pressure*. It is to be noted from Eqs. 2.19 and 2.20 that as y_c increases the center of pressure moves closer to the centroid of the area. Since $y_c = h_c/\sin \theta$, the distance y_c will increase if the depth of submergence, h_c , increases, or, for a given depth, the area is rotated so that the angle, θ , decreases. Thus, the hydrostatic force on the right-hand side of the gate shown in the margin figure acts closer to the centroid of the gate than the force on the left-hand side. Centroidal coordinates and moments of inertia for some common areas are given in Fig. 2.18.



(c) Semicircle

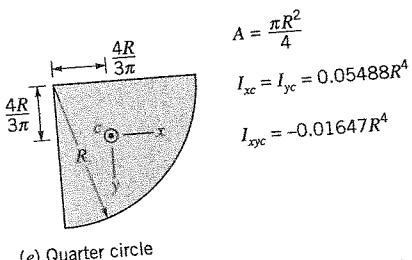


FIGURE 2.18 Geometric properties of some common shapes.

¹Recall that the parallel axis theorem for the product of inertia of an area states that the product of inertia with respect to an orthogonal set of axes (x - y coordinate system) is equal to the product of inertia with respect to an orthogonal set of axes parallel to the original and passing through the centroid of the area, plus the product of the area and the x and y coordinates of the centroid of the area. $I_{xy} = I_{xyc} + Ax_c y_c$.

Fluids in the News

The Three Gorges Dam The Three Gorges Dam being constructed on China's Yangtze River will contain the world's largest hydroelectric power plant when in full operation. The dam is of the concrete gravity type, having a length of 2309 meters with a height of 185 meters. The main elements of the project include the dam, two power plants, and navigation facilities consisting of a ship lock and lift. The power plants will contain 26 Francis type turbines, each with a capacity of 700 megawatts. The spillway section, which is the center section of the dam, is 483 meters long with 23 bottom outlets and 22 surface sluice

gates. The maximum discharge capacity is 102,500 cubic meters per second. After more than 10 years of construction, the dam gates were finally closed, and on June 10, 2003, the reservoir had been filled to its interim level of 135 meters. Due to the large depth of water at the dam and the huge extent of the storage pool, *hydrostatic pressure forces* have been a major factor considered by engineers. When filled to its normal pool level of 175 meters, the total reservoir storage capacity is 39.3 billion cubic meters. The project is scheduled for completion in 2009. (See Problem 2.79.)

EXAMPLE 2.6 Hydrostatic Force on a Plane Circular Surface

GIVEN The 4-m-diameter circular gate of Fig. E2.6a is located in the inclined wall of a large reservoir containing water ($\gamma = 9.80 \text{ kN/m}^3$). The gate is mounted on a shaft along its horizontal diameter, and the water depth is 10 m above the shaft.

FIND Determine

- the magnitude and location of the resultant force exerted on the gate by the water and
- the moment that would have to be applied to the shaft to open the gate.

SOLUTION

(a) To find the magnitude of the force of the water we can apply Eq. 2.18,

$$F_R = \gamma h_c A$$

and since the vertical distance from the fluid surface to the centroid of the area is 10 m, it follows that

$$F_R = (9.80 \times 10^3 \text{ N/m}^3)(10 \text{ m})(4\pi \text{ m}^2) \\ = 1230 \times 10^3 \text{ N} = 1.23 \text{ MN} \quad (\text{Ans})$$

To locate the point (center of pressure) through which F_R acts, we use Eqs. 2.19 and 2.20,

$$x_R = \frac{I_{yc}}{y_c A} + x_c \quad y_R = \frac{I_{xc}}{y_c A} + y_c$$

For the coordinate system shown, $x_R = 0$ since the area is symmetrical, and the center of pressure must lie along the diameter A-A. To obtain y_R , we have from Fig. 2.18

$$I_{xc} = \frac{\pi R^4}{4}$$

and y_c is shown in Fig. E2.6b. Thus,

$$y_R = \frac{(\pi/4)(2 \text{ m})^4}{(10 \text{ m}/\sin 60^\circ)(4\pi \text{ m}^2)} + \frac{10 \text{ m}}{\sin 60^\circ} \\ = 0.0866 \text{ m} + 11.55 \text{ m} = 11.6 \text{ m}$$

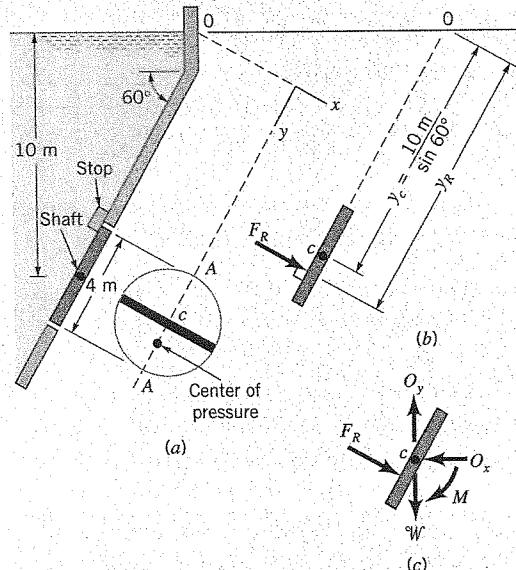


FIGURE E2.6a-c

and the distance (along the gate) below the shaft to the center of pressure is

$$y_R - y_c = 0.0866 \text{ m} \quad (\text{Ans})$$

We can conclude from this analysis that the force on the gate due to the water has a magnitude of 1.23 MN and acts through a point along its diameter A-A at a distance of 0.0866 m (along the gate) below the shaft. The force is perpendicular to the gate surface as shown in Fig. E2.6b.

COMMENT By repeating the calculations for various values of the depth to the centroid, h_c , the results shown in Fig. E2.6d are obtained. Note that as the depth increases, the distance between the center of pressure and the centroid decreases.

(b) The moment required to open the gate can be obtained with the aid of the free-body diagram of Fig. E2.6c. In this diagram W

is the weight of the gate and O_x and O_y are the horizontal and vertical reactions of the shaft on the gate. We can now sum moments about the shaft

$$\sum M_c = 0$$

and, therefore,

$$\begin{aligned} M &= F_R(y_R - y_c) \\ &= (1230 \times 10^3 \text{ N})(0.0866 \text{ m}) \\ &= 1.07 \times 10^5 \text{ N} \cdot \text{m} \quad (\text{Ans}) \end{aligned}$$



■ FIGURE E2.6d

EXAMPLE 2.7 Hydrostatic Pressure Force on a Plane Triangular Surface

GIVEN An aquarium contains seawater ($\gamma = 64.0 \text{ lb/ft}^3$) to a depth of 1 ft as shown in Fig. E2.7a. To repair some damage to one corner of the tank, a triangular section is replaced with a new section as illustrated in Fig. E2.7b.

SOLUTION

(a) The various distances needed to solve this problem are shown in Fig. E2.7c. Since the surface of interest lies in a vertical plane, $y_c = h_c = 0.9 \text{ ft}$, and from Eq. 2.18 the magnitude of the force is

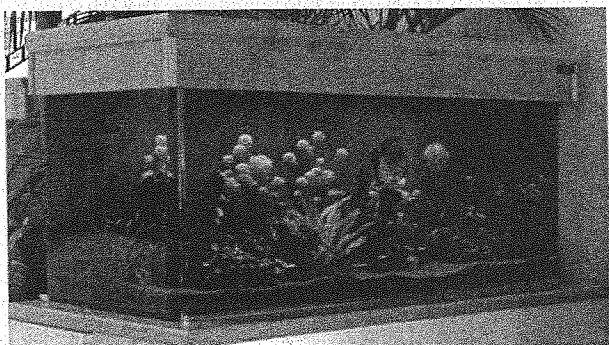
$$\begin{aligned} F_R &= \gamma h_c A \\ &= (64.0 \text{ lb/ft}^3)(0.9 \text{ ft})[(0.3 \text{ ft})^2/2] = 2.59 \text{ lb} \quad (\text{Ans}) \end{aligned}$$

COMMENT Note that this force is independent of the tank length. The result is the same if the tank is 0.25 ft, 25 ft, or 25 miles long.

(b) The y coordinate of the center of pressure (CP) is found from Eq. 2.19,

$$y_R = \frac{I_{xc}}{y_c A} + y_c$$

and from Fig. 2.18

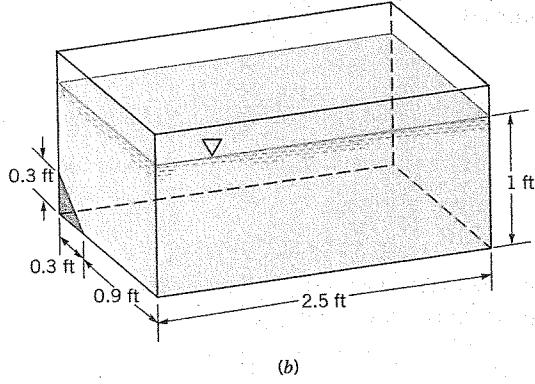


■ FIGURE E2.7a (Photograph courtesy of Tenecor Tanks, Inc.)

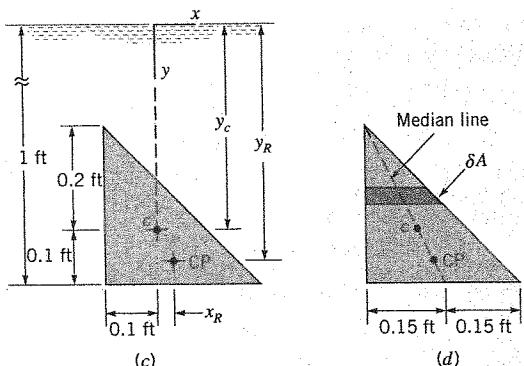
FIND

Determine

- the magnitude of the force of the seawater on this triangular area, and
- the location of this force.



(b)



■ FIGURE E2.7b-d

$$I_{xc} = \frac{(0.3 \text{ ft})(0.3 \text{ ft})^3}{36} = \frac{0.0081}{36} \text{ ft}^4$$

so that

$$y_R = \frac{0.0081/36 \text{ ft}^4}{(0.9 \text{ ft})(0.09/2 \text{ ft}^2)} + 0.9 \text{ ft} \\ = 0.00556 \text{ ft} + 0.9 \text{ ft} = 0.906 \text{ ft} \quad (\text{Ans})$$

Similarly, from Eq. 2.20

$$x_R = \frac{I_{yc}}{y_c A} + x_c$$

and from Fig. 2.18

$$I_{yc} = \frac{(0.3 \text{ ft})(0.3 \text{ ft})^2}{72} (0.3 \text{ ft}) = \frac{0.0081}{72} \text{ ft}^4$$

so that

$$x_R = \frac{0.0081/72 \text{ ft}^4}{(0.9 \text{ ft})(0.09/2 \text{ ft}^2)} + 0 = 0.00278 \text{ ft} \quad (\text{Ans})$$

COMMENT Thus, we conclude that the center of pressure is 0.00278 ft to the right of and 0.00556 ft below the centroid of the area. If this point is plotted, we find that it lies on the median line for the area as illustrated in Fig. E2.7d. Since we can think of the total area as consisting of a number of small rectangular strips of area δA (and the fluid force on each of these small areas acts through its center), it follows that the resultant of all these parallel forces must lie along the median.

2.9 Pressure Prism

An informative and useful graphical interpretation can be made for the force developed by a fluid acting on a plane rectangular area. Consider the pressure distribution along a vertical wall of a tank of constant width b , which contains a liquid having a specific weight γ . Since the pressure must vary linearly with depth, we can represent the variation as is shown in Fig. 2.19a, where the pressure is equal to zero at the upper surface and equal to γh at the bottom. It is apparent from this diagram that the average pressure occurs at the depth $h/2$, and therefore the resultant force acting on the rectangular area $A = bh$ is

$$F_R = p_{av} A = \gamma \left(\frac{h}{2} \right) A$$

which is the same result as obtained from Eq. 2.18. The pressure distribution shown in Fig. 2.19a applies across the vertical surface so we can draw the three-dimensional representation of the pressure distribution as shown in Fig. 2.19b. The base of this "volume" in pressure-area space is the plane surface of interest, and its altitude at each point is the pressure. This volume is called the *pressure prism*, and it is clear that the magnitude of the resultant force acting on the rectangular surface is equal to the volume of the pressure prism. Thus, for the prism of Fig. 2.19b the fluid force is

$$F_R = \text{volume} = \frac{1}{2} (\gamma h)(bh) = \gamma \left(\frac{h}{2} \right) A$$

where bh is the area of the rectangular surface, A .

The resultant force must pass through the *centroid* of the pressure prism. For the volume under consideration the centroid is located along the vertical axis of symmetry of the surface, and at a distance of $h/3$ above the base (since the centroid of a triangle is located at $h/3$ above its base). This result can readily be shown to be consistent with that obtained from Eqs. 2.19 and 2.20.

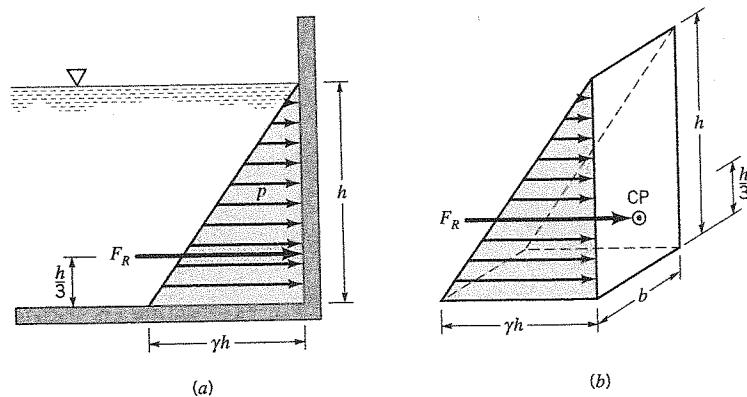


FIGURE 2.19
Pressure prism for vertical rectangular area.

The magnitude of the resultant fluid force is equal to the volume of the pressure prism and passes through its centroid.