ANNOUNCED QUIZ #8 - ME 3030 — Section 001 - Fall 2025

SOLUTION

N	A	М	E	:	
~ ,			_	•	-2

This is a closed book, no calculator quiz. An unsigned honors pledge will result in a zero.

1. The Joule-Thompson coefficient, μ_J , is a measure of how the temperature of a gas changes upon expansion. It is related to the specific heat via the following equation:

$$c_p = \frac{1}{\mu_J} \left[T \left(\frac{\partial v}{\partial T} \right)_p - v \right] \tag{1}$$

Write an equation for μ_J for an ideal gas. Express your equation in simplest possible form

GNEN: Equation for M_{3} ; ideal gas.

FIND: Simplest form for M_{5} for an ideal gas.

ASSUME:

ANALYSIS; $C_{p} = \frac{1}{M_{3}} \left[T \left(\frac{\partial v}{\partial T} \right)_{p} - v \right] = \frac{1}{Q} \left[T \left(\frac{\partial v}{\partial T} \right)_{p} - v \right]$ $T.G. \rightarrow Pv = FT$ $v = \frac{1}{P} = \frac{1}{Q} \left[T \left(\frac{\partial v}{\partial T} \right)_{p} - \frac{1}{Q} \right]$ So, $M_{3} = \frac{1}{Q} \left[T \left(\frac{\partial v}{\partial T} \right)_{p} - \frac{1}{Q} \right]$ So, $M_{3} = \frac{1}{Q} \left[T \left(\frac{\partial v}{\partial T} \right)_{p} - \frac{1}{Q} \right]$

I have neither provided or received help during this quiz.

