SOLUTION

TT		7 /		
IV	Δ	M	н.	

This is an open book quiz. You may use a 4-function calculator. An unsigned honors pledge will result in a zero.

 $1.\ \text{A}$ can of soda has a temperature of 6°C , and condensation can be seen on the surface of the can. The can is in a room where the relative humidity is 35%. Any humidity lower than this value will cause condensation on the can to cease. Determine the temperature of the air in the room.

GIVEN: Is; Proon

FIND: Troom

ASSUME: Air temperature at consurface \$ Troom = ? T_s = 6°C

is the same as T_s

\$ is exactly 1.0, since condensation will cease is \$700m gets any lower

 $\phi_s = 1.0 = \frac{P_{\sigma}}{P_s(6^{\circ}c)} = \frac{P_{\sigma}}{0.00935 \, bar} \Rightarrow P_{\sigma} = 0.00935 \, bar$

\$\overline = 0.35 = \frac{Pv}{P_g(T_{room})} = \frac{0.00935 bar}{P_g(T_{room})} = 0.02671 bar}
\$\int \frac{P_g(T_{room})}{P_g(T_{room})} = 0.02671 bar}\$

Interpolating in A-Z gives Troom

T(°C) Pg(bar) ZZ 0.02643 (Troom) 0.02671

= 22.157°C

I have neither provided or received help during this quiz.