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Ray-tracing simulations were performed to explore total internal reflection of light rays beneath capillary
water waves. A vertically oriented light ray, scanned laterally below the wave surface, is mapped to a
position that oscillates at a frequency f. It was found that f varies over 2 orders of magnitude as the
dimensionless wave height ayl varies from 0.34 to 0.73. This presents a possible frequency domain
method for wave slope measurement in wave tank experiments. A linear relationship between the
maximum displacement of the mapped ray and ayl is also demonstrated for ayl between 0.54 and 0.73,
presenting a second wave slope measurement approach. The consequences of partial internal reflection
are considered. © 1997 Optical Society of America
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1. Introduction

The waves that populate the air–water interface play
an important role in how water and air currents inter-
act at the surface of oceans, lakes, and rivers. Waves
affect the degree to which dissolved gases and heat are
transferred from the air to the water and vice versa.
Furthermore, water waves affect the scattering of mi-
crowave radiation, and therefore an understanding of
water waves is relevant to the remote sensing of the
ocean by way of microwave radars.
Capillary waves are of special interest with respect

to the aforementioned phenomena. These waves,
whose wavelengths are less than 2 cm, have slopes
significantly larger than for longer wavelength gravity
waves. Crapper1 demonstrated that the dimension-
lesswave amplitude ayl, where a is the peak-to-trough
distance and l is the wavelength, has a limiting value
of ayl 5 0.730 for capillary waves, whereas the peak
value for gravity waves is ayl 5 0.142.2 Hence cap-
illary waves can exhibit much steeper slopes than
gravity waves. This larger slope increases the area of
the air–water interface, enhancing the transport of
heat, momentum, andmass. In addition to this area-
enhancing effect, Szeri3 has shown that capillary
waves exhibit an additional increase in gas transport
that cannot be explained by area enhancement alone.
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This additional increase is related to the straining of
fluid near the surface, which thins the surface bound-
ary layers.
The fact that capillary waves are both small and

steep makes their measurement especially difficult.
Intrusive probes such as capacitance wave sensors do
not perform satisfactorily in capillary waves because
it is difficult to construct a sensor that is significantly
smaller than the wavelength. Moreover, intrusive
probes affect the wave geometry, and viscous drag
around the probe modifies the velocity field below the
wave surface. Finally, the meniscus that surrounds
the probe can be a significant fraction of the wave-
length for small-scale capillary waves, further de-
creasing the measurement accuracy of intrusive
probes.
Several optical methods have been developed to

measure wave slope and wave height. These meth-
ods fall into one of two general categories based on
the physical principle by which the measurement is
obtained: ~i! reflective methods and ~ii! refractive
methods. Reflective methods use light reflected off
the wave surface, which is sensed subsequently by a
photodetector. The light source can be artificial,
such as a laser located above the water surface, or the
light source can be the Sun, when Sun glint is used to
ascertain wave slope. The geometric relationship
between the wave surface, the light source, and the
detector is used to determine the wave height, the
wave slope, or both. Reflective methods can be used
to obtain wave slope at a point or over an area. An
example of the use of reflection to obtain wave slope
at a point is presented in Wu et al.,4 and an example
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of the use of reflection to obtain wave slope over an
area is presented in Cox and Munk,5 where Sun glint
is used as the light source.
Refractive methods utilize the angular displace-

ment of light rays as they pass through an air–water
interface to determine wave slope. The light source
is typically a laser beam located on either the air side
or the water side that is refracted at the air–water
interface and detected on the opposite side of that
interface. Examples of this type of method are pre-
sented in Lange et al.,6 Tober et al.,7 Sturm and Sor-
rell,8 and Hughes et al.9 Cox10 developed a
refractive imaging method wherein a flat object of
varying color or intensity is placed below the water
surface. A camera is placed above the water, and
the color or intensity of light recorded on the image
plane of the camera is related to the slope of the wave.
A description of this method is presented in Zhang
and Cox.11 This method has the advantage of yield-
ing a two-dimensional wave slope field instead of a
wave slope at a single point. Images of the wave
slope field can also be obtained by way of the refrac-
tive method by rastering a laser beam over a two-
dimensional region. This technique is described by
Hwang et al.12 and also by Hara et al.13
The methods described above can be used in both

wave tank studies and in open-sea measurements.
However, the requirements for these two experimen-
tal environments are quite different. In the open sea
the orientation of the slope gauge with respect to the
gravity vector can change, and care must be taken to
account for the moving measurement platform or to
reduce its effect. Also the presence of foam, surfac-
tants, bubbles, particulates, and droplets can lead to
data dropout or erroneous measurements. Clearly,
the open sea presents a much more challenging en-
vironment within which to conduct wave slope mea-
surements. Accordingly, it is frequently desirable to
perform measurements in a laboratory environment,
such as a wave tank, where the variables that deter-
mine the wave characteristics can be controlled. A
method for measuring wave slope is presented that is
designed for such an environment, where the pres-
ence of surfactants and bulk-water contaminants can
be controlled. The modifications that are necessary
to utilize the proposed method in an open-sea envi-
ronment are not discussed here, and it is assumed
that the air and the water are free of surfactants and
other contaminants.
All refractive measurements of wave slope are lim-

ited to a critical wave slope, above which a measure-
ment cannot be obtained. This critical wave slope
occurs when the angle between the light ray and the
normal to the air–water interface exceeds the critical
angle bc, defined by Snell’s law, resulting in total
internal reflection of the ray. For the interface be-
tween air and water, in the absence of surfactants
and contaminants, bc 5 48.6° ~different critical an-
gles are observed in water containing substances that
change the index of refraction, e.g., seawater!. Be-
cause large amplitude capillary waves can exhibit
slopes that vary from 0 to ` ~see Fig. 1!, the total
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internal reflection limitation is a significant impedi-
ment, and a method wherein waves of large slope can
be measured is highly desirable. The method pro-
posed herein actually utilizes total internal reflection
of light rays to its advantage. As demonstrated
here, a vertically oriented light ray that is internally
reflected by the wave is mapped to a location on the
floor of a wave tank ~or on an imaginary plane at
some location below the surface!, which depends on
the initial x location of the light ray. Thus if a laser
beam is scanned laterally below the wave surface, the
position of the mapping oscillates. This same effect
will occur if the laser beam is fixed and the waves
propagate past at a given velocity. A detector lo-
cated at a fixed position on the tank floor can sense a
periodic pulse of light as the light ray passes by. As
demonstrated here, the frequencywithwhich this ray
passes the detector can be related to the wave slope,
giving one the ability to measure wave slope in the
frequency domain.
In Section 2 the ray-tracing method is described

and the solutions for the wave profiles that are used
to test the method are presented. The results are
presented in Section 3, and Section 4 contains a dis-
cussion of these results and their limitations. A
summary is presented in Section 5.

2. Problem Formulation

To explore the dynamics of internal light reflection
below capillary waves, a solution for wave height as a
function of space is needed. The solution derived by
Crapper1 is an exact, nonlinear solution for two-
dimensional progressive capillary waves of arbitrary
amplitude. This is an inviscid solution, and so the
wave profiles are somewhat idealized. However, for
the purpose of exploring the use of internal light re-
flection as a wave slope measurement technique,
these waves are adequate. Crapper’s solution is
given in terms of the parameter a, which is defined as
a 5 fycl, wheref is the velocity potential and c is the
phase velocity of the wave. The solution is

xyl 5 a 2
2
p

A sin 2pa

1 1 A2 1 2A cos 2pa
, (1)

yyl 5
2
p

2
2
p

1 1 A cos 2pa

1 1 A2 1 2A cos 2pa
, (2)
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A 5
2l

pa FS1 1
p2a2

4l2 D1y2

2 1G, (3)

and y is positive in the downward direction. Solu-
tions for the surface profile were obtained by varying
a from 0 to 1, which spans a single wavelength.
Plots of the wave profiles for five different values of

ayl are presented in Fig. 1. The largest value of ayl
presented is 0.73, which represents the limiting
height for a Crapper wave. Beyond this value, bub-
ble entrainment or droplet formation occurs, phe-



nomena not described accurately by the solution and
not considered here.
In the research presented here, values of ayl from

0.340 to 0.730 are considered. The rationale for the
choice of the lower bound of ayl is the following. For
ayl , 0.2875, the slope along the wave is sufficiently
small that, at every point, a vertically oriented light
ray will penetrate the air–water interface without
total internal reflection. For 0.2875 # ayl , 0.335,
vertically oriented light rays experience total internal
reflection at certain points in the domain, but ulti-
mately penetrate the air–water interface after one or
more reflections. It is only for ayl . 0.335 that
vertically oriented light rays are reflected downward
below the wave surface. Because it is this situation
that is of interest here, only values of ayl . 0.34 are
considered. We note that although total internal re-
flection occurs only at locations where the critical
angle is exceeded, partial internal reflection occurs at
all locations along the wave. The effect of partial
internal reflection on the results is discussed in Sec-
tion 4.
To illustrate the process of ray penetration and

total internal reflection, four wave profiles are plotted

Fig. 1. Capillary wave profiles obtained from Crapper’s solution
for ayl 5 0.05, 0.25, 0.45, 0.60, and 0.73. The ayl 5 0.73 solution
represents the highest wave that can exist without the entrain-
ment of bubbles.

Fig. 2. Trajectories of vertically oriented rays interacting with
four different capillary waves: ~a! ayl 5 0.25, ~b! ayl 5 0.45, ~c!
ayl 5 0.60, ~d! ayl 5 0.73.
in Figs. 2~a!–2~d!. In each figure, the trajectory of
nine rays, equally spaced along the left half-
wavelength, are plotted. In Fig. 2~a! ayl 5 0.25,
and every ray passes through the air–water interface
without reflection. In Figs. 2~b!–2~d!, however, ayl
. 0.35, and in certain regions of the wave the rays
experience total internal reflection. After two or
more reflections, these rays follow a trajectory point-
ing downward below the wave surface. Even for
large ayl, total internal reflection occurs only when
the input rays originate within a specific band of x
locations. This band varies slightly with ayl, but is
located approximately within 1.02 , xyl , 1.16. In
Fig. 3, the plot presented in Fig. 2~c! is replicated,
with a high density of input rays clustered within this
input band. This figure illustrates how equally
spaced input rays experience total internal reflection
and are then mapped to output positions that oscil-
late back and forth in a seemingly unpredictable
manner. This phenomenon is further explored in
Section 3.
A ray-tracing algorithmwas developed to study the

behavior of internally reflected rays below the wave
surface. At each value of ayl, a vertical ray was
traced from an initial x location, xin. If the ray
passed through the air–water interface, it was dis-
carded. However, if the ray experienced total inter-
nal reflection, its path was traced through all of its
reflections onto a final x position, xout, on a plane
below the wave surface located at y 5 y0. An arbi-
trary value of y0 5 5l was chosen, but other values
could have been used with similar results. The
value of xin was then incremented, and the process
was repeated until xin was swept through an entire
half-wavelength. A total of 1900 values of xin,
equally spaced over one half-wavelength, were con-
sidered for each value of ayl. The xout versus xin

Fig. 3. Trajectories of 19 vertically oriented light rays interacting
with a capillary wave with a height of ayl 5 0.60. The initial
positions of the light rays are clustered within the region where
total internal reflection occurs.
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information was stored for all 1900 rays. This entire
process was then repeated for a new value of ayl.
The value of ayl was increased in increments of
0.0006 until the entire ayl range was considered.

3. Results

A sample plot of the xout versus xin data for ayl 5 0.55
is presented in Fig. 4. This plot reveals the oscillat-
ing nature of the mapped light ray xout as xin is
scanned. A range of xin from 1.02 to 1.16 is plotted.
As mentioned above, outside of this range light rays
do not experience total internal reflection. Another
plot of xout versus xin is presented in Fig. 5 for ayl 5
0.60. Clearly, the oscillation frequency is much
larger for ayl 5 0.60 than for ayl 5 0.55, showing

Fig. 4. Output x position xoutyl of internally reflected rays versus
their initial input positions xinyl for a wave of ayl 5 0.55. The
horizontal line represents xout 5 xc.

Fig. 5. Output x position xoutyl of internally reflected rays versus
their initial input positions xinyl for a wave of ayl 5 0.60. The
horizontal line represents xout 5 xc.
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that a small change in ayl results in a dramatic
change in the oscillation frequency of xout.
To quantify this change in oscillation frequency, a

crossing position xout 5 xc was selected, and the av-
erage frequency f at which xout crossed xc was com-
puted assuming a value of unity for the velocity at
which the input ray xinyl was swept laterally across
the domain. A value of xc 5 1.8l was selected to
maximize the number of times xout crossed xc. A
horizontal line is drawn at xout 5 xc in Figs. 4 and 5.
Figure 6 presents a plot of f versus ayl. The plot

shows a monotonic increase in f to a value of ayl 5
0.63, after which f drops rapidly with ayl. The sig-
nificance of these results, and how they can be used to
measure wave slope, is discussed in Section 4. The
steps in the plot of f versus ayl, presented in Fig. 6,
are not attributable to insufficient resolution in ayl,
but rather to the way in which f is computed. Here
f is simply the inverse of the average distance be-
tween points where xout crosses xc. The number of
times that this crossing occurs is small when ayl is
small, and even for large ayl it is never greater than
250. Because the number of xc crossings must, by
definition, increase in discrete units, f also increases
discretely, giving the f versus ayl plot the somewhat
noisy appearance observed in Fig. 6. Use of a fast
Fourier transform algorithm to compute an average
frequency for the xout versus xin signals most likely
would remove the jagged appearance of Fig. 6; how-
ever, the difference would be subjective andwould not
affect the conclusions drawn herein.

4. Discussion

The plot of f versus ayl presented in Fig. 6 shows that
f is highly sensitive to ayl. The magnitude of f var-
ies by 2 orders of magnitude over the range of ayl
considered. For Crapper waves, knowledge of ayl
permits a complete reconstruction of the wave profile,
and therefore the wave slope at all points along the
wave is known once ayl is determined. A schematic
illustration of an experimental setup for measuring f

Fig. 6. Plot of xc crossing frequency f versus ayl. The peak
resides at ayl 5 0.63. The value of xc is 1.80l.



is presented in Fig. 7. In this schematic, the re-
flected light ray strikes a frosted glass plate. A lens
is placed between the frosted glass and a photodetec-
tor ~e.g., photomultiplier tube, silicon photodiode,
etc.! so that the plane of the frosted glass surface is
focused onto the surface of the photodetector. An
aperture whose center is located at x 5 xc is placed in
front of the frosted glass so that the photodetector
sees light only when the laser beam is mapped to the
position xout 5 xc. Prior to striking the capillary
wave, the laser beam passes through a beam contrac-
tor that is used to reduce the diameter of the laser
beam and therefore increase the spatial resolution of
the system. The required resolution imposed by the
small size of the capillary waves will be discussed
later in this section. With the setup configured in
this fashion, a light ray moving across the frosted
glass plate would result in a pulse train as the pho-
todetector output. The average frequency of the
pulse train f could be obtained in real-time with a fast
Fourier transform analyzer or by storing the detector
output and processing the signal after the conclusion
of the experiment.
This method assumes ayl is known once f is mea-

sured. The f versus ayl plot presented in Fig. 6 has
a peak, and hence for each measured value of f there
are two possible values of ayl. There are two ways
to circumvent the problem posed by this degeneracy.
The peak in Fig. 6 occurs for ayl 5 0.63. This ac-
tually corresponds to large amplitude waves that are

Fig. 7. Schematic illustration of experimental setup for the pro-
posed wave slope measurement technique.
not observed in many cases. Hence the degeneracy
in Fig. 6 can be avoided if it is known a priori that the
maximum ayl will be less than 0.63. Alternately,
the problem can be avoided by an appropriate choice
of xc. In the results presented to this point, xc was
set to 1.8l because, in an approximate sense, the
number of xc crossings was maximized for most val-
ues of ayl. However, for each value of ayl, the value
of xc for which the number of xc crossings is maxi-
mized is different. In fact, as ayl increases, this
optimum xc value continually increases. Because of
this increase, some xc crossings are missed in regions
where the xout signal does not cross xc. This is part
of the reason why f decreases for ayl . 0.63 in Fig. 6
~the other part of the reason is that the overall signal
frequency decreases!. Hence, by varying xc a means
can be provided for tuning the position of the peak in
Fig. 6. Increasing xc moves the peak to a higher
value of ayl, thereby moving the region where degen-
erate values exist to a higher ayl. This is physically
simple to do, because varying xc can be achieved by
moving the x location of the aperture. In Fig. 8, a
plot of f versus ayl is presented for xc 5 2.20l, illus-
trating a shift in the peak to ayl 5 0.65.
The xout behavior observed in Figs. 4 and 5 and the

resulting frequency behavior observed in Figs. 6 and
8 are due to total internal reflection, which occurs
when the angle between the incident ray and the
normal to the air–water interface is greater than the
critical angle bc. However, for angles less than bc
there is partial internal reflection of light rays, which
also contributes to the detector signal. The reflec-
tance of the air–water interface R is governed by the
Fresnel laws of reflection:

R 5
1
2 Fsin2~b 2 b9!

sin2~b 1 b9!
1
tan2~b 2 b9!

tan2~b 1 b9!G , (4)

where b is the angle between the incident ray and the
normal to the interface on the water side, and b9 is
the angle between the refracted ray and the normal

Fig. 8. Plot of xc crossing frequency f versus ayl. The peak
resides at ayl 5 0.65. The value of xc is 2.20l.
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on the air side.14 Here unpolarized light is consid-
ered, and R is the average of the parallel and perpen-
dicular polarization reflectances. The angles b and
b9 are related by Snell’s law,

R 5
n
n9

5
sin b9

sin b
, (5)

where n and n9 are the indices of refraction of water
and air, respectively. A plot of R versus b is pre-
sented in Fig. 9, which demonstrates that, for b . bc
~48.6°!, R 5 1 and R decreases rapidly with decreas-
ing b for b , bc. Because the results presented to
this point considered only total internal reflection,
the contribution of light reflected at b , bc was not
included. The influence of partial internal reflection
can be reduced by passing the detector signal through
a thresholding circuit or by thresholding the data
computationally after the data have been acquired.
However, a certain amount of partial internal reflec-
tion will always be present. The effect of partial
internal reflection is demonstrated in Figs. 10~a!–
10~c!, where plots of xout versus xin are plotted for the

Fig. 9. Plot of reflectance R as a function of the angle b, which is
the angle between the incident ray and the normal to the interface
on the water side.
same ayl value as in Fig. 4. In Fig. 10~a!, the
threshold is set to 50%, which means that partially
reflected light having an intensity less than or equal
to 50% of the total internal reflection intensity is
included in the ray-tracing simulations. The differ-
ences between Figs. 10~a! and 4 are not discernible
~note that the xinyl scales are slightly different!. In
Figs. 10~b! and 10~c!, the threshold value is further
reduced to 10% and 5%, respectively. Note that
even at a 5% threshold, the signal is still quite similar
to that in Fig. 4. The only difference between the
signals in Figs. 10~a!–10~c! and 4 is that the mini-
mum and maximum values of xinyl for which a ray is
mapped to an xout position increases. That is, the
range of xin for which a signal is observed increases.
This is seen as a growth in the width of the signal in
Figs. 10~a!–10~c!. This growth negligibly affects the
frequency of the signal because no new crossings of
the x 5 xc position are introduced. This is demon-
strated explicitly in Fig. 11 where the frequency ver-
sus ayl data from Fig. 6 are replotted with the data
that include partial internal reflection. The two
curves are barely discernible, indicating that the
presence of partial internal reflection gives results
that are essentially identical to those obtained if one
assumes that only total internal reflection is present.
The presentation of this method has, to this point,

assumed implicitly an idealized light ray. That is,
the light beam that is directed vertically upward from
the floor of the wave tank is assumed to have an
infinitesimally small diameter. Actual implementa-
tion of this method would utilize a laser beam of finite
diameter that would introduce limitations in spatial
resolution. Complete resolution of the oscillations
in the xyl data presented in Fig. 4, for example,
would require a laser having a diameter smaller than
the smallest oscillations, which are of the order of xyl
5 0.003. Although this is feasible for relatively long
wavelength waves, resolution of a 1-mm wave, for
example, would require a spatial resolution better
than 3 mm. Focusing a laser beam to such a small
diameter is not practically feasible. Moreover, fo-
cusing of a laser beam is not a solution because fo-
Fig. 10. Plots of xout versus xin at ayl 5 0.55, illustrating the effect of partial internal reflection. The reflectance threshold is set at ~a!
50%, ~b! 10%, ~c! 5%.
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cusing changes the direction of the off-axis rays from
the assumed vertical orientation, resulting in differ-
ent off-axis rays being mapped to different xout posi-
tions. A beam contractor, as illustrated in Fig. 7,
could be used to shrink the diameter of the laser
beam while maintaining the collimated nature of the
light. However, contracting a laser beam to small
diameters is also quite difficult.
If a laser beam is used that is larger than the scales

over which xoutyl varies, the photodetector illus-
trated in Fig. 7 would not observe a pulse train, but
rather a continuously modulated signal that peaks
when the center of the laser beam is located at an xin
position for which xout 5 xc. Laser beams typically
exhibit a Gaussian intensity distribution I~r!:

I~r! 5
2P
pv2 exp~22r2yv2!, (6)

where P is the total laser power, v is the 1ye2 radius
of the beam, and r is the radial distance from the
beam center line.15 The photodetector output from a
wave interrogated by a Gaussian laser beam would
be the integration of Eq. ~6! at each of the xin points
for which total internal reflection maps rays to xout 5
xc. That is, when the beam is centered at an xin
location where the resulting xout position is equal to
xc, the tails of the Gaussian distribution would also
pass over other xin positions for which xout 5 xc. In
this way the tails would contribute to the detector
signal. Theoretically, the frequency of the resulting
detector signal could still be related to the wave char-
acteristics. However, because the detector signal
would consist of a large dc signal superposed with a
small oscillating component, the system would be
sensitive to noise.
An alternate measurement technique for the case

in which a sufficiently small laser beam cannot be
attained is now presented. Figures 4 and 5 show

Fig. 11. Plots of frequency versus ayl. The dotted curve is for
total internal reflection only. The solid curve is for results ob-
tained considering both total internal reflection and partial inter-
nal reflection with a threshold setting of 50%.
that the maximum value of xoutyl is larger for ayl 5
0.60 than for ayl 5 0.55. This observation is in fact
a general result in the sense that the maximum value
of xoutyl increases with ayl for all ayl investigated.
This is illustrated in Fig. 12 in which the maximum
value of xoutyl is plotted against ayl. Figure 12
shows that the maximum value of xoutyl not only
increases with ayl, but is also a linear function of ayl
for 0.54 , ayl , 0.73, an important result because
this ray-tracing method is most useful at a high wave
slope at which refractive methods fail. The effect of
partial internal reflection on the maximum value of
xoutyl was tested and was found to have an insignif-
icant effect on the data plotted in Fig. 12.
An experimental setup designed to exploit the

aforementioned behavior is illustrated in Fig. 13. In
this figure, the photodetector of Fig. 7 is replacedwith
a position sensitive detector ~PSD!, and the aperture
is replaced with a half-aperture centered at x 5 xc.
The frosted glass plate and the lens have also been
eliminated from this experimental setup. The half-
aperture blocks all output rays on one side of xc,
allowing the PSD to see only values of xout larger than
xc. PSD’s yield an output signal that is related lin-
early to the location of the centroid of the light spot
that is incident upon its surface. The maximum dis-
placement of xout can be observed, even if the laser
beam is larger than the spatial scale over which os-
cillations in xout are observed. Hence the maximum
displacement of the centroid of the light spot incident
upon the PSD can be related to ayl after an appro-
priate calibration.
A drawback of the methods presented here is that

a priori knowledge of the wave profile is required
before the measured parameter ~frequency or maxi-
mum xout position! can be related to the wave slope.
The Crapper waves simulated here represent a solu-
tion of the capillary wave profile for zero viscosity. A
comparison of the ray-tracing characteristics of Crap-
per waves with those of real ~viscous!, high-
amplitude capillary waves would be extremely
useful. Unfortunately, we are unaware of any vis-
cous, nonlinear solutions for capillary wave profiles.
The existence of a viscous, nonlinear solution would

Fig. 12. Maximum values of xoutyl versus ayl.
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make the proposedmethod immediately usable in the
laboratory because the simulations performed here
could be repeated to obtain the relationship between
ayl and f for the actual wave profiles. In the ab-
sence of such a solution, the proposedmethodmust be
first calibrated by obtaining wave profiles of capillary
waves at several values of ayl using digital imaging.
This is a labor-intensive procedure; however, once
performed, the empirical waveforms could be used to
predict the ray-tracing characteristics of the waves,
yielding an f versus ayl ~ormaximum xout versus ayl!
relationship that would serve as a calibration for the
method. The need for this calibration limits the util-
ity of this method in the open sea where an essen-
tially unknown wave field consisting of many
different wavelengths as well as unknown surfac-
tants and contaminants are present. The method
would be most useful in wave tank studies where
controlled, repeatable wave fields are produced. Ex-
amples of this include investigations of parasitic cap-
illary waves, such as those presented in Perlin et
al.,16 as well as studies of Faraday waves, such as
those presented in Ciliberto and Gollub17 and in Hen-
derson and Miles.18
Even in the absence of the calibration described

above, the proposed method is useful for measuring
wave slope because a vertically oriented ray, such as
a laser beam, will be reflected onto the floor of a wave
tank only if the angle between the vertical and the
normal to the wave exceeds the critical angle for total
internal reflection at some point along the wave. In
this way the method described here could be used in
a simple yes and no mode to determine if a critical
wave slope has been exceeded. It is also possible
that experimental testing of the method may reveal

Fig. 13. Experimental setup for an alternate wave slopemeasure-
ment technique.
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xout versus xin behavior that is similar to that dis-
played in Figs. 4 and 5, indicating that the Crapper
wave profile is a reasonable approximation of actual
capillary waves. Future research in this direction is
planned.

5. Conclusion

Ray-tracing simulations beneath the surface of Crap-
per waves were performed to test the use of total
internal reflection as a method for measuring wave
slope in high-amplitude capillary waves. The simu-
lations revealed that, as a capillary wave passes over
a vertically oriented laser beam, the internally re-
flected ray traces a path on a plane below the wave
surface that oscillates at a frequency f. For 0.34 ,
ayl , 0.73, f varies over 2 orders of magnitude, mak-
ing this oscillation frequency a sensitive measure of
wave slope. The measurement also has the advan-
tage of being performed in the frequency domain. It
was also demonstrated that the maximum displace-
ment of the reflected ray is a function of ayl and that
this relationship is linear for 0.54 , ayl , 0.73.
This latter method has the ability to measure wave
slope when adequate spatial resolution is not avail-
able. Partial internal reflection did not have a sig-
nificant effect on the behavior of either method. The
ray-tracing results presented here are particularly
promising because they excel at high values of ayl,
exactly the region in which existing techniques fail.
Future research will focus on imaging the profiles of
high-amplitude capillary waves to be used in the cal-
ibration of this method.

This research was performed while the author held
a National Research Council–Naval Research Labo-
ratory Postdoctoral Research Associateship.
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