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Abstract: Respirable coal mine dust represents a serious health hazard for miners. Monitoring
methods are needed that enable fractionation of dust into its primary components, and that do so
in real time. Near the production face, a simple capability to monitor the coal versus mineral dust
fractions would be highly valuable for tracking changes in dust sources—and supporting timely
responses in terms of dust controls or other interventions to reduce exposures. In this work, the
premise of dust monitoring with polarized light microscopy was explored. Using images of coal
and representative mineral particles (kaolinite, crystalline silica, and limestone rock dust), a model
was built to exploit birefringence of the mineral particles and effectively separate them from the coal.
The model showed >95% accuracy on a test dataset with known particles. For composite samples
containing both coal and minerals, the model also showed a very good agreement with results from
the scanning electron microscopy classification, which was used as a reference method. Results could
further the concept of a “cell phone microscope” type monitor for semi-continuous measurements in
coal mines.

Keywords: optical microscopy; polarized light; image processing; respirable coal mine dust; occupa-
tional health

1. Introduction

Respirable coal mine dust (RCMD) represents a serious health hazard for miners [1–12].
While the crystalline silica content in the dust has long been recognized as a major factor
in development of the most severe and rapidly progressive forms of occupational lung
disease, there is some evidence to suggest that other minerals such as silicates can also
play a role [13,14]. A recent report from the National Academies of Science, Engineering,
and Medicine [15] recommended the development of improved sampling and monitoring
techniques that enable the measurement of specific RCMD components, and ideally in real
time. The basic premise of this recommendation is of course that better capabilities to track
dust conditions should allow miners to more quickly and effectively respond to reduce
exposure risks [15].

Prior research suggests that there are generally three primary sources of respirable dust
in underground coal mines: (i) The coal seam itself, which contributes coal dust particles; (ii)
the rock strata surrounding the coal seam, which generally contributes silica, silicate, and
other mineral dust particles; and (iii) the rock dusting products applied to mine surfaces,
which are often composed of high purity limestone (i.e., calcium carbonate) [16–18]. Thus,
the ability to fractionate dust into its major components in some location of interest may
provide valuable insights about dust sources in that location [19]. For example, at the
production face where dust is primarily generated by the mining activity (i.e., cutting of
coal and adjacent rock strata), a simple measure of the coal to mineral ratio in the respirable
dust would be valuable for understanding the relative contributions of dust from each
source—and for targeting dust and exposure controls accordingly.
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At present, however, no device is available to make such measurements in real time.
Indeed, the relatively new continuous personal dust monitor has advanced near-real-time
monitoring of the whole RCMD mass concentration [20], but it cannot fractionate the dust
into its components. In addition, while portable spectroscopy can allow “end-of-shift”
measurements of silica and possibly other dust constituents [21], it still requires a filter
sample collected over hours. Practically speaking, the development of an RCMD monitor
that can do both real-time and component-specific measurements is challenged by the
analytical problem (i.e., quick measurement and classification of tiny particles), but also the
specific hardware constraints presented by coal mine environments (i.e., a monitor must be
field worthy, and safe to use where unique safety hazards can exist).

One approach that has not been considered is portable light microscopy. With respect
to the analytical problem, optical microscopy (OM) with polarized light has been a standard
approach to minerals identification for well over a century [22] and has been combined
with more sophisticated methods in recent years [23]. Relative to the specific problem
of distinguishing coal from mineral particles, OM techniques have been used in several
applications. The coal grain analysis (CGA), which uses reflected light microscopy with an
automated image processing system to characterize mineral particles, has been applied
(albeit to polished samples) from urban environments to classify coal and non-coal airborne
particulates [24,25]. Moreover, polarized light microscopy has been used to distinguish
between mineral and coal dust particles in lung tissue samples from miners affected by
occupational coal workers’ pneumoconiosis (CWP or “Black Lung”) [13,14,26]. In this case,
the mineral particles (i.e., silica and silicates) typically exhibit birefringence due to their
anisotropic crystalline structures, whereas the coal dust does not. If something analogous
can be achieved by semi-continuous sampling of RCMD, where particles are imaged
without sample preparation and where image processing is used to classify particles as
either coal or mineral dust, the basis for a new monitoring technology may be developed.

With respect to the challenges around the hardware, portable OM for field applications
is now possible [27]. Indeed “cell phone microscopes” have seen applications such as blood-
borne parasite detection [28,29], determination of cell size and morphology of yeast [29],
and rapid on-site asbestos detection [30], and automated image processing techniques
are rapidly progressing [31]. Furthermore, all that is really needed from the cell phone
microscope are the camera chip and relevant added optical elements. Thus, it seems plausi-
ble that these components could be combined with other existing components that have
already been approved for use in coal mines (e.g., light source, battery and air sampling
pump) to build a semi-continuous RCMD monitor that is both safe and efficacious.

Given the general idea of what such a monitoring concept might entail, the aim of the
work presented here is to show that the analytical premise is feasible. Specifically, this work
aims to demonstrate that OM with automated image analysis can be used to accurately
fractionate respirable-sized dust particles into two classes: Coal and minerals.

2. Experimental Details

The general approach to this work was to collect samples of respirable-sized particles
representative of RCMD components, image these particles with an OM under plane- and
cross-polarized conditions, and then use two digital algorithms to process the images.
The first employed an established technique to identify particles from the background
and extract feature data. The second algorithm was used to classify particles as either
coal or mineral, and was developed here by training a model with feature data acquired
on known particles (i.e., in single-material samples). Finally, the two algorithms were
applied to OM images of composite samples and the classification results were compared
to those from a scanning electron microscopy with energy dispersive X-ray (SEM-EDX)
method as reference. Details of each part of the experimental approach are described in the
following sections.
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2.1. Dust Sample Preparation

As noted earlier, previous research [19] suggests that there are four main particle types
comprising RCMD in most mines: Coal, silicate, silica, and carbonate, as shown in Figure 1.
To generate samples having particles of each type, four representative materials were used:
Coal particles were obtained from a pulverized clean bituminous coal product (sieved
to −230 mesh), which was received directly from an industry partner. Natural calcium
carbonate particles were obtained from a real (limestone) rock dust product, also received
from an industry partner. Silica particles were obtained from high purity silica powders
(MIN-U-SIL® 5 and MIN-U-SIL® 10, from US Silica, Katy, TX, USA). Silicate particles were
obtained from a high purity kaolinite powder (Ward’s Science, Rochester, NY, USA).
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Figure 1. Conceptual illustration of major RCMD sources and particle types.

Respirable dust samples were generated by aerosolizing the above products (one at
a time) in a small enclosure and sampling the particles using a standard train: Air pump
(Escort ELF type) operated at 2.0 L/min, 10-mm nylon cyclone (Dorr Oliver type, which
yields a D50 of ~4 µm at 2.0 L/min), two-piece styrene filter cassette (37 mm diameter).
As shown in Figure 2, inside the sampling cassette there was a polycarbonate filter (PC;
37 mm track etched with nominal 0.4 µm pore size) and cellulose support pad. On top
of the filter was a glass coverslip (~10 mm diameter). In this way, particle deposition
occurred on both the coverslip and the PC filter simultaneously. The collection time
was adjusted to achieve sufficient particle density for imaging while limiting interference
between particles. All the sampling equipment and supplies were obtained from Zefon
International (Ocala, FL, USA).
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Three single-material samples were collected for each of the four dust materials.
Additionally, a total of three composite samples were collected, each contained coal and
one type of mineral particles (i.e., kaolinite, rock dust, or silica). For the composite samples,
coal particles were first collected onto the PC filter with a coverslip and then the mineral
particles were collected onto the same filter with a coverslip.
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Following sample collection, the glass coverslips were carefully removed from their
respective PC filter and imaged under the optical microscope. The PC filters were prepared
for parallel analysis by the scanning electron microscope (SEM), as described below.

2.2. Image Acquisition

OM imaging was done with an Olympus BX53M Polarizing Microscope and the
Stream Start 2.3 imaging software (Olympus, Center Valley, PA, USA). To facilitate dis-
cussion of the imaging process and results, the region of a sample where an image is
acquired is referred to as a “frame”, and “image” refers to the data collected under specific
lighting conditions in that frame. For each frame, images were collected for four con-
ditions: Transmitted plane-polarized (TPP), transmitted cross-polarized (TCP), reflected
plane-polarized (RPP), and reflected cross-polarized (RCP) (see Figure 3). For each of the
single material samples, 50 frames were imaged yielding 600 images per material (Table 1).
For the composite samples, 20 frames were imaged yielding 80 images per sample. Table 1
also shows the total number of particles captured by the images of each material or sample.
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Figure 3. (a) Optical microscope setup; (b) four images obtained for each frame.

Table 1. Summary of image acquisition and total particles identified (Feret diameter > 11 pixels) in the dust samples. Sample
types are abbreviated as C: Coal; K: Kaolinite; RD: Rock dust; and S: Silica.

Dust Samples Number of
Samples

Frames
Imaged/Sample

Number of
Frames

Total Number of
Images

Total Particles
Identified

Single
material

C 3 50 150 600 69,080
K 3 50 150 600 45,687

RD 3 50 150 600 40,824
S 3 50 150 600 37,462

Composite
C + K 1 20 20 80 792

C + RD 1 20 20 80 615
C + S 1 20 20 80 6300

For image acquisition, the exposure time was fixed for each lighting condition to
avoid the saturation of pixels. To determine the appropriate exposure times, the automatic
exposure mode available in the Stream Start software was used to acquire a total of
10 images on samples that contained different particle types and loading densities. The
average exposure time was then calculated for each lighting condition and fixed for further
work as: 30.51 ms for TPP, 815.06 ms for TCP, 12.99 ms for RPP, and 122.44 ms for RCP.
To determine the appropriate color balance, a clean coverslip on a blank glass slide was
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imaged while illuminated by the microscope’s white LED light source set at 50% of its
maximum intensity. The color balance was then set so that the color adjustment of the
red, green, blue channels and saturation were 1.81, 1.00, 1.28, and 1.00, respectively. These
procedures ensured that, for example, a pixel at the same location of a specific object did
not vary from day to day in terms of the overall pixel intensity and the intensity for the
red, green, and blue channels. The Gamma correction and saturation were both set to 1.00.
A condenser aperture of 0.40 and an objective magnification of 40× were used for all of
the images obtained herein. The camera adapter used a 0.63× magnification, yielding a
total calibrated magnification of 25.008×. All the images were saved as 12-bit resolution
TIFF images using the RGB color space. The images were 2560 × 1920 pixels, with a spatial
calibration of 87.971 nm/pixel.

2.3. Image Processing
2.3.1. Particle Identification

The first step in image processing was to simply identify the particles in each frame.
To separate the particles from the background, a local adaptive thresholding algorithm
was used [32], which is a built-in function in the MATLAB® (R2021a) Image Processing
Toolbox called “adaptthresh”. This method computes a threshold for every pixel based
on the first-order statistics of neighboring pixels (e.g., mean, median), thereby accounting
for non-uniform illumination, changes in background intensities, and different intensity
ranges between objects in the image, and performing better than a global thresholding
approach. Here, a neighborhood size of 241 × 321 pixels was used to compute the local
threshold. This neighborhood window size was selected to enclose an area where the
illumination is approximately uniform. A sensitivity factor was also set to determine which
pixels get thresholded as foreground (particle) versus background. This factor can range
from (0,1). Higher values cause more pixels to be thresholded as foreground, while lower
values have the opposite effect—so it is important to optimize the sensitivity factor. Herein,
the sensitivity was set to 0.63, which was determined by trial-and-error until identification
of particle pixels visually matched with the expected output using randomly selected
images in the dataset as a reference.

The particle identification algorithm output was a binary image with each pixel labeled
as either particle or background. On this image, morphological operations were performed
to eliminate pixilation fuzz around particle boundaries and holes inside the particles. The
routine filled holes using iterative dilation-erosion for morphological closing using a pixel
connectivity value of 4. Preliminary exploration showed that the TPP images had the best
performance for particle identification (i.e., as opposed to the TCP, RPP, or RCP), so only
TPP images were used for this identification task.

Once the particles were identified in the TPP image from each frame, the resulting
binary mask was applied to all four images from the frame (TCP, RPP, RCP, and TPP) to
extract the location, grayscale intensities, and RGB intensities for all particle pixels in each
lighting condition. Then, the mean grayscale intensity and RGB intensities for each particle
were computed and stored.

2.3.2. Particle Classification

To distinguish between coal and mineral particles, the phenomenon of birefringence
was exploited. Under plane-polarized (PP) conditions, both coal and mineral particles can
be distinguished from the background. However, under cross-polarized (CP) conditions,
only anisotropic materials—such as the mineral types considered here—are clearly visible.
Figure 4 illustrates this simple premise: The coal particles (left half of each image) are
clearly visible in the PP condition, and are essentially invisible in CP. On the other hand,
mineral particles are somewhat more difficult to see in PP, but are clearly visible in CP.
Accordingly, a simple additive metric between the PP and CP particle intensities was used
to establish a threshold between the coal and mineral particles. For each PP and CP image
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pair (transmitted or reflected light), the mean greyscale intensity for each particle was
summed to determine the “added mean particle intensity” or AMPI.
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The left-hand side of each image contains only coal dust particles and the right-hand side contains only mineral particles.
Sample types are abbreviated as C: Coal; K: Kaolinite; RD: Rock dust; and S: Silica.

The AMPI metric was used to build a model for classification of particles as either
coal or mineral. For this, the image dataset compiled from the single-material dust samples
(including all 150 frames for each material) was split into training and test sets, which were
identical for the transmitted and reflected light images. The training dataset contained 90%
of the image frames, and the remaining 10% of the frames were reserved to test the model
performance. The particle size was limited to 11 pixels (about 1 µm) in Feret diameter
(defined as the maximum distance between two parallel tangent planes to the contour
of the particle). At this limit, the adaptive thresholding algorithm identified a total of
166,635 particles in the model training dataset and 26,418 particles in the test dataset.
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Figure 5 shows the distribution of AMPI values for all coal and mineral (i.e., rock
dust, kaolinite, and silica) particles used for model training with both the transmitted and
reflected light PP and CP image pairs. The optimal AMPI threshold in both cases was
obtained by iteratively selecting a threshold and computing the resulting accuracy (defined
as the percentage of particles correctly classified relative to the total number classified
by the model). The model using transmitted light images yielded an accuracy of more
than 97% (within the training dataset), while the reflected light model yielded about 72%
accuracy. Thus, the transmitted light model was selected for further work.
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(a) transmitted and (b) reflected PP and CP image pairs. The distribution includes the same 166,635 particles in both plots,
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When the transmitted light AMPI model was challenged using the test dataset reserved
from the single-material sample frames, an overall accuracy of 95.7% was achieved (Table 2).
Of the 26,418 total particles in this dataset, 14,394 (54.5%) were in the C sample frames (and
thus presumed to be coal and not mineral) and the other 12,024 (45.5%) were in the RD,
K, or S sample frames. The model misclassified 1098 particles from the C sample frames
(representing 7.6% of the coal particles), and 52 particles across all the mineral samples
(0.4%). The excellent model performance is visually illustrated in Figure 6.

Table 2. Transmitted light added mean particle intensity (AMPI) classification model results on the training and test datasets
using particles from single-material samples.

Dataset/Output C K RD S

Training set (97.4%)
True 55,583 40,988 36,697 35,174

Predicted 52,052 (93.7%) 40,489 (98.8%) 36,642 (99.8%) 34,923 (99.3%)
Misclassified 3531 (6.3%) 499 (1.2%) 55 (0.2%) 251 (0.7%)

Test set (95.7%)
True 14,394 5139 4399 2486

Predicted 13,296 (92.4%) 5100 (99.2%) 4399 (100.0%) 2473 (99.5%)
Misclassified 1098 (7.6%) 39 (0.8%) 0 (0.0%) 13 (0.5%)
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2.4. SEM-EDX Analysis

As described above, concurrent with the collection of dust particles on the glass
coverslips for OM, particles were also collected on PC filters for analysis by SEM-EDX.
One or two filters from each of the single-material samples, and all three composite sample
filters were prepared and analyzed following the procedures detailed in Sarver et al. [19].

Briefly, a 9-mm subsection of the sample filter was carefully cut, and sputter coated
with Au/Pd. The samples were analyzed with a FEI Quanta 600 FEG environmental SEM
(FEI, Hillsboro, OR, USA) equipped with a Bruker Quantax 400 EDX spectroscope (Bruker,
Ewing, NJ, USA). A computer-controlled routine described by Johann-Essex et al. [16]
was used to select, size, and classify about 500 particles (1–10 µm) per sample using the
classification criteria shown in Table 3. The routine was run using Bruker’s Esprit software
(version 1.9), and the following SEM settings: 1000× magnification, 12.5 mm working
distance, 15 kV accelerating voltage, 5.5 µm spot size.

Table 3. SEM-EDX particle classification criteria.

Particle Class
Atomic% by SEM-EDX

O Al Si C Mg Ca Ti Fe

Carbonaceous <29.00 ≤0.30 ≤0.30 ≥75.00 ≤0.50 ≤0.41 ≤0.06 ≤0.15
Mixed carbonaceous <0.35 <0.35 ≤0.50 ≤0.50 ≤0.06 ≤0.06

Alumino-silicates ≥0.35 ≥0.35
Silica 1 ≥0.33

Carbonate >9.00 >0.50 >0.50
Heavy minerals >1.00 >1.00 >1.00

1 Additional limits for S: Al/Si < 1/3.

Table 4 shows the SEM-EDX classification results, displayed on a percentage area
basis, which was calculated by summing the measured area of all the particles in a given
class and dividing by the total area of particles in all classes. Results for the single-material
samples verify the high-purity of the materials used to generate the dust. As expected,
coal particles were primarily classified as carbonaceous and mixed carbonaceous, kaolinite
particles were classified as alumino-silicate, rock dust was primarily classified as carbonate,
and silica was classified as silica. The composite sample results are also shown in the table
and are later compared to the OM results.



Minerals 2021, 11, 838 9 of 15

Table 4. SEM-EDX classification results on the single-material and composite samples containing coal plus one mineral.

Dust Sample
Area % of All Particles

Particles
AnalyzedCarbnaceous Mixed Car-

bonaceous
Alumino-
Silicates Silica Carbonate Heavy

Minerals Other

Single
material

S
0.3 0.3 0.0 99.4 0.0 0.0 0.0 500
0.1 0.2 0.0 99.7 0.0 0.0 0.0 533

K 0.0 0.0 100.0 0.0 0.0 0.0 0.0 550

RD
0.6 1.0 0.9 0.0 97.0 0.0 0.6 500
0.9 0.7 0.3 0.0 98.2 0.0 0.0 550

C
98.5 1.3 0.1 0.0 0.0 0.0 0.1 550
99.9 0.1 0.0 0.0 0.0 0.0 0.0 550

Composite
C + K 8.8 17.4 73.8 0.0 0.0 0.0 0.0 500

C + RD 85.9 1.4 0.0 0.0 12.6 0.0 0.0 500
C + S 92.2 2.6 0.1 4.8 0.0 0.0 0.3 500

3. Results

The particle identification algorithm and AMPI classification model were applied to
the transmitted light images from all 20 frames analyzed for each of the composite dust
samples (i.e., C + RD, C + K, or C + S). Figure 7 shows an example of the results for each
composite sample. The left column of the figure shows TPP images, the middle column
shows TCP images, and the right column shows the model classification. In the TPP images,
particles that exhibit high contrast with the background can be visually identified as coal,
and particles that exhibit less contrast are believed to be minerals. In the TCP images, the
mineral particles exhibit higher contrast, especially those in the samples containing rock
dust and kaolinite. While the silica particles are less birefringent and hence illuminate
less intensely in the TCP images, a great benefit of the suggested AMPI approach is that it
fundamentally accounts for the change in intensity from TPP to TCP, which enables the
classification of silica as mineral.

Figure 8 summarizes the classification results for all three composite samples and
compares them to the SEM-EDX reference. The OM results represent the classification of
all particles identified in the 20 composite frames imaged for each sample. The SEM-EDX
data are collapsed from Table 3, with the carbonaceous and mixed carbonaceous classes
being summed to yield the coal fraction, and all the other classes being summed to yield
the mineral fraction. For both OM and SEM-EDX, the coal and mineral fractions were
computed by summing the areas of all particles in each class and dividing by the total
area of all the particles identified. Overall, the OM results agree quite favorably with the
SEM-EDX output, deviating by only 2.6%, 11.5%, and 1.0% for the C + K, C + RD, and
C + S samples, respectively.

The particle size data derived from the OM and SEM-EDX analyses were also used to
construct cumulative particle size distributions (CPSDs) for each dust sample based on the
Feret diameter (Figure 9). For the single-material samples (Figure 9a), the CPSDs represent
all the particles included in either the OM or SEM-EDX datasets. For the composite samples
(Figure 9b–d), separate coal and mineral curves were determined based on the classification
results. Again, the OM results compare favorably with the SEM-EDX CPSDs for the single-
material samples, particularly those for the three minerals. Here, the average deviation of
the experimental results from the SEM-EDX output is 2.3%, 0.3%, 2.9%, and 8.7% for K, RD,
S, and C, respectively. For coal, the OM measures the particles as being slightly coarser than
the SEM-EDX, which might be related to differences in determining coal versus mineral
particle boundaries in the TPP images.
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Figure 7. Coal versus mineral classification on composite samples containing (a–c) C + K, (d–f) C + RD, and (g–i) C + S. In
each row, the left image shows the TPP input image, the middle image shows the TCP image, and the right image shows the
model output with coal particles outlined in blue and mineral particles outlined in orange.

For the composite samples, the OM results do not agree as well with the SEM-EDX
output. This performance is most likely an artifact of the much lower particle counts
included in the CPSDs for these samples. For example, based on the estimated 3–5% silica
in the C + S sample and the total particle counts shown in Tables 1 and 4, the OM and
SEM-EDX mineral curves for this sample only include about 158 and 26 silica particles,
respectively. Particle counts were also relatively low for coal in the C + K sample and rock
dust in the C + RD sample. Furthermore, it should be noted that any differences in particle
deposition during sampling on the glass coverslips used for OM and the PC filters used for
SEM-EDX could contribute to discrepancies in the CPSDs derived from the two methods.
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4. Discussion

The OM approach demonstrated here for fractionating coal and minerals in respirable
dust samples shows real promise. The classification results shown in Figure 8 were obtained
with no sample preparation between the dust collection and image acquisition. That is to
say, unlike the typical use of birefringence in mineralogy, here the particles are not fixed in
resin and polished, nor are any other steps taken to ensure that the mineral particles have
their crystal structures oriented in any particular way with respect to the incident light
polarity. Moreover, the classification model is relying on a single particle feature (AMPI)
that requires just two images. The success of such a simple approach bodes well for the
development of an actual field monitoring approach: It is relatively easy to implement and
troubleshoot, has low computational costs, and the results are easy to interpret—potentially
enabling more rapid scaling of the concept.

This approach might be easily applied underground if a monitoring device can be
built using components that are already approved as intrinsically safe (e.g., pumps, lights,
batteries) or that do not pose specific safety hazards (e.g., cyclones, glass slides, objective
lenses, polarization filters). A real-time application will require a control system to collect
and analyze the samples automatically. In this case, the circuits and electrical components
need to be designed to avoid and dissipate heat or spark energy, and would require testing
and certification by MSHA for US mines.

All that said, possible improvements to the current approach should also be considered.
For example, while a ~1-µm lower size limit was imposed on particle length to build and
apply the AMPI classification model (i.e., such that results could be directly compared
with those from the SEM-EDX method), increasing this limit somewhat might improve
the model accuracy. Figure 10 shows the expected AMPI model accuracy as a function of
minimum particle size. The figure was generated using the same single-material sample
images used to build the original model, by setting a series of lower size threshold values
and iteratively training the model at each instance. For the training dataset used in this
study, the maximum model accuracy predicted is about 99% at the lower particle size limit
of about 27 pixels (2.4 µm). Incidentally, the application of the ~2.4-µm model to the three
composite samples analyzed here would not significantly change the OM classification
results shown in Figure 8.

Other routes to the improved classification performance could include the use of
additional particle features, such as particle texture and directionality of pixel intensities
across particles. For instance, microscope observations on mineral samples showed dark,
pronounced particle outlines (or Becke lines [33]) and relatively high variability in pixel
intensities across particles. In contrast, coal particles showed a uniform dark appearance.

The non-uniform deposition of particles on the filter has been recognized as a factor
that influences air sample representativeness. The deposition of larger particles in the
central area of the filter can occur due to high flow rates through the inlet of the sample
cassette [34]. The glass coverslip used for the OM analysis was attached to the filter in
the central area. On the other hand, the area of the filter sampled for the SEM analysis
was towards the edge. Thus, coarser particles may deposit on the coverslip compared
to the OM approach, and this may explain the differences between OM and SEM results.
Future work should concentrate on testing the proposed approach using real-world coal
mine dust samples and validating the results against the methods currently available for
characterizing RCMD.
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set is also shown in the right orange axis.

Finally, it is worth mentioning that, while particle agglomeration generally did not
appear to be a problem for the samples included in the current study, agglomeration would
present obvious limitations for an OM-based dust monitor. Not only can agglomeration
make particle identification more difficult since boundaries are obscured, but it might also
confuse classification efforts when particles’ optical properties interfere with one another.
Thus, a key consideration for building a semi-continuous monitor must be how to control
the particle loading density on the sampling and imaging substrate.

5. Conclusions

Monitoring technologies that enable the measurement of specific respirable coal mine
dust (RCMD) components, in near real time are needed. Therefore, the potential of using
optical microscopy (OM) to meet this need has not been explored. The results presented
here are promising showing that, at least in a laboratory environment, the OM method with
automated image processing can provide accurate quantification of the coal and mineral
fractions RCMD. Such information could be quite valuable, particularly near the mine
production face where dust generation is high and understanding the relative contributions
of coal and rock strata would allow quick interventions with respect to dust control and
exposure prevention.

The OM approach demonstrated here requires just two images of dust particles on a
glass substrate—one in plane-polarized light and the other in cross-polarized light—and a
set of training data. No sample preparation is needed. Accordingly, the implementation of
this approach in the field can certainly be envisioned with a careful selection of the key
components: A suitable camera, objective lens, and polarization filters, along with a light
source, programmable dust sampler, and battery. Given the rapid advances in “cell phone
microscopy” and existing intrinsically safe hardware for coal mines, these seem feasible.

Finally, it should be mentioned that no attempt was made here to subclassify the
minerals, though this would be valuable—especially for silica. To this end, future work
should also consider how to exploit the differences between topological and/or optical
features of the primary mineral types expected in RCMD.
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