
A
t

N
J
C
D
C
E

1

T
a
t
s
s
c
i
f
a
f
k
s
b
r
a
h
a
d
H
p
a

t
b
N
F
t
b
e
b
c
t
s
t
i

0

Optical Engineering 47�3�, 037011 �March 2008�

O

pplication of a histogram modification algorithm
o the processing of raindrop images

ithya A. Sivasubramanian
ohn R. Saylor
lemson University
epartment of Mechanical Engineering
lemson, South Carolina 29634-0921
-mail: jrsaylor@ces.clemson.edu

Abstract. Automatic processing of digital images of falling raindrops is
complicated by a less than ideal grayscale image histogram. These his-
tograms do not display a bimodal shape and lack an easily defined mini-
mum, making it difficult to choose a threshold for creating a binary im-
age. To help identify peaks in these histograms, and simplify threshold
selection, a histogram modification technique originally developed by
Peleg is used. This method was modified slightly and then applied to
raindrop image processing. Its performance is quantified. © 2008 Society of
Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.2899101�
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Introduction

he measurement of the rainfall rate over large areas is
chieved primarily using precipitation radars. These are
ypically single polarization radars in operational weather
tations, and dual polarization radars are often used in re-
earch applications.1 Although radars provide large spatial
overage, the accuracy of measured rainfall rates are lim-
ted due to several error sources. One such source stems
rom the fact that the statistical distribution of raindrop size
nd shape must be known to accurately extract rainfall rates
rom radar data. Errors are introduced due to imperfect
nowledge of the statistical distribution of the size and
hape of raindrops.2,3 Specifically, the raindrop size distri-
ution �DSD� is needed. Improvements in the accuracy of
ainfall estimates obtained by radars can be obtained from
n improved understanding of the DSD. Theoretical models
ave been developed to predict the shape of raindrops,4,5

nd laboratory measurements have been carried out with
rops of different sizes to understand their behavior.6–8

owever, much work remains to be done in this area, es-
ecially in obtaining field measurements of raindrop size
nd shape.9

A particularly useful method for measuring the DSD in
he field is to image raindrops as they are illuminated from
ehind,10,11 a method that has recently been developed by
ASA in the form of the Rain Imaging System �RIS�.12

igure 1 shows the general optical setup used in this sys-
em, where the camera records images of drops as they are
acklit by a lamp, resulting in an image of the drop silhou-
tte. A sample grayscale image of a drop obtained from this
acklit configuration is shown in Fig. 2�a�. A bright spot
an be seen in the center of the drop, which is the image of
he light source, as seen through the drop. These bright
pots or “holes” in the drop image are present only when
he drop resides within the depth of field of the camera, that
s, it is in focus. This characteristic is useful in digital im-
091-3286/2008/$25.00 © 2008 SPIE
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age processing of drop images because it provides an ob-
jective criterion for determining whether or not a drop is in
focus.

To obtain DSDs using imagery obtained from the system
illustrated in Fig. 1, the grayscale images must first be
thresholded, and a determination must be made as to
whether a hole exists in each raindrop image. If a hole
exists, the drop is then sized. By performing this operation
on a large number of raindrop images, a DSD can then be
computed. Sample grayscale images of an in-focus and out-
of-focus raindrop are presented in Figs. 2�a� and 2�c�, re-
spectively. Thresholded versions of these two images are
presented in Figs. 2�b� and 2�d�, respectively.

Saxena and Saylor13 calculated the dof �depth of field�
of the system shown in Fig. 1, using the following equa-
tion:

dof = ze − zs, �1�

where z is the distance from the camera along the optical
axis, and zs and ze are the z positions where observation of
a hole “starts” and “ends,” respectively. Here z increases
with distance from the camera. This definition for dof is
used in the present study as well. For images having a hole,
the measured diameter Dm is computed by counting the
number of pixels that fall within the drop boundary using
the following equation:

Dm = 2�Ad

�
, �2�

where Ad is the area of the drop �in mm2� and is given by

Ad = np � 0.05 � 0.1, �3�

where np is the number of pixels falling within the drop
boundary and 0.05 and 0.1 are the pixel resolutions �mm/
pixel� used in this work for the x and y directions, respec-
tively. Note that Ad includes all pixels inside the drop

boundary, including pixels comprising the hole.
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Generally speaking, the smaller the dof, the more accu-
ate is the measured drop size Dm. This is because drops
hat are closer to �farther from� the camera than the focal
oint will appear bigger �smaller� than an equivalently
ized drop at the focal point. Unfortunately, as for any dis-
ribution, attaining a statistically converged measure of the
SD requires a large number of measurements. The num-
er of measurements can be increased simply by recording
mages for a longer period of time. Because rain storms are
f finite duration, and the statistics of raindrops may evolve
uring the course of a storm, it is desirable to obtain a
onverged DSD in a relatively short period of time. Hence,
large dof is desired because the number of drops that fall
etween the light source and the camera illustrated in Fig. 1
s finite at a given rain rate. Because dof and Dm are effec-
ively determined by the threshold used, the tradeoff be-
ween dof and measurement accuracy is a function of the
hresholding method employed.

Ideally, the threshold used to convert a grayscale image
o a binary one is obtained by identifying a minimum in the
istogram. This requires a bimodal histogram or at least a
istogram with clearly defined minima and maxima. How-
ver, the histograms of images obtained from direct optical

Fig. 1 Raind

ig. 2 Sample images of raindrops: �a� in-focus grayscale version,
b� in-focus binary version obtained after thresholding, �c� out-of-

ocus grayscale version, and �d� out-of-focus binary version.

ptical Engineering 037011-
imaging of raindrops are highly irregular and multimodal.
A histogram obtained from a sample raindrop image is pre-
sented in Fig. 3, revealing the lack of an easily defined
minimum. The process of threshold selection for these
complicated histograms becomes easier if the peaks and
valleys in the histogram are enhanced to reveal the domi-
nant gray scale levels. Histogram modification techniques
are sometimes used to sharpen the peaks for histograms
like those in Fig. 3.14–16 This procedure can follow an it-
erative or noniterative scheme; however, noniterative tech-
niques require the histogram of the image to be close to
bimodal in the first place,17 suggesting an iterative ap-
proach for the present case.

Peleg14 developed an iterative histogram modification
algorithm that reduces the irregularity in the input histo-
gram by reducing the number of nonzero bins to a number
small enough to simplify the threshold selection. In Fig. 4,
the histogram is presented that is obtained by applying Pe-
leg’s algorithm to Fig. 3. The figure shows a significant
reduction in the number of nonzero bins.

Peleg’s algorithm iteratively sharpens the peaks of a his-
togram by considering the number of pixels Bi having a
particular gray scale level i and comparing it with the av-
erage of the number of pixels A in the neighboring R bins
on either side of i. Whenever the frequency of the gray
scale level under consideration Bi is greater than the aver-
age of the number of pixels A, the fraction X is calculated

aging setup.

Fig. 3 Sample histogram of a raindrop image obtained using the
rop im
setup in Fig. 1.

March 2008/Vol. 47�3�2
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=
�Bi − A�

Bi
, �4�

nd this fraction of pixels is shifted from each of the bins in
he neighborhood R to their neighboring bin nearest to i.
his process is repeated until the histogram of the image
onverges to a final state. Following the treatment pre-
ented by Peleg,14 the pseudocode is as follows:

or n=1,2 ,3 , . . ., total number of iterations
�
for i=1,2 ,3 , . . ., total number of gray scale

evels
�
Calculate the average A of the neighbor-

ng 2�R bins
if Bi�A

�
X= �Bi−A� /Bi

for j=R , . . . ,1
�
Move Bi+j �X pixels from Bi+j to

i+j−1

�
for j=R , . . . ,1

�
Move Bi−j �X pixels from Bi−j to

i−j+1

�
�

�
�
The original version of the Peleg algorithm described

bove resulted in images that, when thresholded, gave
omewhat rough boundaries for the drop and hole edge. We
xperimented with altering the Peleg algorithm in an at-

ig. 4 Histogram obtained after convergence of the Peleg algorithm
hen applied to the histogram in Fig. 3.
empt to create smoother boundaries without resorting to a

ptical Engineering 037011-
separate smoothing algorithm and found that improvements
were obtained by reversing the order in which pixels are
moved in the neighborhood R. Specifically, smoother
boundaries were obtained by changing the sequence of
moving pixels from the outer edge inward �as is the case in
Peleg’s original approach�, to moving pixels from the bin
closest to the center bin in the neighborhood and then pro-
ceeding outward. This modification is achieved by chang-
ing the above algorithm so that the central two loops in the
algorithm are changed from “for j=R , . . . ,1” to “for j
=1, . . . ,R.” The effect of this change is shown on two ex-
ample images in Fig. 5. Hereinafter, the “Peleg algorithm”
refers to this modification of the original Peleg method.
Figure 6 shows the evolution of the histogram of an image
for different numbers of iterations using this modified Peleg
algorithm.

We note in passing that Bhattacharya and Yan18 present
a method where the image is divided into subwindows, and
then the Peleg algorithm is applied locally to these subwin-
dows. This method tends to preserve the initial appearance
of the image and is relevant to images whose histograms
are significantly different in different regions of the image.
Because the goal of the current study is to process images
consisting only of raindrops, characterized essentially by a
single histogram, the capability provided by Bhattacharya
and Yan18 is not relevant here.

In the present work, images were collected from the
setup shown in Fig. 1 over a large range in z. The Peleg

Fig. 5 Sample images showing the performance of the Peleg algo-
rithm and the modified Peleg algorithm. The images on the left were
obtained using the Peleg algorithm and those on the right were ob-
tained using the modified Peleg algorithm. For both cases, R=9.
algorithm was applied to each image until convergence in

March 2008/Vol. 47�3�3
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Fig. 6 The histogram of an image at different stages of application of the Peleg algorithm: �a� original
histogram, �b� 2 iterations, �c� 5 iterations, �d� 8 iterations, �e� 15 iterations, �f� histogram after conver-

gence �37 iterations�.

ptical Engineering March 2008/Vol. 47�3�037011-4
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he histogram was achieved. Figure 7 is the converged his-
ogram of a raindrop image. This histogram shows that,
lthough the number of nonzero bins is significantly re-
uced, even these improved histograms are not bimodal,
nd hence a method for choosing a threshold is required.
y trial and error, it was found that the bin corresponding

o the most populated bin in the modified histogram gave
he best result in terms of identifying the hole in the image.
igure 7 identifies the threshold value for this particular
istogram.

After applying the Peleg algorithm to all of the recorded
mages, the depth of field and diameter were computed.
his process was repeated for two drop sizes and a range of
. The objective of this work is to determine what value of
gives the largest depth of field while accurately measur-

ng the diameter of the drop.
Although the application that we are primarily interested

n is raindrop imaging, the measurement of liquid drop
izes is also relevant to several other applications. For ex-
mple, an understanding of the atomization of fuel into a
pray of droplets is critical to combustion processes in en-
ines and gas turbines. In agricultural applications, the ef-
ciency of insecticide and herbicide deposition relies on the
haracteristics of the liquid spray. The DSDs of paint and
oating sprays partially determine the quality of the result-
ng coating or film. The direct imaging of droplets de-
cribed herein can be extended to the smaller drop sizes of
hese industrially relevant sprays, and the image processing
lgorithms presented herein would extend to such applica-

Fig. 7 Final histogram of an image obtained afte
old selection method.
ions as well.

ptical Engineering 037011-
2 Procedure

To achieve the objective of this work, drops having a
known diameter were needed so that the measured drop
size could be compared to the actual drop size. Because of
the practical difficulties associated with consistently pro-
ducing water drops of a known diameter, magnesium fluo-
ride spheres were used instead of water drops. Magnesium
fluoride was chosen because it has a refractive index �n
=1.38� very close to that of water �n=1.33�.19 Figures 8�a�
and 8�b� show the grayscale and binary images of an in-
focus magnesium fluoride sphere, and Figs. 8�c� and 8�d�
show the grayscale and binary images of an out-of-focus
sphere.

The experimental setup used to obtain these images was
an indoor version of the setup presented in Fig. 1. A per-
sonal computer controlled by a LABVIEW code was used to
acquire and store images. The setup had a stand, the posi-
tion of which was varied along the optical axis. This stand
consisted of a horizontal extension mounted with a plate
having a hole through which the magnesium fluoride
spheres were dropped. The stand can be located anywhere
within 15 cm on either side of the focal point with a reso-
lution of 1 mm. The stand was moved to positions over a
large range of z. At each z location, images were acquired
of the sphere as it fell through the field of view of the
camera. The size of the image frame was 640
�240 pixels. The magnification of the camera was ad-
justed to obtain a pixel resolution of 0.05 mm /pixel on the

ication of Peleg algorithm illustrating the thresh-
r appl
x axis and 0.1 mm /pixel on the y axis. The camera lens

March 2008/Vol. 47�3�5
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as set to f /#=4.0, and the camera had an 8-bit dynamic
ange. Further details of the experimental setup can be
ound in Saxena and Saylor.13

Images were acquired over a 30-cm range of z, centered
n the focal point. The images were acquired far from the
amera and then progressively inward, crossing the focal
oint and then continuing closer to the camera. These im-
ges were processed, and the z location where processed
mages started and stopped exhibiting a hole was taken as
he starting location zs and ending location ze of the dof,
espectively. Because the volume of data acquired in this
aboratory study was not overwhelming, the presence or
bsence of a hole was determined manually. Images were
ecorded at finer intervals �1 mm� near the edges of the dof
o obtain the precise values of zs and ze. Images were col-
ected for 3- and 8-mm spheres, and the algorithm was
ested on these images for R ranging from 1 to 109. The
ffect of R on dof and Dm was determined. Only images
here the drop resided completely within the image frame
ere considered in this work.
Examination of the binary images obtained using the

eleg algorithm showed that the range of z over which the
inary images exhibited a hole was not always continuous.
n some cases, a range of z would exhibit a hole in the
inary imagery, followed by a small range of z where a hole
as not exhibited, followed by another range for which a
ole was exhibited. In these situations, the use of Eq. �1� to
etermine the dof would result in inaccuracies. Hence the
epth of field for the Peleg algorithm was actually obtained
y summing over only those regions where a hole was ex-
ibited

of = �
i

�zi − zp� , �5�

here zi is the set of locations where the image of the drop
xhibits a hole, and zp is the location of the image preced-
ng zi.

Figures 9 and 10 show examples of how the measured
iameter varies with z for an 8-mm sphere and a 3-mm
phere, respectively. The vertical lines on each graph show
he hole start and the hole end positions. The distance be-
ween the two lines is the depth of field. Note that Dm is
maller than D near the start of the dof then increases to a
alue close to D near the focal point and decreases to a
maller value near the end of the dof.

An average measured diameter �D� was computed to
scertain the performance of the Peleg algorithm for differ-
nt values of R. As can be seen in Fig. 9, a large z spacing
etween successive images was used near the center of the
of. Due to this unequal z spacing, �D� was computed as a
eighted average of the measured diameters over the dof

D� =
�i�si � Dmi�

dof
, �6�

here Dmi are the measured diameters obtained at each
ocation i where the image of the drop exhibits a hole, and
i is the distance between that location and the previous

ocation.

ptical Engineering 037011-
3 Results
Figure 11 is a plot of the dof versus R for the 8- and 3-mm
diameter spheres showing a decrease in dof with R. This
plot presents dof data for R�13 and R�9, respectively.
For R�13 for the 8-mm sphere, the dof was found to be
larger than the current maximum dof but the images ob-
tained for these values of R were anomalous and of low
quality. An example of such a poor quality binary image is
shown in Fig. 12 for R=1. Similar imagery was obtained
for other neighborhood values in the range R�13, justify-
ing their exclusion. For R�75, the dof obtained is very
small compared to the dof obtained for other R values, and
these are also omitted. For similar reasons, the neighbor-
hood range considered for a 3-mm sphere is R= 	9,75
.

To determine the effect of the neighborhood on the di-
ameter of the drop, the average diameter �D� is calculated
for each value of R considered. Figure 13 shows the varia-
tion of the average diameter with R for an 8- and 3-mm
sphere. For both plots, �D� increases with R.

4 Discussion
Figures 9 and 10 show that the measured D decreases as
one moves away from the focal point �moves toward the
edges of the depth of field�. This is because the image be-
gins to blur as soon as the drop is moved away from the
focal point. The threshold chosen results in a drop bound-
ary that moves in toward the center of the drop as the drop
location gets farther from the focal point, regardless of

Fig. 8 �a� Sample grayscale image of an in-focus sphere. �b� Binary
version of �a� obtained after thresholding. �c� Sample grayscale im-
age of an out-of-focus sphere. �d� Binary version of �c� obtained
after thresholding.
whether the drop is moved closer to the camera, or farther

March 2008/Vol. 47�3�6
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rom the camera. The rate of decrease in measured D is
pproximately the same when moving toward the camera as
way from the camera. However, as Figs. 9 and 10 show,
he range of z over which a hole is observed in the center of
he image is larger when moving away from the camera
han when moving toward it. The reason for this is that as
ne moves away from the camera, one is also moving to-
ard the light source. This results in a greater amount of

Fig. 9 Plot of Dm versus z for a sphere having
vertical dashed lines in this figure indicate wh
indicates the focal point.

Fig. 10 Plot of Dm versus z for a sphere having
vertical dashed lines in this figure indicate wh

indicates the focal point.

ptical Engineering 037011-
light collected by the drop �if one thinks of the drop as a
lens�, and so the spot in the center of the drop image “lasts”
longer on this side of the focal point.

Figures 11 and 13 show that dof and �D� are inversely
related, that is, as the dof increases the average measured
diameter decreases and vice versa. These figures show that
if the R value in the region having the largest dof is chosen

m. The neighborhood value is R=18. The two
dof begins and ends. The vertical solid line

m. The neighborhood value is R=18. The two
dof begins and ends. The vertical solid line
D=8 m
ere the
D=3 m
ere the
March 2008/Vol. 47�3�7
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s the optimum R, then a small average diameter results.
he variation of the measured diameter with z, discussed in
ec. 2 is responsible for the decrease in �D� with increasing
of. As the dof increases, the number of images obtained at
ocations far away from the focal point increases, thereby

Fig. 11 Plot of depth of field dof versus neigh
D=8 mm ���.

ig. 12 Poor quality binary image obtained for an 8-mm sphere
hen using a neighborhood size of R=1. The sphere was located at
he focal point, z=200 cm.

ptical Engineering 037011-
increasing the number of measured diameter values smaller
than the actual diameter and this causes �D� to decrease
from the actual value. Even though the variation of dof
with R and the variation of �D� with R show the same trend
for the 8- and the 3-mm spheres, it is found that the trade-
offs are not the same for each diameter. So, to obtain the
best results, an optimal value of R must be chosen for each
diameter.

To evaluate the performance of the Peleg algorithm for
different values of R, a figure of merit C was defined

od size R for spheres with D=3 mm ��� and

Fig. 13 Plot of the average diameter �D� versus neighborhood size
borho
R for a sphere with D=8 mm.

March 2008/Vol. 47�3�8
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=
dof � 100

��D� − D�
. �7�

quation �7� is a ratio of dof to the error in the measured
iameter. Plots of C versus R are presented in Figs. 14 and
5. These two figures indicate that the best performance of
he Peleg algorithm based on C occurs for R=66 for an
-mm sphere and R=56 for a 3-mm sphere. Knowledge of
he variation of dof with �D� provides flexibility in choos-
ng the desired dof within the required accuracy for the
iameter. For example, for an 8-mm sphere, if the diameter
s to be estimated with the least possible error, then R=70
ill give the desired results. On the other hand, if the maxi-
um possible dof is desired, then R=10 should be selected.
From the plot of dof versus R for a 3- and an 8-mm

phere �Fig. 11�, it can be seen that the depth of field varies
ith the size of the drop for a given value of R. For a 3-mm

phere, the dof obtained is smaller than that obtained for an
-mm drop. This is because the number of pixels in a 3-mm

Fig. 14 Plot of C versus neighborhood size R for D=8 mm.
Fig. 15 Plot of C versus neighborhood size R for D=3 mm.

ptical Engineering 037011-
sphere is smaller than that for an 8-mm sphere. That is, as
the size of the sphere gets smaller, the size of the hole in
the image does as well. Because the smallest hole is 1 pixel
in size, a smaller sphere will necessarily have a smaller
range of z over which a hole will be observed, namely, a
smaller dof.

It is noted that in the work presented here, the minimum
sphere diameter used was 3 mm, but raindrops can have
diameters considerably less than 3 mm. However, by using
a higher magnification ratio lens, smaller droplet diameters
can be imaged, and hence the only real lower limit to the
overall method presented here is the diffraction limit for the
wavelength of light used. That is, the performance of the
Peleg algorithm presented here should be the same for rain-
drop images much smaller than the spheres imaged in this
work should those images be obtained with a system hav-
ing a magnification ratio that brings them to a size in pixels
comparable to those images presented here.

5 Conclusion
The purpose of the study was to develop a method to obtain
measurements of DSDs. To achieve that objective, accurate
measurements of the drop size are required along with a
large depth of field. From the results obtained from this
study, it is seen that there is a trade-off between the two.
This is because a larger depth of field results in a larger
variation of diameters and thereby reduces the accuracy of
the diameters obtained. On the other hand, a smaller depth
of field will give more accurate estimates of diameters but
this is not of much practical use. Although the Peleg algo-
rithm investigated here does not eliminate this trade-off, it
permits the user control over the trade-off via the neighbor-
hood size R.
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