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Experimental observation of Faraday waves in soft gels
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We report the experimental observation of Faraday waves on soft gels. These were obtained using agarose in
a mechanically vibrated cylindrical container. Low driving frequencies induce subharmonic standing waves with
spatial structure that conforms to the geometry of the container. We report the experimental observation of the
first 15 resonant Faraday wave modes that can be defined by the mode number (n, £) pair. We also characterize
the shape of the instability tongue and show the complex dependence upon material properties can be understood

as an elastocapillary effect.
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Faraday waves [1] are a paradigm for pattern formation on
interfaces and have been used to study nonlinear and emergent
phenomena in liquids for some time [2,3]. Recent interest in
tissue engineering [4] has motivated the use of surface waves
to control the assembly of particles [5—7] and organoid cells
[8] in bioprinting technologies [9]. These technologies often
use soft hydrogels as the working material [10] and require
precise spatial and temporal controls of the surface pattern.
Much of the work on bioprinting has focused on the use of
drop deposition or extrusion of gels to create cell patterns, and
there have been comparatively few studies of the formation of
surface waves on soft gels [11,12]. In this Rapid Communica-
tion, we report the experimental observation of low-frequency
Faraday waves on soft gels and characterize the shape of
the resonant “instability tongue” which exhibits a complex
dependence on the elastocapillary properties of the gel.

Instabilities develop when the energy balance in a sys-
tem changes from favorable to unfavorable resulting in a
bifurcation into a new state. For Faraday waves on liquids,
there is a competition between the mechanical energy sup-
plied by vibration, the restorative energy of surface tension,
and dissipation due to viscosity. When this balance becomes
unfavorable, i.e., when the mechanical energy outweighs dis-
sipation, a standing wave emerges on the surface of the liquid.
Benjamin and Ursell [13] showed that Faraday waves occur
inside the instability tongues (neutral stability curves) of the
Mathieu equation and that the surface wave dynamics could
be subharmonic (half the driving frequency), harmonic (equal
to the driving frequency), or superharmonic (multiples of
the driving frequency). Most studies of Faraday waves fo-
cus on the subharmonic response as the corresponding onset
acceleration is typically smaller than that for the harmonic
and superharmonic tongues. However, there are exceptions
including the case of a thin viscous layer which exhibits a
harmonic response due to high dissipation that dramatically
increases the onset acceleration of the subharmonic tongue
relative to the harmonic one [14,15]. The role of the container
geometry on the spatial structure of the standing wave is
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largely determined by the wavelength relative to the con-
tainer size; high driving frequencies generate waves with a
continuous wave number such that container geometry is ir-
relevant [16], whereas low driving frequencies excite waves
that conform to the container boundary and are described
by an integer-valued mode number pair exhibiting a finite
bandwidth [17-20]. Near the boundary between two modes,
nonlinear mode-mode interactions become important, and
chaos has been observed [21,22]. Our experiments are per-
formed for low driving frequencies and generate Faraday
waves that respect the symmetry of the cylindrical container
as shown in Fig. 1.

Gels differ from liquids in that they possess a finite elas-
ticity that must enter into the energy balance [23]. We are
interested in how the shape of the instability tongue changes
with elasticity. For soft gels, surface tension and elasticity are
of comparable magnitude as defined by the elastocapillary
number ¥ = o /RG, where o is the surface tension, G is
the shear modulus, and R is the characteristic length scale
[24,25]. For our experiments, R is the radius of the cylindrical
container, and we explore the range of elastocapillary num-
ber ¥ = 0.16-7.62 that encompasses a transition at X ~ 1
between capillary and elastic wave behavior. Recent experi-
ments have shown that soft gels G ~ 10 Pa are susceptible to
capillary instabilities, such as elastocapillary waves [11,12],
Plateau-Rayleigh breakup of a cylinder [26], Rayleigh-Taylor
instability of an elastic layer [27,28], and Rayleigh gel drop
oscillations [29,30]. Faraday waves also belong to the canon
of hydrodynamic instabilities but have not been observed on
soft gels, to our knowledge. We note in passing that Faraday
waves on liquids can exhibit significant surface streaming
and particle motion, an important part of the literature in this
area [31-34]; such motions cannot be seen in gels due to the
absence of lateral surface motion.

Experiment. Gels are made by dissolving agarose powder
(Sigma-Aldrich Type VI-A) in doubly distilled water at 90° C
for 1 h to form a solution which is then poured into a cylin-
drical plexiglass container of radius R = 35 mm and height
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FIG. 1. Experimentally observed surface modes with mode num-
ber pair (n, £) on a gel with G = 3.9 Pa.

H = 22 mm [35]. The range of concentrations explored was
¢ = 0.038-0.105 wt%. A syringe is used to either add or
subtract solution prior to gelation in order to create a pinned
contact line with contact angle o = 90°. This procedure is
known to eliminate undesirable harmonic edge waves, at least,
for liquids. The container is then covered to minimize evapo-
ration, and the solution is allowed to gel at room temperature
for 3 h or more. The gel rheology is defined by the complex
modulus G’ + iG” and measured using oscillatory tests with
an Anton Paar MCR 302 rheometer. The loss modulus G” is
generally, at least, an order of magnitude smaller than the stor-
age modulus G, and we, therefore, assume our gels behave as
an elastic solid defined by the shear modulus G = G’ [35].
The range of shear modulus explored was G = 0.27-12.2 Pa.
Because the concentration of agarose solution is so dilute,
we assume the density p = 1.0 g/mL and surface tension
o = 72 mN/m, viz. the same as that of water.

Faraday waves are excited in experiment using the setup
shown in Fig. 2(a). The cylindrical container which holds
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FIG. 2. Schematic of (a) experimental setup and (b) optical
system.

the gel is mounted on a Labworks ET-139 electromechanical
shaker which provides vertical vibration of the tank. The
shaker is driven by an Agilent 33220A function generator
and Labworks PA-141 amplifier combination over a range
of frequencies f; = 7-29 Hz. The forcing amplitude of the
shaker A was measured using a PCB 352C33 accelerometer
and a PCB 482C05 signal conditioner combination, where A
is the max-min of the sinusoidal acceleration signal.

To detect the onset of Faraday waves and the corresponding
surface wave frequency, we use a laser light system consist-
ing a helium neon laser beam (632.8 nm wavelength) that
is directed at the free surface and reflected to a position
sensitive detector (PSD), which produces an analog voltage
signal proportional to the position of the laser beam strik-
ing the sensor. This signal is processed via a fast Fourier
transform (FFT) operation on an oscilloscope, giving the
surface wave frequency. In our experiments, the observed
frequency f, is half of the driving frequency f, = 0.5f,,
consistent with the subharmonic response of Faraday waves.
For fixed driving frequency f;, the Faraday wave thresh-
old is approached by increasing the output amplitude from
the amplifier until the rapid growth of a frequency peak at
fo=0.5f; is observed on the FFT. This gives the upper
limit A,, for the threshold amplitude at that particular driving
frequency. We then decrease the output amplitude until the
frequency peak disappears on the FFT giving the lower thresh-
old amplitude A;. The true threshold acceleration lies within
the interval [A;, A,], and we iterate the above protocol until
A, —A; € 0.2 m/s? after which we define A = (4, +A;)/2
as the experimental threshold amplitude for Faraday wave
onset.

The optical system shown in Fig. 2(b) is used to character-
ize the spatial structure of the surface wave. Collimated light is
produced by a lens located one focal length f = 300 mm from
a white light emitting diode flashlight. A plate with a 2 mm
diameter hole is placed in front of the light to approximate a
point light source. The resulting collimated beam is directed
at the wave surface and the reflected light captured by a digital
camera (Canon EOS Rebel T3i with a Canon EF-S 18-55 mm
lens) oriented so its optical axis is parallel to the direction
of the reflected white light. A long exposure time # = 0.8 s is
used to generate experimental images of the wave patterns (cf.
Fig. 1). Here the locations where the wave slope is zero (i.e.,
the peaks or troughs) are bright, whereas the regions where
the wave slope is nonzero (e.g., the nodes) appear dark with
larger slopes yielding darker pixel intensities.

For the low driving frequencies used in our experiment,
the surface waves conform to the boundary of the cylindrical
container and are described by an integer-valued mode num-
ber pair [17,19]. This is in contrast to high-frequency waves
which exhibit a continuous wave number and are insensitive to
the container boundary [16]. To identify the modal structure,
we use a two dimensional cross correlation between the ex-
perimental wave pattern and a Bessel function J;(k,,r) cos(£6)
with € as the azimuthal mode number and k,, computed from
the roots of J;(k,R) = 0, where n is the numerical order of
those roots. For each experimental image, the mode number
is taken as the (n, £) pair where the cross correlation is maxi-
mized. This procedure was used to identify the mode numbers
for the images presented herein.
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FIG. 3. Frequency sweep plotting acceleration A against driving
frequency f; for G = 3.9 Pa reveals instability tongues for modes
(n, £).

Results. A typical frequency sweep is shown in Fig. 3 for a
gel with G = 3.9 Pa. Multiple modes are observed with their
corresponding instability tongues plotted in the acceleration-
frequency space. Broadly speaking, the accelerations increase
with frequency. Most modes, e.g., (1,2), (1,0), (1,3), (2,1), and
(2,2), exhibit a full instability tongue with a local minimum
that one can associate with the resonance frequency for that
particular mode and a finite bandwidth [13]. Some modes,
e.g., (1,4) and (2,0), only display a partial tongue which we
believe is due to mode competition for these driving frequen-
cies. That is, the respective instability tongues overlap causing
mode-mode interactions that have been shown to exhibit non-
linear effects, such as hysteresis and chaotic dynamics [21,22]
thereby precluding experimental identification of a clear and
complete instability tongue. As the frequency increases, the
overlap of modes becomes more significant and the range
of frequencies over which a given mode can be excited de-
creases. For example, the (1,4) mode can only be observed
over a particularly small frequency range A f; = 0.4 Hz (cf.
Fig. 3). Despite this fact, we have experimentally observed
the first 15 resonant Faraday wave modes on a gel with G =
5.9 Pa as shown in Fig. 4 which shows the surface structure
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FIG. 4. Table of experimentally observed Faraday wave mode
shapes on a gel with G = 5.9 Pa defined by the mode number pair
(n, £) with a corresponding frequency range.
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FIG. 5. Instability tongue for the (1,2) mode in the acceleration
A versus frequency f; space as it depends upon shear modulus G.

of each of the 15 modes as well as the corresponding driving
frequency range.

The low-frequency modes show the least degree of overlap
and are, therefore, most suitable to explore the role of elastic-
ity on the shape of the instability tongue for a pure mode. The
lowest-frequency mode is the (1,1) sloshing mode. However,
the motion of the surface is large for this mode, making the
detection of onset difficult. For this reason, we investigate
the (1,2) mode which is the next highest-frequency mode.
Figure 5 is a plot of the instability tongue for the (1,2) mode as
it depends upon the shear modulus G. A complete instability
tongue is observed in each case with significantly smaller
high-frequency side due to the interaction with the (1,0) mode.
The resonance frequency shows a monotonic increase with G,
whereas the threshold acceleration asymptotically approaches
a maximum value.

This dependence upon the material parameters can be
understood by dimensional analysis and examining limiting
behavior. For gels, the relative importance of surface ten-
sion to elasticity is given by the elastocapillary number ¥ =
0 /RG, which for our experiments lies in the range of ¥ =
0.16-7.62. Here ¥ — 0 and ¥ — oo correspond to the elas-
tic and capillary limits, respectively. As we have performed in
our prior work on hydrogels, we hypothesize that the elastic
and capillary forces act in parallel [29,36]. Faraday wave
onset is then determined by the total resistance Ry to wave
motion, which can be written as % = é + RLG, where R,
is the resistance of surface motion due to capillarity, and Rg
is the resistance to surface motion due to elasticity. Given that
the elastocapillary number X is the ratio of capillary to elastic
forces, the total resistance becomes R, = ﬁ—"z. Assuming o
and, hence, R, are constant, we expect R, to asymptotically
approach a constant as ¥ — 0 and to approach zero as ¥ —
oo. This is precisely what the threshold acceleration behav-
ior shows in Fig. 5. Furthermore, the resonance frequency
monotonically increases with G, consistent with prior work
for gel drops [36], suggesting our interpretation of the physics
is sound.

Discussion. We have reported the first experimental ob-
servation of Faraday waves in soft gels having observed the
first 15 resonant modes and characterized the shape of the
instability tongue for the most repeatable (1,2) mode. By
exploring a range of gel elasticities we are able to capture
the elastocapillary transition between elastic-dominated and
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capillary-dominated Faraday waves (cf. Fig. 5) in this canon-
ical problem in pattern formation.

There is a long history of using Faraday waves to pattern
the surface of granular media [37], surfactant-laden [38] and
particle-laden [7] thin films, and bioinks with organelles [8].
Numerous technologies exploit pattern formation in Faraday
waves on liquids including pinchoff in inkjet printing [39],
and drop atomization (aerosols) for drug delivery [40,41]. Our
results can be useful for controlling the spatial and temporal
evolutions of cell-laden bioinks (during the gelling process)
used in cell printing technologies [42] where complex tissue
scaffold architectures are desired. In fact, it may be possible to
pattern multiple cells into a predetermined Faraday wave pat-
tern, such as those we observe in our experiments (cf. Fig. 1).

We have observed more complex spatial patterns which
couple edge waves and Faraday waves using water as the
working material. This is performed by purposefully control-
ling the meniscus geometry such that the contact angle of
o < 90°. For these experimental conditions, it is possible to
excite an axisymmetric (n, 0) harmonic edge wave and az-
imuthal (n, £) subharmonic Faraday wave at the same driving
frequency above the Faraday wave acceleration threshold.

These motions exhibit both spatial and temporal complexities,
and we would expect nonlinear effects, such as hysteresis
and chaos [21,22], to become particularly important near the
boundary between adjoining instability tongues due to the
triad mode-mode-mode interactions between the edge wave
mode and two adjoining Faraday wave modes.

Finally, we mention that the agarose gels we use in our
experiments exhibit a relatively simple rheology, i.e., they
have a constant elasticity (storage modulus) and relatively
low viscosity (loss modulus) over the range of frequencies
explored. This choice of material was intentional in order to
explore the physics of elastocapillarity in Faraday waves in the
absence of a complex frequency-dependent rheology. Our re-
sults show we have a good understanding of this system. Soft
gels with a more complex rheology will exhibit a relaxation
timescale and these additional physics should affect pattern
formation and the shape of the instability tongues. This should
be pursued further in future studies.
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