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Abstract

We consider the problem of optimally replacing multiple stochastically degrading systems us-

ing condition-based maintenance. Each system degrades continuously at a rate that is governed

by the current state of the environment, and each fails once its own cumulative degradation

threshold is reached. The objective is to minimize the sum of the expected total discounted

setup, preventive replacement, reactive replacement, and downtime costs over an infinite hori-

zon. For each environment state, we prove that the cost function is monotone nondecreasing

in the cumulative degradation level. Additionally, under mild conditions, these monotonicity

results are extended to the entire state space. In the case of a single system, we establish that

monotone policies are optimal. The monotonicity results help facilitate a tractable, approximate

model with state- and action-space transformations and a basis-function approximation of the

action-value function. Our computational study demonstrates that high-quality, near-optimal

policies are attainable and significantly outperform heuristic policies.

1 Introduction

The emergence of low-cost, advanced sensing technologies and real-time condition-monitoring

systems have led to increased interest in advanced maintenance planning strategies. Condition-

based maintenance (CBM) techniques utilize up-to-date condition information to make well-informed

maintenance decisions to achieve important objectives (e.g., minimize maintenance costs, maximize

revenue, or maximize system availability). For example, modern wind turbine systems use advanced

sensors to measure particle contamination levels in lubricating fluids, shaft torque, electrical dis-

charge, vibrations, acoustic emissions, torsional vibration, and many other signals of degradation

[39]. CBM provides an opportunity to exploit degradation measurements, or signals of degra-

dation, for system prognosis and intelligent maintenance decision making that increases system

uptime while reducing maintenance and operational costs.
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Many large-scale systems that degrade stochastically over time are difficult to analyze in the

presence of dependencies, including stochastic, economic, and structural dependencies. Stochas-

tic dependencies are prevalent when integrated components, or systems, do not degrade (or fail)

independently. For example, within a single wind farm, wind turbines are exposed to common,

local weather conditions and, therefore, operate in a shared ambient environment. This exposure

to similar environmental conditions may lead to dependencies in the degradation sample paths of

individual wind turbines. Economic dependencies can be viewed as any financial linkages between

maintenance actions, e.g., exploitation of shared downtime or rented equipment. Finally, struc-

tural dependencies result when maintenance activities performed on one component, or subsystem,

require maintenance activities to occur on another component or subsystem. For instance, these

types of dependencies exist when a multi-component system is enclosed in a single machine, and

disassembly is required to repair or replace failed components.

In this paper, we consider the problem of determining optimal replacement strategies for mul-

tiple, stochastically degrading systems that exhibit both stochastic and economic dependencies.

Within this context, we refer to multiple machines with similar characteristics operating in close

proximity to one another. The systems operate in a shared, exogenous environment that evolves

randomly over time and modulates the rates of degradation of each of the systems. The sys-

tems, which are stochastically heterogenous, degrade monotonically until the cumulative level of

degradation reaches a threshold, or the system is replaced. The costs of maintaining this system

with replacements include a substantial fixed cost that is incurred when any maintenance action

is taken. Replacements may occur preventively (before failure) or reactively (in response to a

failure). Preventive replacements are less costly than reactive replacements. Finally, a downtime

cost is incurred whenever the system is taken off-line to perform replacements. Our objective is

obtain cost-minimizing replacement policies that account for preventive and reactive replacement

decisions, as well as downtime and fixed setup costs. To this end, we formulate a continuous-time,

infinite-horizon discounted Markov decision process (MDP) model, establish important proper-

ties of the cost function, reformulate the model using well-devised approximation techniques, and

customize an approximate dynamic programming (ADP) algorithm to obtain high-quality policies.

For well over five decades, maintenance optimization models have emerged in the applied prob-

ability and operations research communities. Many extensive surveys highlight some of the most

prevalent models for both single- and multi-component systems [1, 22, 24, 25, 30, 31, 32, 37, 38].

Most classical models consider single-component systems that operate in a static environment.

Furthermore, the majority of these models employ failure-based (as opposed to condition-based)

decision making. Recent emphasis on condition-based maintenance strategies has led to a stream

of research on degradation-based reliability of single-component systems. These strategies seek to

model degradation (or signals of degradation) as a stochastic process evolving in continuous time.

Some representative models consider degradation as a Brownian motion process [8, 12, 40], while

others assume that degradation is modulated by Markov or semi-Markov processes [15, 16, 17, 18].
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Additionally, there exists a significant body of literature on non-condition-based policies for multi-

component systems, and surveys of this literature can be found in [9, 11, 23]. Recently, Ko and

Byon [19] use asymptotic theory to analytically derive the cost minimizing policy for a large-scale

system with finite condition states and independent and identically degrading components.

Over the past two decades, a modest body of literature has emerged for multi-component or

multi-system CBM. Marseguerra et al. [21] formulated a joint optimization model that seeks to

maximize availability and net profit within a large-scale system with stochastic dependencies. Opti-

mal thresholds, beyond which preventive maintenance should be performed, are computed by Monte

Carlo simulation embedded within a genetic algorithm. Castanier et al. [7] considered a discrete-

time, series system with shared setup cost for inspection or replacement. The model’s decision

variables are thresholds on inspection and preventive, corrective, and opportunistic maintenance.

These thresholds are determined analytically for a two-component system that degrades in a static

environment. Bouvard et al. [6] studied a large-scale system with shared setup cost within the

context of commercial heavy vehicle maintenance. Rolling horizon procedures were developed that

incorporate component information, and dynamic, analytical maintenance intervals were obtained.

Tian and Liao [34] investigated policies similar to those in [7] for the general multi-component case

with multiple identical and independent components. Dual threshold policies, for which once any

component’s failure risk exceeds the first threshold, all components with failure risk over the second

threshold are replaced, were obtained numerically. Zhu et al. [41] considered a multi-component

system with non-identical, independently degrading components and large shared setup costs for

maintenance activities. They examined the case where the degradation paths are described by a

random coefficient model and developed a nested enumeration algorithm to simultaneously obtain

the optimal maintenance interval and optimal preventive maintenance control limits.

The model we present here differs from existing replacement models in that we consider large-

scale systems with condition-based maintenance, stochastic dependency (through a shared modu-

lating environment), economic dependency (through a shared setup cost), non-identical systems,

degradation modulated by an exogenous continuous-time stochastic process, and continuous degra-

dation sample paths. These model features present challenges for: (i) exact analysis of the the

structure of the value function and optimal policy; and (ii) numerical computation of optimal poli-

cies for particular problem instances. Those points notwithstanding, our model is significant, as the

gap between theory and practice of maintenance models is appreciable, and these realistic features

represent a step towards bridging that gap [10, 30]. In the general case of multiple systems, we

establish monotonicity of the value function in the cumulative degradation level for each environ-

ment state. Then, under mild conditions, it is shown that this monotonicity extends to the entire

state space. Additionally, this framework allows for analysis of the special single-system case for

which we show that optimal replacement policies are monotone on the entire state space. This

result partially resolves the conjecture of Ulukus et al. [36] when reactive replacements do not oc-

cur immediately. Subsequently, we exploit the monotonicity results of the value function to devise
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a tractable, approximate model with state- and action-space transformations and a customized,

basis-function approximation of the action-value function. The novel state space transformation

maps abstract degradation levels to probabilities that are easily interpreted. In addition to im-

proved interpretability, the action-value function can be more easily approximated using this new

state space. We believe this type of transformation is sufficiently general to find applicability in

a wide range of maintenance optimization problems. Finally, we provide a detailed computational

study to demonstrate the efficacy of the approximate model in producing near-optimal policies.

Specifically, we obtain policies that are nearly indistinguishable from the optimal policy in small-

scale instances, as well as policies that significantly outperform heuristics in large-scale instances.

To our knowledge, these techniques and algorithms are novel within the maintenance optimization

literature.

The remainder of the paper is organized as follows. In Section 2, we describe the environment

process and its relationship to the degradation of the systems, and formulate a mathematical

model of the sequential decision process. Section 3 discusses attributes of the value function and

the optimal decision rule. In Section 4, we reformulate the problem using an approximate dynamic

programming (ADP) model and demonstrate the usefulness of this reformulation through numerical

examples in Section 5.

2 Degradation Model and Problem Formulation

Consider a collection of n (n < ∞) systems operating in a shared, exogenous environment. The

systems are assumed to begin operation in an as-good-as-new condition. The degradation rate of

each system is governed by the randomly evolving environment, which occupies one of finitely many

states at any point in time. Over time, each system accumulates degradation until it reaches its

own fixed, deterministic threshold, above which it is considered to be failed. For the ith system, we

denote this failure threshold by ξi (0 < ξi < ∞), i = 1, . . . , n. In what follows, all random variables

are defined on a common, complete probability space (Ω,F ,P).
Let Z(t) denote the state of the environment at time t and Z ≡ {Z(t) : t ≥ 0} is the environment

process defined on the finite state space S = {1, . . . , `}. For this model, it is assumed that Z evolves

as an S-valued, irreducible, continuous-time Markov chain (CTMC). The environment state j ∈ S

can be understood as an abstract classification of the exogenous factors that impact the degradation

of each system. Specifically, whenever Z(t) = j ∈ S, the ith system degrades linearly at a rate rji .

Without loss of generality, it is assumed that, for each system, the degradation rates are positive,

finite and monotone increasing in the environment state, i.e., 0 < r1i < r2i < · · · < r`i < ∞, for

i = 1, . . . , n. Denote by Xi(t) the cumulative degradation of system i at time t given by

Xi(t) = Xi(0) +

∫ t

0
r
Z(u)
i du, t ≥ 0, (1)

where Xi(0) denotes the initial degradation level of system i. Assuming Xi(0) = 0, and noting that
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for each i ∫ t

0
r
Z(u)
i du < ∞,

Xi(t) is well defined for each t ≥ 0. Moreover, as noted in [36], the non-negativity of the degradation

rates, {rji }, ensures that the sample paths of the degradation process X ≡ {Xi(t) : t ≥ 0} are

piecewise linear and monotone increasing in t.

Now, we introduce a Markov decision process (MDP) model to formulate the problem of opti-

mally replacing multiple systems in a shared environment. The objective is to minimize the sum

of the expected total discounted setup, replacement, and downtime costs over an infinite time hori-

zon. This model can be viewed as an extension of the MDP model presented in [36] for a single

system, with a minor variation in the costs and system dynamics. The state of the process is an

(n + 1)-dimensional vector of the form (x, j) – a realization of the joint process (X ,Z) in which

x = (x1, x2, . . . , xn) is the vector of the systems’ cumulative degradation levels, and j ∈ S denotes

the current state of the environment. Without loss of generality, we can scale the degradation

rates appropriately and assume that ξi = ξ for all i; therefore, the state space of the MDP model

is the set Γ ≡ [0, ξ]n × S. The set of feasible actions (or action space) is A = {0, 1}n where,

for a = (a1, . . . , an) ∈ A, ai = 0 corresponds to taking no action on the ith system, and ai = 1

corresponds to replacing system i. System replacements can be done preventively (before failure)

at a fixed cost cp, or reactively (after a failure) at a fixed cost cr. It is reasonable to assume that

cp < cr. In addition to the system replacement costs, a fixed cost c0 is assessed if any maintenance is

performed. In practice, this cost may account for equipment costs, crew wages, or travel expenses

associated with maintenance. Finally, a cost cd for the expected per period lost productivity is

assessed for each failed system that is inoperable, and we assume that all costs are non-negative

and bounded from above, i.e., c0, cp, cr, cd ∈ [0,∞).

Because the environment process Z evolves as a CTMC on the finite state space S, we employ

the common strategy of uniformization (cf. Puterman [27]) and convert to a discrete-time Markov

chain (DTMC). Denote by Q = [qjk] the infinitesimal generator matrix of Z, and let qj be the total

transition rate out of state j, i.e.,

qj ≡ −qjj =
∑

k:k 6=j

qjk, j ∈ S.

Define a uniformization rate q ≥ max{qj : j ∈ S}. By uniformizing the environment process, the

system is inspected at exponentially-distributed intervals of time. We denote by Tm the length of

themth inter-inspection period, which is exponentially-distributed with rate q for eachm = 1, 2, . . ..

Denote the (random) degradation level, (random) environment state, and action taken at the mth

inspection time to be Xm = [Xi
m], Zm, and Am = [Ai

m], respectively. Similarly, denote the

(random) state at the mth period to be Sm = (Xm, Zm). For j, k ∈ S, define the transition

probabilities of the discretized environment process,

pjk = P(Zm+1 = k|Zm = j),
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the probability that the environment transitions from state j to k during one inter-inspection period

given by

pjk =




qjk/q, k 6= j,

1− qj/q, k = j,

and let P = [pjk] be the transition probability matrix of the uniformized chain. Each transition

epoch of the uniformized process is then treated as an inspection time. Therefore, the minimum

inspection rate is dictated by the environment process, and the inspection times are linked to the

environment process through the embedded discrete-time Markov chain {Zn : n ≥ 0}.
Next, let Y j

i be the (random) one-step accumulated degradation of system i ∈ {1, 2, . . . , n}
while the environment is in state j ∈ S. The exponential length of the inter-inspection period

and the constant rate of degradation jointly imply that Y j
i is exponentially distributed with rate

parameter q/rji . That is,

F j
i (y) := P

(
Y j
i ≤ y

)
= P

(
rji Tm ≤ y

)
= 1− exp

(
−qy/rji

)
.

For notational convenience, define the indicator function

Ii(x) =




1, xi ≥ ξ,

0, xi < ξ.

That is, Ii(x) indicates whether or not system i is failed in the degradation vector x. Therefore,

the expected one-step cost associated with state-action pair (s,a) is

c(s,a) ≡ cj(x,a) =





c0 +
n∑

i=1

[ai(1− Ii(x))cp + aiIi(x)cr + (1− ai)Ii(x)cd] , a 6= 0,

cd

n∑

i=1

Ii(x), a = 0.

(2)

For many applications, the downtime cost cd may depend on the length of the inter-inspection

period. Within our framework, this dependence is reflected by the fact that cd is a function of

the uniformization constant q; however, for notational convenience, we suppress this dependence

on q, as it is reasonable to assume that cd(q) is monotone nonincreasing in q. We discuss the

implications of this assumption at the end of Section 3. Inspections are assumed to be costless and

instantaneous. If the replacement action is taken, the degradation of that system ceases, and the

replacement occurs during the current period and ends just prior to the start of the next period.

These assumptions ensure that failures do not occur once preventive replacement is decided upon

and that the system begins the next period in as-good-as-new condition. All one-step costs are

incurred at the beginning of the period and discounted at rate α (0 < α < 1), where

α =
q

θ + q
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for some continuous-time discount rate θ (0 < θ < ∞). The objective is to minimize the expected

total discounted setup, replacement and downtime costs over an infinite planning horizon. The

optimal expected total discounted cost, starting in state s = (x, j) and denoted by Vj(x), is given

as a solution to the Bellman optimality equations

Vj(x) = min
a∈A

{
cj(x,a) + α

∑̀

k=1

(∫ ∞

0
Vk

(
x′) qe−qtdt

)
pjk

}
, j ∈ S, (3)

where x′ = [x′i] with

x′i =




min{ξ, xi + t rji }, ai = 0,

0, ai = 1.

It should be noted that this formulation does not force reactive replacements immediately upon

failure. This added flexibility allows the decision maker to pool replacements when appropriate,

thereby sharing the cost (c0) amongst multiple repairs.

In order to solve this problem by conventional MDP solution techniques, the state space must

first be discretized so that numerical methods can be applied (e.g., value iteration or policy iteration

[3, 14]). It is clear from this formulation that as n, the number of systems, grows large, the problem

will suffer from the curse of dimensionality. This occurs because the state space is an n-dimensional

hypercube, and the number of permissible actions is 2n. For example, with 50 systems and one

environment state, the number of feasible actions is approximately 1015, and discretizing the state

space into 1, 000 states per component yields 10100 states. For these reasons, we propose handling

this problem by approximate dynamic programming (ADP) methods. In particular, we customize

a state-action-reward-state-action (SARSA) algorithm with eligibility traces and basis function

approximation [26, 28]. Before doing so, we first provide some useful structural results that help

characterize an optimal policy.

3 Structural Results

In this section, we characterize the attributes of the cost function and optimal policy of the

MDP model presented in Section 2. We first consider the general, multiple system case before

presenting results for the special case of a single system.

3.1 Results for the General Case

The first result for n (n > 1) systems establishes the existence of a stationary optimal policy,

as well as the convergence of the standard value iteration algorithm.

Lemma 1 There exists an optimal, non-randomized stationary replacement policy, and the value

iteration algorithm converges to the optimal value.
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Proof. First note that the state space, Γ = [0, ξ]n × S, is Borel-measurable and the action

space, A = {0, 1}n, is finite. Additionally, the immediate costs are strictly positive and bounded,

and the problem is discounted. Therefore, the result follows immediately from Corollary 9.17.1 of

Bertsekas and Shreve [4].

For the state space Γ, define the binary relation (≤) as the standard component-wise inequality.

That is, for any two vectors s, s′ ∈ Γ ⊂ Rn+1, s ≤ s′ if and only if si ≤ s′i for each i = 1, . . . , n+1.

It can be verified that ≤ is a partial order on Γ and A; therefore, (Γ,≤) and (A,≤) are partially-

ordered sets (posets). Additionally, as formalized in Lemma 2, (Γ,≤) is a lattice (see Birkhoff [5]

for a detailed discussion of lattices).

Lemma 2 The partially ordered sets (Γ,≤) and (A,≤) are lattices.

Proof. For any pair of states s, s′ ∈ Γ, we have that

s̄ := (max{s1, s′1}, . . . ,max{sn+1, s
′
n+1}) ∈ Γ,

and is an upper bound for s and s′. Letting s̄′ = (s̄′1, . . . , s̄
′
n+1) be an arbitrary upper bound on

s, s′, it is seen that s̄′i ≥ si and s̄′i ≥ s′i. Hence, s̄
′
i ≥ max{si, s′i} for each i = 1, . . . , n+1. Therefore,

s̄′ ≥ s̄, which implies s ∨ s′ = s̄ ∈ Γ. Similarly, by component-wise minimization, s ∧ s′ ∈ Γ. The

proof that (A,≤) is a lattice proceeds in an identical fashion.

The notion of submodularity plays an important role in deriving our main results; therefore,

we formally define it next.

Definition 1 (Submodularity). A function f : A×B → R is said to be submodular on A×B if

f(a2, b2)− f(a2, b1) ≤ f(a1, b2)− f(a1, b1) (4)

for any a1, a2 ∈ A and b1, b2 ∈ B such that a1 ≤ a2 and b1 ≤ b2.

Submodularity is useful for characterizing structural properties in optimization problems. Here, we

restate an important result due to Topkis [35] as Theorem 1.

Theorem 1 (Topkis [35]). Let f : A×B → R be a submodular function on A×B, and let (A,≤)

and (B,≤) be lattices. Then g∗(b) = max {a′ ∈ argmina∈Af(a, b)} is nondecreasing in b.

For the results that follow, define the Q-function,

Q(s,a) ≡ Qj(x,a) := c(s,a) + αE (V (S1)|S0 = s,A0 = a) . (5)

By Theorem 1, if it can be shown that Q is submodular on Γ×A, then the optimal decision rule,

d∗(s) := max
{
a′ ∈ argmina∈AQ(s,a)

}
, (6)

is monotone in Γ. This result is formalized under some specific conditions in Theorem 4. However,

before proceeding to the main results, Lemma 3 provides basic insights into the structure of the
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expected one-step cost function c(s,a); it asserts that the one-step cost does not decrease as the

cumulative degradation level increases. Additionally, under a particular cost structure, the one-step

cost function is submodular.

Lemma 3 The expected one-step cost function c(s,a) is

(a) monotone nondecreasing in s, and

(b) submodular on Γ×A, if cr − cp ≤ cd.

Proof. We note that if a 6= 0, then cj(x,a) can be expressed as

cj(x,a) = c0 +
n∑

i=1

[aicp + Ii(x)ai(cr − cp) + Ii(x)(1− ai)cd].

Because it is assumed that cr > cp, Lemma 3(a) follows immediately. For Lemma 3(b), we seek to

show that for a < a′ and x < x′,

cj(x
′,a′) + cj(x,a) ≤ cj(x

′,a) + cj(x,a
′). (7)

We begin with the case where a = 0 < a′. The left-hand side (l.h.s.) of (7) is given by

cj(x
′,a′) + cj(x,a) = c0 +

n∑

i=1

[
a′
icp + a′

iIi(x′)(cr − cp) + Ii(x′)(1− a′
i)cd

]
+ cd

n∑

i=1

Ii(x)

= c0 +

n∑

i=1

[
a′
icp + a′

iIi(x′)(cr − cp) +
(
Ii(x′)(1− a′

i) + Ii(x)
)
cd
]
. (8)

Similarly, the right-hand side (r.h.s.) of (7) is given by

cj(x
′,a) + cj(x,a

′) = c0 +

n∑

i=1

[
a′
icp + a′

iIi(x)(cr − cp) +
(
Ii(x)(1− a′

i) + Ii(x′)
)
cd
]
. (9)

After some algebraic manipulation, it can be shown that the quantity in (8) is no greater than that

in (9) if, and only if,

cd

n∑

i=1

a′
i(Ii(x′)− Ii(x)) ≥ (cr − cp)

n∑

i=1

a′
i(Ii(x′)− Ii(x)).

By supposition, cr − cp ≤ cd; therefore, inequality (7) holds. Similarly, in case 0 < a < a′, it can
be shown that inequality (7) holds if, and only if,

cd

n∑

i=1

[
Ii(x)(ai − a′

i) + Ii(x′)(a′
i − ai)

] ≥ (cr − cp)
n∑

i=1

[
Ii(x)(ai − a′

i) + Ii(x′)(a′
i − ai)

]
.

For each i = 1, . . . , n,

Ii(x)(ai − a′
i) + Ii(x′)(a′

i − ai) = (Ii(x′)− Ii(x))(a′
i − ai) ≥ 0.
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Therefore, by the condition, cr − cp ≤ cd, inequality (7) holds.

We pause here to note that the condition of Lemma 3(b), cr−cp ≤ cd, may not hold in practice.

In particular, for a large uniformization rate q, it is unlikely that this inequality is valid. Fortunately,

a useful property still emerges, namely that the value function is monotone nondecreasing in the

cumulative degradation level, even if the condition is relaxed. We formalize this result in Theorem

2.

Theorem 2 For each j ∈ S, the value function Vj(x) is monotone nondecreasing in the degradation

level x ∈ X .

Proof. For (x, j) ∈ Γ, denote the mth iterate of the value iteration algorithm by vmj (x) ≡
vm(x, j). We prove the theorem by induction on m. Take v0j (x) = 0 for all (x, j) ∈ Γ. Therefore,

v1j (x) = min
a∈A

{
cj(x,a) + αE

(
v0(X1, Z1)|X0 = x, Z0 = j,A0 = a

)}

= min
a∈A

{cj(x,a) + 0}

= cd

n∑

i=1

Ii(x),

which is monotone nondecreasing in x. For the induction hypothesis, assume vmj (x) is monotone

nondecreasing in x ∈ X for each j ∈ S. Let x1,x2 ∈ X such that x1 ≤ x2, then for each a ∈ A

vm+1
j (x1,a) = cj(x1,a) + α

∑̀

k=1

(∫ ∞

0
vmk (x′

1)qe
−qtdt

)
pjk

≤ cj(x2,a) + α
∑̀

k=1

(∫ ∞

0
vmk (x′

2)qe
−qtdt

)
pjk

= vm+1
j (x2,a), (10)

where the inequality holds due to Lemma 3(a) and by noting that, for a fixed a, x′
1 ≤ x′

2. Mini-

mizing both sides of (10) over a ∈ A shows that vm+1
j (x1) ≤ vm+1

j (x2). Finally, Lemma 1 implies

that vmj (x) → Vj(x), as m → ∞, and the proof is complete.

Theorem 2 asserts that the expected cost-to-go increases as the cumulative degradation level of the

system increases. Informally, this corresponds to the intuitive idea that starting in a ‘bad’ state

is, in fact, more costly than starting in a ‘good’ state. Under some reasonable conditions we can

prove stronger structural results.

For the remainder of this section, we impose mild conditions on the uniformized environment

process and the degradation rate vectors ri. For completeness, we review the notion of the increasing

failure rate (IFR) property of a transition probability matrix.
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Definition 2 Let P = [pij ] be the transition probability matrix of a DTMC with state space S =

{1, . . . , `}. Then P is said to be IFR if

ηm(i) :=
∑̀

j=m

pij (11)

is nondecreasing in i ∈ S for all m = 1, . . . , `.

Now, let us define the tail distribution function

q(s′|s,a) := P (Sm+1 ≥ s′|Sm = s,Am = a
)
. (12)

The quantity in (12) represents the probability that the MDP transitions to a state at least as large

as s′, given a starting state s and action a. For notational convenience, also define the following

sets:

I(x′) := {i ∈ {1, . . . , n} : x′i = 0}, (13)

J (a) := {i ∈ {1, . . . , n} : ai = 1}, (14)

K(x,x′) := {i ∈ {1, . . . , n} : xi < x′i}. (15)

These sets are used to describe the form of q(·|·), namely,

q((x′, k′)|(x, k),a) =





exp

[
−q · max

v∈K(x,x′)

{
x′v − xv

rkv

}] ∑̀

m=k′
pkm, J ⊆ I, K 6= ∅,

∑̀

m=k′
pkm, J ⊆ I, K = ∅,

0, J * I.

(16)

The tail distribution is useful for establishing monotonicity of the value function (3) and the corre-

sponding optimal decisions. We begin by describing some useful properties of the tail distribution

in Lemma 4.

Lemma 4 If P is IFR, and the degradation rates rji are monotone nondecreasing in j ∈ S for

each i = 1, . . . , n, then the tail distribution function q(s′|s,a) is

(a) monotone nondecreasing in s ∈ Γ, and

(b) submodular on Γ×A.

Proof. Let s̃ = (x̃, j̃) ∈ Γ, a ∈ A, and s = (x, j) ≤ s′ = (x′, j′) ∈ Γ. In the case where

J * I, we have q(s̃|s,a) = q(s̃|s′,a) = 0. Because K(x,x′) is decreasing in x, there are three

subcases for J ⊆ I: (i) K(x, x̃) 6= ∅ and K(x′, x̃) = ∅, (ii) K(x, x̃) 6= ∅ and K(x′, x̃) 6= ∅, and (iii)

K(x, x̃) = ∅ and K(x′, x̃) = ∅. For subcase (i),

q(s̃|s′,a) =
∑̀

m=k̃

pj′m ≥ exp

(
−q · max

v∈K(x,x̃)

{
x̃v − xv

rjv

}) ∑̀

m=k̃

pjm = q(s̃|s,a).

11



For subcase (ii),

q(s̃|s′,a) =
∑̀

m=k̃

pj′m ≥
∑̀

m=k̃

pjm = q(s̃|s,a),

because P is IFR. Lastly, for subcase (iii), note by monotonicity of ri, for each i ∈ {1, 2, . . . , n},
x̃v − x′v

rj
′

v

≤ x̃v − xv

rjv
.

Additionally, by K(x′, x̃) ⊆ K(x, x̃),

max
v∈K(x′,x̃)

{
x̃v − x′v

rj
′

v

}
≤ max

v∈K(x,x̃)

{
x̃v − xv

rjv

}
.

Therefore, by the monotonicity of exp(·) and the increasing failure rate of P we have

q(s̃|s′,a) = exp

(
−q · max

v∈K(x′,x̃)

{
x̃v − x′v

rj
′

v

}) ∑̀

m=k̃

pj′m

≥ exp

(
−q · max

v∈K(x,x̃)

{
x̃v − xv

rjv

}) ∑̀

m=k̃

pjm = q(s̃|s,a).

Thus the tail function is monotone in s. For Lemma 4(b), we seek to show

q(s̃|s′,a′) + q(s̃|s,a) ≤ q(s̃|s,a′) + q(s̃|s′,a) (17)

for a ≤ a′ ∈ A. Noting J (a) ⊆ J (a′), we have three cases to consider: (i) J (a),J (a′) * I, (ii)
J (a) ⊆ I, J (a′) * I, and (iii) J (a),J (a′) ⊆ I. For case (i), it is clear that both sides of (17)

equal 0. For case (ii), q(s̃|s,a′) = q(s̃|s′,a′) = 0, reducing inequality (17) to

q(s̃|s,a) ≤ q(s̃|s′,a),

which holds by Lemma 4(a). For case (iii), we note q(s̃|s,a) = q(s̃|s,a′) and q(s̃|s′,a) = q(s̃|s′,a′).

Hence, inequality (17) holds in equality. Thus, the tail function is submodular.

Next, we review some concepts from stochastic ordering that are needed for the remaining

results. The first is that of upper orthant ordering of random vectors. For two n-dimensional,

random vectors Y 1 and Y 2, we say that Y 1 is less than Y 2 in the upper orthant order, denoted

Y 1 ≤uo Y 2, if for all y ∈ Rn,

P(Y 1 ≥ y) ≤ P(Y 2 ≥ y).

A set U is said to be an upper set if u2 ∈ U whenever u2 ≥ u1 and u1 ∈ U . We say that Y 1 is less

than Y 2 in the usual stochastic order, denoted Y 1 ≤st Y 2, if for all upper sets U ⊆ Rn,

P(Y 1 ∈ U) ≤ P(Y 2 ∈ U).

It is important to note that monotonicity of the tail function, established in Lemma 4(a), is equiv-

alent to the condition

[Sm+1|Sm = s,Am = a] ≤uo [Sm+1|Sm = s′,Am = a], for any s ≤ s′.

12



If n = 1, the upper orthant and the usual stochastic order are equivalent. If n > 1, the usual

stochastic order is stronger than the upper orthant order. These concepts are useful in that they

allow us to extend part Lemma 4(a) to the usual stochastic order as seen in Lemma 5.

Lemma 5 Under the conditions stated in Lemma 4, for any a ∈ A and s ≤ s′ ∈ Γ,

[Sm+1|Sm = s,Am = a] ≤st [Sm+1|Sm = s′,Am = a].

Proof. Let Sm+1 = (Xm+1,Zm+1). By independence of Xm+1 and Zm+1 it suffices to show:

[Xm+1|Sm = s,Am = a] ≤st [Xm+1|Sm = s′,Am = a], (18)

and

[Zm+1|Sm = s,Am = a] ≤st [Zm+1|Sm = s′,Am = a]. (19)

Inequality (19) follows from the IFR assumption of P . For t ≥ 0, define the functions ψ1(t) and

ψ2(t) by

ψ1(t) = [(1− a1)(x1 + rj1t), (1− a2)(x2 + rj2t), . . . , (1− an)(xn + rjnt)],

and

ψ2(t) = [(1− a1)(x
′
1 + rj

′
1 t), (1− a2)(x

′
2 + rj

′
2 t), . . . , (1− an)(x

′
n + rj

′
n t)].

By the monotonicity of the degradation rates rji , and the fact that, x ≤ x′, we see that ψ1(t) ≤ ψ2(t)

for all t ≥ 0. Letting T ∼ Exp(q), we have

ψ1(T )
d
= [Xm+1|Sm = s,Am = a] and ψ2(T )

d
= [Xm+1|Sm = s′,Am = a],

where
d
= denotes equality in distribution. The result P(ψ1(T ) ≤ ψ2(T )) = 1 implies inequality

(18) holds, and the proof is complete.

Next, in Proposition 1, we state without proof a well-known result about the comparability of

expectations for random vectors under the usual multivariate stochastic order.

Proposition 1 (Shaked and Shanthikumar [29]). Let X and Y be two n-dimensional, random

vectors such that X ≤st Y . For any nondecreasing function ψ on Rn

E[ψ(X)] ≤ E[ψ(Y )].

We are now prepared to state our main result concerning the value function. Namely, under

appropriate conditions the value function V (s) is monotone in s ∈ Γ.

Theorem 3 If P is IFR and the degradation rates rji are monotone nondecreasing in j ∈ S for

each i = 1, . . . , n, then the value function V (s) is monotone nondecreasing in s ∈ Γ.

13



Proof. For (x, j) ∈ Γ, denote the mth iterate of the value iteration algorithm by vmj (x) ≡
vm(s). We prove the theorem by induction on m. Take v0j (x) = 0 for all (x, j) ∈ Γ. Therefore,

as in the proof of Theorem 2, v1j (x) = cd
∑n

i=1 Ii(x), which is monotone nondecreasing in s. For

the induction hypothesis, assume vm(s) is monotone nondecreasing in s ∈ Γ. By Lemma 5 and

Proposition 1, for s ≤ s′ ∈ Γ,

E (vm(S1)|S0 = s,A0 = a) ≤ E (
vm(S1)|S0 = s′,A0 = a

)
.

By Lemma 3, c(s,a) is monotone in s; hence,

c(s,a) + αE (vm(S1)|S0 = s,A0 = a) ≤ c(s′,a) + αE
(
vm(S1)|S0 = s′,A0 = a

)
. (20)

By minimizing over a ∈ A on both sides of inequality (20), we obtain vm+1(s) ≤ vm+1(s′). Thus,

by Lemma 1, the result is proved.

Theorem 3 asserts that, if the uniformized environment process is IFR, and the degradation rates

are monotone, then the values of the value function are ordered over the entire state space.

3.2 Special Case: A Single System

In general, the optimal policy is not necessarily monotone over the entire state space. Indeed,

in Section 5, we provide two numerical examples illustrating that, even under the conditions of

Lemma 4, optimal policies need not be monotone. In this subsection, we restrict our attention to

the special case of a single system and establish the monotonicity of optimal policies for this case.

Before proceeding to the main result, Lemma 6 is first needed.

Lemma 6 Suppose there is only a single system (i.e., n = 1). If P is IFR, and the degradation

rates rj are monotone nondecreasing in j ∈ S, then E(V (S1)|S0 = s, A0 = a) is submodular on

Γ×A.

Proof. By Lemma 4(b), the tail distribution function q(·|·) is submodular on Γ×A. Define

F (s|s0, a) = P(S1 ≤ s|S0 = s0, A0 = a). Then for any s1, s2 ∈ Γ and a1, a2 ∈ A such that s1 ≤ s2

and a1 ≤ a2,
∫

s≥s′
dF (s|s2, a2) +

∫

s≥s′
dF (s|s1, a1) ≤

∫

s≥s′
dF (s|s1, a2) +

∫

s≥s′
dF (s|s2, a1)

for each s′ ∈ Γ. Thus,
∫

s≥s′
[dF (s|s2, a2) + dF (s|s1, a1)] ≤

∫

s≥s′
[dF (s|s1, a2) + dF (s|s2, a1)] .

Let us define dF1(s) = dF (s|s2, a2)+dF (s|s1, a1) and dF2(s) = dF (s|s1, a2)+dF (s|s2, a1). Noting
that V (s) is monotone nondecreasing (by Theorem 3), and that Proposition 1 extends to finite

measures, we obtain ∫

s∈Γ
V (s)dF1(s) ≤

∫

s∈Γ
V (s)dF2(s). (21)
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By expanding the terms on both sides of inequality (21), the result is obtained.

We are now prepared to state the main result for a single system. Theorem 4 asserts that, under

suitable conditions, the optimal decision rule is monotone nondecreasing over the entire state space

Γ.

Theorem 4 For the case of n = 1, if cr − cp ≤ cd, P is IFR, and the degradation rates rj are

monotone nondecreasing in j ∈ S, the optimal decision rule d∗(s) is monotone in s ∈ Γ.

Proof. By Lemma 3(b), the expected one-step cost function c(s,a) is submodular on Γ×A.

Similarly, by Lemma 6, we have that E(V (S1)|S0 = s, A0 = a) is submodular. Thus,

Q(s, a) = c(s, a) + αE(V (S1)|S0 = s, A0 = a)

is a non-negative, linear combination of submodular functions and is, therefore, submodular. Hence,

by Theorem 1, the optimal decision rule d∗(s) is monotone in s ∈ Γ.

Theorem 4 ensures that, under suitable conditions, threshold policies are optimal, and these thresh-

olds are monotone over the environment states. Ulukus et al. [36] examined a similar model and

proved the optimality of threshold policies for a single-system (or component) setting and conjec-

tured (without proof) that the thresholds are monotone over the environment states. Theorem 4

is significant in that it provides at least a partial resolution to this conjecture. Specifically, setting

c0 = 0 and cd À cr in our framework yields a model that is identical to the one studied in [36],

except that reactive replacements do not occur immediately following a failure; they occur at the

start of the subsequent period. However, the assumption that cd is very large induces an optimal

policy that forces reactive replacements; hence, our model is not more restrictive than the one

studied in [36].

The actions satisfying the optimality equation (3) for each state (corresponding to an optimal

policy) cannot be directly computed by standard numerical methods (e.g. using the value or policy

iteration algorithms [27]). Section 4 presents an approximation scheme to address the numerical

problems associated with obtaining replacement policies.

4 An Approximate Formulation

In this section, we address dual manifestations of Bellman’s curses of dimensionality, namely

a continuous state space and a combinatorially large action space [2, 26]. To obtain high-quality

policies, we customize and employ multiple reinforcement learning techniques: Q-function approxi-

mation, reduction to a subset of the action space, and an on-policy approximate dynamic program-

ming (ADP) algorithm, namely the state action reward state action, or SARSA(γ), algorithm. For

a complete description of the algorithm, the reader is referred to [28, 33].

Before discussing the details of our approximation scheme, we first introduce a transformation

of the state description. In lieu of considering the current cumulative degradation level directly, we
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consider the state to be a vector of probabilities on the hypercube [0, 1]n. In particular, define the

state by x̃ = (x̃1, x̃2, . . . , x̃n), where

x̃i = P
(
Xi

m+1 ≥ ξ|Xi
m = xi, Zm = j

)
= exp

(
−q(ξ − xi)

rji

)
, (22)

Zm is the current environment state, Xi
m is the current degradation level of system i, and Xi

m+1 is

the degradation level at the time of the next inspection. That is, for each system i, the corresponding

system in the transformed state vector, denoted by x̃i, is the probability that the system will fail

before the next decision epoch. We pause here to remark on two aspects of this transformation:

(i) no information is lost in the transformation (given fixed model parameters, the mapping is a

bijection); and (ii) the new state implicitly contains information about the underlying degradation

process. The first point is important, as we do not fundamentally change the problem. The

second point is of practical significance for our function approximation. We utilize a linear basis

to approximate the Q-function, and direct inclusion of this information improves the performance

of simple basis functions. Intuitively, the degradation level itself is abstract and uninformative,

whereas probabilities require no additional knowledge of the underlying degradation process to

interpret; hence, this state space is more appropriate. For convenience, we denote the modified

state as s̃ and state space as Γ̃ = [0, 1]n × S.

The first issue we address is reduction of the action space A. It is clear that for a large number

of systems, n, the action space A = {0, 1}n is too large to perform any practical computational

operations. For example, for n = 20 the cardinality of the action space is over 106 and for n = 30

the cardinality is over one billion. Unfortunately, it is very difficult to characterize the form of an

optimal policy in the multiple system case, so instead we consider a reduced action space based on

the transformed state vector x̃ that may, or may not, contain the optimal actions. We define the

new action space as

Ã = {0, 1, . . . , n} ,

where a = 0 corresponds to taking no action, and a = k corresponds to replacing all systems

i such that x̃i ≥ x̃k, for k = 1, 2 . . . , n. The action a = k > 0 means that any system whose

probability of failing in the next period is at least as high as that of system k is replaced. For

example, if x̃ = (0.3, 0.7, 0.25, 0.6) and action a = 4 is selected, then all systems whose probability

of failing within the next period is at least 0.6 are replaced. In this case, systems 2 and 4 are

replaced. It should be noted that this action space can be interpreted as the most general set of

threshold policies in the transformed state. That is, for every state s̃ ∈ Γ̃ the optimal action in Ã
is equivalent to replacing all systems above some optimal threshold u(s̃). Most importantly, this

set helps facilitate computational tractability, as it is linear in the number of systems.

The next issue we address is the continuous nature of X . In order to overcome this difficulty,

we employ function approximation techniques. First, we recall the definition of the Q-function, or

action-value function [26] from equation (5). For each j ∈ S, the function Qj(·) maps state-action
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pairs to expected total discounted costs, i.e.,

Qj(x,a) = c(s,a) + α
∑̀

k=1

(∫ ∞

0
Vk

(
x′) qe−qtdt

)
pkj .

It is seen that, by the relationship between (3) and (5), optimal actions can be determined by

minimizing the Q-function over the original action space A. We seek to approximate the Q-function

as a weighted (linear) sum of basis functions that take the transformed state variables as input [13].

In particular, we approximate Qj(x,a) by Q̃j(x̃, a) defined as

Q̃j(x̃, a) :=
K∑

k=1

λj
kφ

j
k(x̃, a), (23)

where λj
k are real-valued coefficients and φj

k(·) are basis functions. By Theorem 2, it is known that

the value function is monotone in the state space; hence, we choose to represent the Q-function as a

linear combination of monotone functions and constant functions. In particular, we utilize constant

functions along with functions of the form cos(f(x̃, a)), where f : Γ̃ → [0, 1]. This choice of basis

functions is practical, as they are bounded and monotone on Γ̃. Additionally, the non-constant

basis functions are sigmoidal, enabling flexible modeling of nonlinearity in the value function, and

appropriate choices for f allow for dependencies between systems to be captured. As described

in [20], these basis functions can be viewed as adapted first-order Fourier basis functions, and we

choose the particular form

Q̃j(x̃, a) = λj
0 + λj

1I (a > 0) +
n∑

i=1

λj
i,1I (x̃i ≥ x̃a) +

n∑

i=1

λj
i,1I (x̃i = 1, a > 0)

+
n∑

i=1

n∑

k=i

λj
i,k,1φ

j
i,k,1 (x̃, a) +

n∑

i=1

n∑

k=i+1

λj
i,k,2φ

j
i,k,2 (x̃, a) , (24)

where

φj
i,k,m =




cos

(
π
2 · (I (x̃i < x̃a) x̃i + I (x̃k < x̃a) x̃k)

)
, m = 1,

cos
(
π
2 · I (min {x̃i, x̃k} < x̃a) · (x̃i + x̃k)

)
, m = 2.

(25)

The first term in (24) is a constant, the second term accounts for the impact of the setup cost, the

third term accounts for preventive maintenance cost, the fourth for reactive maintenance, and the

final two terms account for the impact of the degradation level (given the current action taken).

It can be seen in (25) that the approximation Q̃j(·) considers only pairwise dependencies between

systems. This assumption can be relaxed, but the computation time of any iterative learning

process would naturally be adversely impacted. For the model in (24), the coefficients λj
k can

be obtained using an iterative, on-policy learning algorithm, such as the SARSA(γ) algorithm, as

described in Sutton and Barto [33].
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5 Numerical Examples

In this section, we illustrate the efficacy of the proposed approximation framework in obtain-

ing high-quality solutions. Both small- and large-scale examples are considered. Small problem

instances are illustrated because exact solutions can be obtained using standard MDP machinery;

hence, approximate solutions can be compared to these exact solutions. Larger problem instances

are used to assess how well our approximation scheme performs on problems that are otherwise

intractable.

Because our aim is to compare distinct policies, we first simulate the evolution of the envi-

ronment process over a large number of sample paths. The simulation run length is given by the

number of decision epochs N (recall that the time between decision epochs is exponentially dis-

tributed with rate parameter q). Along each sample path, the total discounted cost is computed

for each policy of interest, and these values are compared. It should be noted that, because the

expected one-step costs are bounded, and the cost function is discounted, we can determine a priori

the simulation run length needed to ensure that the total discounted cost is accurate to a fixed

constant. In particular, to guarantee the finite approximation is within ε (ε > 0) of the true total

discounted cost, the length of the sample paths N must satisfy

N ≥ ln((1− α)ε/C)

ln(α)
− 1,

where C is any valid upper bound on the expected one-step costs, and α is the one-step discount

rate. For all numerical examples, N was chosen to correspond to ε = 0.01 and C was taken to

be c0 + ncd + ncr. All problem instances were coded within the MATLAB R2016a computing

environment and executed on a personal computer with a 3.50 GHz processor and 8 GB of RAM.

5.1 Single-System Problems

First, we present single-system examples to demonstrate the accuracy of our approach in the

simplest case. We modify the cost structure of Section 2 to fit the single-system case. Rather than

having four cost parameters, we simply have the preventive and reactive replacement costs, cp and

cr respectively, and we force replacement of the system whenever it is found to be failed.

In the first example, we fix the parameter values and solve the resulting problem repeatedly

using the approximate formulation. We compute multiple learned solutions over a single problem

to explore the impact of a stochastic learning algorithm on the consistency of solutions. For the

first instance, the discount rate is α = 0.99 and the cost vector is c = (cp, cr) = (3, 10). The failure

threshold is set to ξ = 1, and the environment Z has state space S = {1, 2, 3, 4} with infinitesimal

generator matrix

Q =




−5 5 0 0

2.5 −5 2.5 0

0 2.5 −5 2.5

0 0 5 −5




.
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The inspection rate is q = 10 and degradation rates are r = (r1, r2, r3, r4) = (2.5, 3, 3.5, 4).

The degradation interval [0, ξ] was discretized into 10, 000 states, and the optimal policy was

obtained numerically using the value iteration algorithm. For each fixed environment state j ∈ S,

the optimal policy was determined to be a threshold policy. This is intuitive, as the problem can

viewed as the general problem with c0 = 0 and cd chosen sufficiently large so as to force reactive

replacements. Therefore, Theorem 4 ensures that a monotone threshold policy is optimal. In

particular, the thresholds were found to be u = (u1, u2, u3, u4) = (0.524, 0.469, 0.430, 0.387), where

for state (x, j) ∈ [0, 1]× S the optimal action a∗j (x) is given by

a∗j (x) =




0, x ≤ uj ,

1, x > uj .

To adapt to the modified cost structure, we simplified the basis functions for our approximation as

follows:

φi
j(x̃, a) =





1, i = 1,

I(a = 0) cos(πx̃), i = 2,

I(a = 1, x̃ < 1), i = 3,

I(x̃ ≥ 1), i = 4,

where x̃ is the transformed state as described by (22). Therefore, the expected total discounted

cost-to-go, starting from state s = (x, j) ∈ Γ and taking action a ∈ A, is approximated by

Q̃j(x̃, a) =
4∑

i=1

λi
jφ

i
j(x̃, a).

In order to test the quality of this approximation, 500 sample paths were simulated, each with

2, 000, 000 decision epochs. On each of these sample paths, the approximation model was trained

using a SARSA(γ) algorithm with γ = 0.9. Exploration is encouraged by using an ε-greedy action-

selection approach, where the best myopic action is chosen with probability 1 − ε, and a random

action is chosen with probability ε. For these examples, ε is initialized to 0.5 and linearly decreased

in increments of 2.5× 10−7 to 0.0001 by the final iteration.

Figure 1 shows box-and-whisker plots of the thresholds derived from the learned policies. In

Figure 1(a), we see the thresholds from the policies if learning is terminated at 400,000 iterations.

This plot indicates that the bias from parameter initialization is still significant in the learned

policies. Generally, the thresholds are still too high, which matches intuition as the initial parameter

values would induce a policy that never replaces components. By 2, 000, 000 iterations, this upward

bias is drastically diminished, and the variance has been greatly reduced. In fact, the mean absolute

deviations from the true thresholds are under 0.015 for all environment states. The thresholds from

value iteration and the mean learned thresholds are given in Table 1.

While these policies appear to be accurate, it is important to gauge the impact of small policy

variations on the expected total discounted cost. To this end, we first simulate 5,000 sufficiently

19



1 2 3 4

Environment State

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
h
re

s
h
o
ld

(a) After 400,000 simulation iterations.
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(b) After 2,000,000 simulation iterations.

Figure 1: Boxplots of thresholds from learned policies (optimal thresholds given by circles).

Table 1: Comparison of exact and learned thresholds.

Technique
Environment State

j = 1 j = 2 j = 3 j = 4

Value iteration threshold 0.5238 0.4688 0.4301 0.3865

Mean learned threshold 0.5240 0.4701 0.4303 0.3850

long sample paths per policy (2,500,000 sample paths in total) as described at the beginning

of this section. Each simulation run is initialized in state (x, j) = (0, 1). For learned policy

m ∈ {1, . . . , 500} and sample path k ∈ {1, . . . , 5, 000}, we then follow both the optimal policy and

the learned policy over each of these sample paths to determine their respective total discounted

costs, call them Ṽ m
k and V̂ m

k , respectively. The sample-wise values are then averaged to yield

approximate expected total discounted costs

Ṽ m =
1

5000

5000∑

k=1

Ṽ m
k and V̂ m =

1

5000

5000∑

k=1

V̂ m
k .

The results are summarized in the box-and-whisker plots of Figure 2. While the optimal policy

does perform better on average (over the sample paths), the percent difference in the means is

nominal at approximately
|Ṽ − V̂ |

Ṽ
= 4.887× 10−4,

where Ṽ =
∑

m Ṽ m/500 and V̂ =
∑

m V̂ m/500. In fact, the approximate policy outperforms the

optimal policy in 49.16% of the total sample paths. Therefore, the learned policies are not only

superficially similar to the optimal policies, but almost identical in performance as well. Lastly, it

should be noted that obtaining the exact solution took 80.5269 seconds (averaged over 100 function

calls) and the average time for the approximate model to generate the simulations and train was
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Figure 2: Boxplots comparing cost using the optimal policy versus the learned policies.

only 25.8465 (averaged over the 500 sample paths). Thus, even in the single-system case, this

solution method is able to generate stable, accurate policies faster than value iteration.

In the next example, 200 single-system problems are randomly generated, and one solution

to the approximate formulation is computed for each problem. Our aim is to vary the problem

parameters over a wide range to assess the robustness of the approximate formulation. In what

follows, U(a, b) denotes a continuous uniform random variable on (a, b). Fixing α = 0.99, and

the number of environment states at ` = 4, we randomly generated M = 200 problem instances.

(These two parameters are fixed because they significantly affect the learning rate, and the training

size will be fixed over the problem set.) For problem m ∈ {1, . . . ,M}, the cost vector is denoted

cm = (cmp , cmr ), where cmp ∼ U(0, 5) and cmr ∼ cmp +U(0, 10). As before, the failure threshold is fixed

at ξm = 1, corresponding to rates being normalized. The environment process Zm has state space

Sm = {1, 2, 3, 4} with infinitesimal generator matrix Qm = [qmij ], where q
m
ij ∼ U(0, 10) for j 6= i and

qmii = −∑
j q

m
ij . The inspection rate is given as qm = 2 ·maxi{−qmii }, and the degradation rates are

rm = (rm1 , rm2 , rm3 , rm4 ), where rm1 ∼ U(0, 4) and rmj ∼ rmj−1 + U(0, 4) for j = 2, 3, 4.

For each problem, the degradation interval [0, ξ] was discretized into 10, 000 states and the

optimal policy was obtained numerically using the value iteration algorithm. In each case, a long

sample path was simulated with 2,000,000 decision epochs, and the approximate model was trained

using a SARSA(γ) algorithm with γ = 0.9. Exploration was again encouraged by using an ε-greedy

action-selection approach, where ε was initialized to 0.5 and linearly decreased to 0.0001 by the final

iteration. Next, to evaluate the quality of the solutions, 5,000 sufficiently long sample paths were

simulated per problem using the initial state (x, j) = (0, 1). For each problem m and sample path

km ∈ {1, . . . , 5, 000}, the learned policy was followed over the path to determine the total discounted
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cost, denoted vmk . For problem m, we denote the value function, at state (0, 1) ∈ Γ by V m, and

assume that these are given by the final values from the value iteration algorithm. Similarly, for

problem m, we denote the approximate value function, at state (0, 1) ∈ Γ by V̂ m =
∑

k v
m
k /5000.

Lastly, we define δm = |V m − V̂ m| and ∆m = δm/V m to be, respectively, the absolute and percent

differences between the actual and approximate value functions. From the data, we find that there

is one significant outlier, where ∆m = 0.38. It is seen that at this data point, the actual value

function is very small at V m = 1.0649. We remove this outlier from the data set and present the

data in Figure 3. For the percent differences, the sample mean of ∆m is 0.0099 and the standard

deviation is 0.0143. In fact, for approximately 97.5% of the cases ∆m ≤ 0.05. For the absolute

differences, we find that the sample mean of δm is 0.1908 and the standard deviation is 0.1170. In

fact, for over 95% of the cases δm ≤ 0.4.

5.2 Multiple-System Problems

Next, we present multiple-system examples to illustrate solution quality and the tractability

of our approach. We consider three problems with n = 2, n = 3 and n = 50, respectively. For

cases n = 2 and n = 3, we obtain “exact” solutions by applying the value iteration algorithm on

discretized versions of the problems. Our approximate solutions, obtained by using the methods

developed in Section 4, are compared to these solutions. Additionally, we describe a set of heuristic

policies and compare our solutions to those as well. When n = 50, exact solutions cannot be

obtained, so our approximation is compared only to heuristic policies.

Example. For the first example, n = 2 systems, the discount rate is α = 0.99 and the cost

vector is c = (c0, cp, cr, cd) = (20, 3, 10, 8). The failure thresholds are ξi = 1, for all i, and the
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environment Z has state space S = {1, 2, 3} with infinitesimal generator matrix

Q =




−5 5 0

2.5 −5 2.5

0 5 −5


 .

The inspection rate is q = 10 and degradation rates were randomly generated as ri = (r1i , r
2
i , r

3
i ) =

U(1, 2) · (0.5, 1.0, 1.5), for i = 1, 2, where U(1, 2) is a continuous uniform random variable on (1, 2).

The particular realization of r is

r =

(
0.9567 1.9134 2.8701

0.5635 1.1270 1.6905

)
.

To compute an exact solution, the degradation interval [0, ξ] was uniformly discretized into

1,000 states for each system, yielding a discretized problem with 3,000,000 total states. The optimal

policy was obtained numerically using the value iteration algorithm. For each s in the discretized

set of states, let vm(s) denote the mth iterate of the value iteration algorithm. The algorithm

terminates when the maximum norm of the difference between subsequent value function iterates

is below 0.01, i.e.,

||vm+1 − vm||∞ = max
s

{|vm+1(s)− vm(s)|} ≤ 0.01,

or after 604,800 seconds (7 days). The algorithm terminated after 401,029.97 seconds (approxi-

mately 4.6 days).

In order to train our approximate model, a long sample path was simulated with 4,000,000

decision epochs, and the approximate model was trained using a SARSA(γ) algorithm with γ = 0.9.

Exploration was again encouraged by using an ε-greedy action-selection approach, where ε was

initialized to 0.5 and linearly decreased to 0.0001 by the final iteration. The training took 369.54

seconds, three orders of magnitude faster than value iteration.

In Figure 4, the optimal and learned policies are depicted when the environment state is fixed

at 1. We observe that the optimal policy does not have a monotone structure. While the absence

of a monotone structure is counterintuitive, the overall structure is not. When one system is

very heavily degraded, but the other system is nearly as-good-as-new, it is optimal to replace the

heavily degraded system. However, due to economic dependencies, the region where replacing both

systems is optimal dominates the replacement regions. This result should be expected, as the shared

replacement cost is high and the difference between the preventive and reactive replacement costs

is substantial. Additionally, it is optimal to wait longer to perform maintenance actions on system

2 as a consequence of the degradation rates. In particular, we note that r12 < r11. Contrasting

the optimal and learned policies, we note that while similar, the learned policy is slightly more

aggressive and replaces more frequently.

For a cost comparison, we also consider a set of threshold-based replacement policies. To

understand these policies, we begin with the policy that ignores the dependency of the systems and
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(a) Depiction of optimal policy.
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(b) Depiction of learned policy.

Figure 4: Comparison between optimal and learned policy in environment state 1.

decouples the problem. For this policy, we consider each system separately and solve the single-

system problem described in Section 5.1. We then use the computed thresholds to determine when

to replace individual systems independently of the others. We refer to this as a 1-policy. We then

generalize this policy to a k-policy, where we replace all systems above their independent threshold

whenever there are at least k systems above their threshold. In the case where n = 50, two other

similarly structured policies were considered, but failed to perform as well: (i) wait until at least k

systems are failed and then replace all failed systems; and (ii) wait until at least k systems exceed

their threshold and then replace all systems.

As in the single-system cases, we assess the quality of our solutions by following each policy

over 5,000 sufficiently long sample paths simulated using the initial state (x, j) = (0, 1). The results

of this comparison are summarized in the box-and-whisker plots of Figure 5.
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Figure 5: Boxplots comparing cost under different policies.

Beginning with the heuristic policies, we note that they are both significantly outperformed

by the learned policy. On average, the learned policy outperforms the 1-policy by 32.79% and the

2-policy by 22.28%. Moreover, the learned policy outperforms the 1-policy on all sample paths and

the 2-policy on all but three sample paths. This performance gap demonstrates the importance

of considering structural and economic dependence within our model. Comparing the learned

and optimal policies, we note the average total discounted cost for the learned policy was 431.32

compared to 418.74 for the optimal policy (approximately 3% difference). The learned policy even

outperformed the optimal policy on 1,041 sample paths.

Example. For this example, n = 3 systems, the discount rate is α = 0.99 and the cost vector

is c = (c0, cp, cr, cd) = (20, 3, 10, 8). The failure thresholds are ξi = 1, for all i, and the environment

Z has state space S = {1, 2} with infinitesimal generator matrix

Q =

(
−5 5

5 −5

)
.

The inspection rate is q = 10 and degradation rates were randomly generated as ri = (r1i , r
2
i ) =

U(1, 2) · (0.5, 1.0). The particular realization of r is

r =




0.9074 1.8147

0.9529 1.9058

0.5635 1.1270


 .

To compute an exact solution, the degradation interval [0, ξ] was uniformly discretized into 125

states, for each system, yielding a discretized problem with 3,906,250 total states. The optimal

policy was obtained numerically using the value iteration algorithm. For each s in the discretized

set of states, let vm(s) denote the mth iterate of the value iteration algorithm. The algorithm
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was set to terminate when the maximum norm of the difference between subsequent value function

iterates fell below 0.01, i.e.,

||vm+1 − vm||∞ = max
s

{|vm+1(s)− vm(s)|} ≤ 0.01,

or after 604,800 seconds (7 days). The algorithm terminated after reaching 604,800 seconds and

the maximum norm of the difference between the final two value function iterates was 0.0253.

In order to train our approximate model, a long sample path was simulated with 4,000,000

decision epochs, and the approximate model was trained using a SARSA(γ) algorithm with γ = 0.9.

Exploration was again encouraged by using an ε-greedy action-selection approach, where ε was

initialized to 0.5 and linearly decreased to 0.0001 by the final iteration. The training took 482.48

seconds to complete.
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(a) Optimal value function.
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(b) Learned value function.

Figure 6: Comparison between optimal and learned value function in environment state 2 (degra-

dation level of system 3 is fixed at 0.40).

Figure 6 depicts the optimal and learned value functions when the environment is fixed at state

2 and the degradation level of system 3 is fixed at 0.40. At low degradation levels, in regions where

it is optimal to wait to replace, the magnitude of the gradient of the value function approximation

tends to be near zero. Otherwise, the shape and values of the function approximation tend to be

very similar to the true optimal value function. These results are typical and were observed across

all test cases.

Figure 7 depicts the optimal and learned policies when the environment state is fixed at 1 and

the degradation level of system 3 is fixed at 0.40. Again we observe that the optimal policy does not

have a monotone structure. In contrast to the two-system case, we see that the policy is reasonably

symmetric. This symmetry stems from the similarity between the degradation rates of the first

two systems. In Figure 8, we compare the policies at environment state 2, noting that the regions
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Figure 7: Comparison between optimal and learned policy in environment state 1 (degradation

level of system 3 is fixed at 0.40).
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Figure 8: Comparison between optimal and learned policy in environment state 2 (degradation

level of system 3 is fixed at 0.40).

where replacing two systems have largely vanished, but the symmetry is still observed. In both

environment states, over a majority of the degradation states, the learned policy calls for replacing

at least as many systems as the optimal policy.
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Figure 9: Boxplots comparing cost under different policies.

Again, we evaluate the quality of the solutions by following each policy over 5,000 sufficiently

long sample paths simulated using the initial state (x, j) = (0, 1). The results of this comparison

are summarized in the box-and-whisker plot in Figure 9.

The learned policy again outperforms the heuristic policies, in this case, on average it outper-

forms the 1-policy by 51.89%, the 2-policy by 42.66%, and the 3-policy by 84.61%. The learned

policy outperforms all of the heuristic policies on every sample path. Comparing the learned and

optimal policies, we note the average total discounted cost for the learned policy was 403.76 com-

pared to 398.91 for the optimal policy (approximately 1.22% difference). The learned policy even

outperformed the optimal policy on 1,854 sample paths (approximately 37%). Showing that for

small n > 1 our approach is able to quickly determine near optimal policies.

Example. For this final example, we consider a larger problem for which finding an optimal

solution by value iteration is computationally intractable. Here, there are n = 50 systems, the

discount rate is α = 0.99 and the cost vector is c = (c0, cp, cr, cd) = (100, 3, 10, 8). The failure

thresholds are ξi = 1, for all i, and the environment Z has state space S = {1, 2, 3, 4} with

infinitesimal generator matrix

Q =




−5 5 0 0

2.5 −5 2.5 0

0 2.5 −5 2.5

0 0 5 −5




.

The inspection rate is q = 10 and degradation rates were randomly generated as ri = (r1i , r
2
i , r

3
i , r

4
i ) =

U(1, 2) · (2.5, 3, 3.5, 4), where U(1, 2) is a continuous uniform random variable on (1, 2).

For this problem, the learned policy was trained for 60, 000 seconds, allowing for approximately

12, 000, 000 decision epochs. Once the training was complete, the performance of the learned policy
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Figure 10: Boxplots comparing cost under different policies.

and the k-policies were compared over 5, 000 sample paths, beginning from state (x, j) = (0, j).

The results of this comparison are summarized in Figure 10.

Looking first at the k-policies, it appears that the expected total discounted cost is convex in

k. This behavior occurs because, for large k, the downtime costs dominate the overall cost, yet

for small k the setup costs are most significant. Even when the setup and downtime costs are

most balanced (k = 12), the heuristic policy fails to outperform the learned policy. In fact, the

learned policy outperforms all other policies sample-wise over all 5, 000 sample-paths. Specifically,

the learned policy leads to an average cost savings of 38.05% when compared to the 12-policy and

92.61% when all dependency is ignored (k = 1).
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