
Degradation Modeling for Real-Time Estimation of

Residual Lifetimes in Dynamic Environments

Linkan Bian∗

Industrial and Systems Engineering Department, Mississippi State University,

Miss. State, MS 39762, bian@ise.msstate.edu

Nagi Gebraeel

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology,

765 Ferst Drive, Atlanta, GA 30332.

Jeffrey P. Kharoufeh

Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15261.

Abstract

This paper presents a methodology for modeling degradation signals from components func-

tioning under dynamically-evolving environment conditions. We utilize in-situ sensor signals

related to the degradation process, as well as the environment conditions, to predict and up-

date, in real-time, the distribution of a component’s residual lifetime. The model assumes that

the time-dependent rate at which a component’s degradation signal increases (or decreases) is

affected by the severity of the current environmental or operational conditions. These conditions

are assumed to evolve as a continuous-time Markov chain. Unique to our model is the union

of historical data with real-time, sensor-based data to update the signal parameters, environ-

ment parameters, and the residual lifetime distribution of the component within a Bayesian

framework.

Index Terms: Degradation model, residual lifetime distribution, reliability, Bayesian estimation.
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1 Introduction

The use of real-time sensor data for continuously monitoring critical engineering components

in complex systems (wind turbine systems, aircraft navigation systems, smart structures, nuclear

reactor cooling systems, etc.) holds significant promise for not only assessing the current health

of components, but for dynamically predicting their future residual lifetimes. Recent advances in

sensor technologies, especially those related to sensor miniaturization and improved energy con-

sumption, have enabled the health and performance monitoring of complex engineering systems

and the environments in which they operate. Sensor signals acquired from functioning compo-

nents are often correlated with the severity of the underlying physical degradation process. Natu-

rally, many degradation models developed to date focus on using these degradation-based signals

(degradation signals for short) to predict the residual lifetime of partially-degraded components

(cf. Doksum and Hóyland (1992)). However, in most engineering applications, the evolution of

these signals is also affected by the environmental (or operational) conditions in which the com-

ponents function. For example, when power generators, motors, or even machine tools rotate at

higher operational speeds, they generate vibration amplitudes that are higher than those generated

at lower speeds. By additionally incorporating signals that capture the time-varying nature of en-

vironment or operating conditions, the effects of these conditions on degradation can be analyzed

by examining changes in the degradation signal stemming from significant environmental changes.

To date, the vast majority of failure models assume that prevailing environmental conditions are

temporally-invariant, or have no effect on degradation and failure processes, as noted by Cha and Mi

(2007). Some models have focused on characterizing the environment as a random shock process

and estimating the stationary lifetime distribution (cf. Teng and Pham (2006)). The concept of

intrinsic age has also been used to model the effects of the environment on component lifetime

distributions (cf. Özekici (1995)). This school of thought assumes that a component experiences

distinct rates of aging when operating in different environments. Therefore, rather than focusing

on the real age of the component, these models examine the intrinsic age in different environments.

This literature focuses only on environmental effects on the lifetime distributions and/or failure rates

of a population of similar units; it does not, however, consider the effects of the environment on

the underlying degradation process of a specific unit. Numerous other proportional hazard models
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(PHMs) have been used to capture the effects of the environment by incorporating covariates (see

Lee et al. (2004)). Section 2 discusses differences between our approach and the PHM approach in

greater detail.

In this paper, we develop a methodology for modeling degradation signals from components

functioning in dynamically-evolving environments. Specifically, we generalize the models presented

in Bian and Gebraeel (2011, 2013), which assume that the environment or operating condition

evolves according to a deterministic profile, by investigating a model in which these conditions

transition stochastically between different states. It is important to note that the term “environ-

ment” is used generically here and does not (necessarily) refer to the ambient environment of the

component, which is presumed to be uncontrollable. The environment process may also refer to

operating conditions, which can be viewed as controllable (by an operator). Even if the operating

condition is controllable, the impact on the component is the same, i.e., degradation is affected by

dynamically-evolving conditions whether those changing conditions are induced by an operator or

by the ambient environment. For this reason, we refer to the process that influences or modulates

degradation as the “environment process” with the understanding that it may imply operating

conditions. Our techniques employ in-situ sensor signals related to the degradation process, as well

as the environment conditions, to estimate and update the probability distribution of a compo-

nent’s residual lifetime. The model assumes that the time-dependent rate at which a component’s

degradation signal increases (or decreases) is affected by the severity of the current environmental

or operational conditions. Additionally, we account for the reality that transitions in the environ-

mental and operational conditions may induce upward or downward jumps in the amplitude of the

degradation signal, depending on the nature of the changes.

This modeling framework is most appropriate when environment transitions are not instanta-

neous but their effects can significantly influence the rate of degradation. For example, consider

the load induced on an aircraft engine in different operating regimes. The engine load varies as

the aircraft is exposed to several distinct (and known) flight conditions: takeoff, maximum climb,

maximum cruise, loiter, flight idle, taxi, ground idle, and cutoff. Moreover, if inclement weather

is encountered during flight, the aircraft may change altitude, accelerate, or decelerate to avoid

(or minimize the effects of) turbulence. These changes induce distinct loading patterns on the air-

craft’s engines, and these changes are usually significant. (Similar behaviors are encountered with
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generators or gas/steam turbines in response to seasonal power demand.) Residual life distribution

prediction with some uncertainty in environmental conditions has been explored by Liao and Tseng

(2006) who estimated the residual life distribution when the future environment is constant but has

some variability. By contrast, we model significant mean shifts in the environmental conditions.

To estimate residual life distributions (RLDs), we take into consideration the future evolution

of environmental conditions that evolve as a temporally-homogeneous continuous-time Markov

chain (CTMC) whose transition and state dwell times are random. CTMC models have been used

extensively for modeling the ambient environment of degrading systems (cf. Kiessler et al. (2002)).

More recently, CTMCs have been widely used to model the dynamics of power supply and demand

in so-called smart grid environments. The state of the CTMC represents renewable resources

such as wind speed intervals and/or directions and solar radiation (Zhu et al. (2011)). Dynamic

power demand (load) has also been modeled as a CTMC (Bu et al. (2011)). These environment

conditions affect the degradation processes of units in the system. For instance, the degradation

of hydrodynamic/journal bearings and gears in wind turbines is influenced by time-varying wind

speeds, and generators are subjected to fluctuating power loads that vary the rate of degradation.

The remainder of the paper is organized as follows. Section 2 reviews the literature related

to lifetime estimation, including models with and without environment effects. Section 3 presents

a degradation model that allows the environment to evolve stochastically over time. Sections 4

develops a methodology for estimating the residual life distribution of a component functioning

in a random environment. In Section 5, we assess the influence of a few model parameters on

prediction accuracy and illustrate the efficacy of our approach in a case study using real, empirical

data. Finally, Section 6 provides some concluding remarks and directions for future work related

to dynamic residual lifetime estimation.

2 Relevant Literature

This paper considers two key problems that have historically been investigated in isolation: (1)

predicting the lifetime or residual lifetime of a component; and (2) accounting for the environmental

conditions and incorporating their effects on the component’s degradation process. The problem of

estimating lifetime distributions is one that has been studied extensively in the literature. A few
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examples include Gebraeel et al. (2005), Van Noortwijk (2009). These models characterize degra-

dation processes using continuous-state stochastic processes (e.g., Wiener or gamma processes).

Other models, including Bae and Kvam (2004), Robinson and Crowder (2000), focus on estimat-

ing lifetime distributions using random coefficient models to characterize the path followed by the

degradation process. A large cross-section of the literature, developed using a reliability testing

perspective, assumes the environment is time-invariant. That is, degradation data from a sample of

components tested under the same conditions are used to infer and estimate the lifetime distribution

of the population. By contrast, the approach presented in this paper is conceptually different and

not intended for reliability and degradation testing purposes. Instead, we focus on estimating the

residual lifetime distribution of individual, fielded components operating in dynamically-evolving

environments.

There are a few common approaches to modeling the degradation of components operating

in time-varying environments. One popular approach is the proportional hazards model (PHM),

which was first introduced by Cox (1972). A PHM uses known internal and/or external covariates

to compute the hazard rate function, or instantaneous risk of failure over time. Some representative

examples include Jardine et al. (1997). Two models described in Ghasemi et al. (2010) consider

proportional hazards models in which an environmental covariate is driven by a Markov process.

While PHMs are useful – particularly when failure time data are available – they require specifica-

tion of a baseline hazard function that assumes a parametric form (e.g., Weibull baseline hazard).

Our framework can be viewed as an alternative to the PHM in that it focuses on modeling the

degradation signal S(t), which is influenced by an external environment, to estimate and update

the remaining life distribution. A significant amount of information can be ascertained by ob-

serving the evolution of S(t) over time, and this information can be leveraged to more accurately

estimate the remaining useful lifetime. We aim to model the effects of the environment process on

the degradation signal of a particular unit; therefore, this technique may be more appropriate for

assessing the residual life distribution of that particular unit.

A second line of literature has focused on modeling the degradation process or its manifestations,

such as degradation signals (cf. Si et al. (2011)). Many of these models attempt to estimate a sta-

tionary lifetime distribution for a population of components based on a series of accelerated degra-

dation tests (cf. Meeker and Escobar (1998)). Some models estimate the distribution of the residual
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lifetimes of individual components, such as those found in Liao and Tian (2013). However, each

time the residual lifetime of a component is estimated, the future environment condition is assumed

to be constant and equivalent to the current condition. Others have generally modeled two types of

random environment effects on the degradation process: (1) random shocks that increase or decrease

the degradation instantaneously; or (2) random changes in the degradation rate. The first model

to consider a system subject to random shocks is due to Esary and Marshall (1973) who assumed

a Poisson shock arrival process. This model was later extended by Abdel-Hameed and Proschan

(1973) and Igaki et al. (1995). In all three models, the environment is viewed as a shock pro-

cess without considering the continuous rate of degradation. Other researchers have investigated

the effects of environmental conditions on the degradation rate using general Markov processes.

Çinlar (1977) presented a model in which the environment evolves as a Markov process and the

degradation evolves according to an increasing Lévy process. Kharoufeh (2003) examined a similar

problem wherein the system degrades linearly at a rate that is modulated by a random environment.

However, these papers did not account for the possibility that shocks may occur at environment

transition epochs.

Our work here is distinguished from existing models in at least two aspects. First, unlike degra-

dation models that focus on estimating the lifetime of a population of components (cf. Doksum and Hóyland

(1992)), our primary aim is to estimate the RLD of an individual, fielded component by incorpo-

rating its unique degradation signal. As a result, the estimated RLD exploits not only prior in-

formation, but also the future environmental profile. Second, unlike typical random shock models

(cf. Kharoufeh (2003)), our approach accounts for the reality that environment transitions may

induce upward or downward jumps in the amplitude of the degradation signal, depending on the

nature of the changes. With the exception of Bian and Gebraeel (2011, 2013), very few papers

model the impact of future environmental profiles on the degradation process of a fielded compo-

nent. However, these two papers account only for the scenario when the future environment is

deterministic and known. It is more realistic that components operate in randomly-varying condi-

tions; therefore, the aim of this paper is to provide a novel framework within which the residual

lifetime distribution can be estimated considering a randomly-varying environment.
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3 Degradation in a Randomly-Evolving Environment

In this section, we present a degradation model and a procedure for estimating the residual life-

time distribution (RLD) of a component via Bayesian updating. Here, we assume the environment

evolves stochastically according to a continuous-time Markov chain (CTMC). We begin with the

model description and a few preliminaries.

For any time t (t ≥ 0), let S(t) be the degradation signal at t, and let s(0) be the initial

signal observation. Since s(0) is taken to be deterministic, we assume that a population of identical

components exhibits the same initial degradation signal. At each t, the component’s environment

can occupy one, and only one, of the states in a set S = {1, 2, . . . ,m}, m < ∞. While it is not

uncommon to assume the distinct operating regimes are known in advance, the number of distinct

states m can be determined in at least two ways. For example, Kharoufeh and Cox (2005) devised

a hierarchical clustering technique to estimate the number of states by observing näıve derivative

estimates. More recently, Flory et al. (2014) used the classical Bayesian information criterion (BIC)

to estimate the number of states. Our model assumes the value m is known in advance; however, it

is worth mentioning that we do not preclude potential interactions between environmental states.

Therefore, the state space S consists of all unique combinations of environmental conditions and

operational settings, wherem ≡ |S|. For example, if the unit is subject to two different temperature

regimes, denoted t− and t+, and two different operating speeds, denoted v− and v+, the state space

of the governing environment is the Cartesian product of S1 = {t−, t+} and S2 = {v−, v+}; that is,

S = {(t−, v−), (t−, v+), (t+, v−), (t+, v+)}, and m = 4.

In the spirit of Kharoufeh (2003), we let ψ(t) be the random state of the environment at

time t and assume that {ψ(t) : t ≥ 0} is a CTMC on the finite state space S. The infinitesimal

generator matrix of {ψ(t) : t ≥ 0} is Q = [qi,j], where qi,j is the rate of environment transitions

from i to j, j 6= i, and qi = −qi,i is the total rate of leaving state i, where qi,i = −∑j 6=i qi,j.

Whenever the environment visits state i, independently of everything else, it occupies that state

for an exponentially-distributed time with parameter qi > 0.

Define a rate function r : S → R+ so that r(ψ(t)) denotes the component’s rate of degradation

at time t. That is, whenever ψ(t) = j ∈ S, the component degrades at rate r(j) where it is

assumed that r(j) > 0 for each j ∈ S. Without loss of generality, we assume that S is completely
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ordered such that r(i) < r(j) for i < j. We account for the reality that in typical applications,

the degradation signal exhibits jumps at environment transition epochs. Therefore, we define a

mapping J : S → R so that J(ψ(t)) is a function of the jump (either upward or downward) that

occurs at time t. For example, in vibration-based signals, it is very common for the vibration signal

to experience a downward jump when the load on the unit is reduced. For the model presented

herein, the jump magnitude is a deterministic quantity that depends on the environment state just

before and just after the transition time of the environment. Finally, the degradation signal at time

t is given by

S(t) = s(0) +

∫ t

0
r(ψ(v))dv +

N(t)∑

j=1

J(ψ(Aj)) + γW (t)

where Aj is the jth transition time of the environment, N(t) is the cumulative number of environ-

ment transitions up to time t, {W (t) : t ≥ 0} is a standard Brownian motion (BM) process, and

γ (γ > 0) is its diffusion parameter, i.e., γ W (t) ∼ N(0, γ2t). This term models the noise in the

degradation signal that cannot be attributed to the environmental effects. It is assumed that, for

each t ≥ 0,

P

(∫ t

0
|r(ψ(v))|dv <∞

)
= 1

and P(N(t) <∞) = 1 to ensure that S(t) is well defined.

Define Uj = ψ(A+
j ), the state of the environment just after the jth transition. Due to the

memoryless property of the state dwell times, {(Uj , Aj) : j ≥ 0} is a Markov renewal process with

semi-Markov kernel matrix G(x) = [Gi,j(x)] given by

Gi,j(x) = P(U1 = j,A1 ≤ x|U0 = i) =





qi,j
qi

(
1− e−qix

)
, j 6= i, qi 6= 0,

0, otherwise.

Our objective is to provide a framework for dynamically updating the residual lifetime distribution

of the component based on discrete observations of the signal and environment processes over time.

Suppose the degradation signal is monitored at times t0, t1, . . . , tk such that 0 = t0 < t1 < · · · < tk,

and let s(ti) denote the signal observation at time ti, i = 0, 1, . . . , k. (We will use lower case letters

to denote realizations of random variables.) The set of observations will be represented by a vector

sk ∈ R
k+1 where sk = (s(0), s(t1), . . . , s(tk))

′. Additionally, we must observe the magnitude of
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jumps occurring at environment transition epochs. Therefore, in addition to the vector sk, we

observe the set of environmental conditions Ftk , where Ftk = {(Uj , Aj) : j = 1, 2, . . . , N(tk)}.

Using this convention, the environment maintains state ψ(Aj−1) over the interval [Aj−1, Aj), j =

1, 2, . . . , N(tk) with A0 = 0 with probability 1.

In our framework, the component’s lifetime corresponds to the first time the degradation signal

{S(t) : t ≥ 0} crosses a fixed, deterministic threshold D. Define the true (unknown) lifetime of the

component by the random variable L ≡ inf{t > 0 : S(t) ≥ D}, and let Rk denote the signal’s first

passage time to level D, given that sup0≤t≤tk
S(t) < D. Then, for each k ≥ 1, the random variable,

Rk ≡ [L− tk|L > tk], is the residual lifetime at time tk given by

Rk = inf {u > 0 : S(tk + u) ≥ D} ,

whose conditional cumulative distribution function (c.d.f.) is

P(Rk ≤ t− tk|sk,Ftk ) = P

(
sup

tk<z≤t
S(z) ≥ D

∣∣∣∣sk,Ftk

)
, t > tk, (1)

where (sk,Ftk ) represents the information available up to time tk. Next, we show how to use the

signal and environment observations to dynamically update the RLD.

3.1 Bayesian Updating Methodology

This section describes a Bayesian approach for updating the parameters of the signal and

environment models, thereby facilitating the use of prior information to estimate and update the

RLD of a component functioning in a randomly-varying environment.

3.1.1 Updating the Signal Model

The updating of S(t) requires updating parameters associated with the mappings r and J , the

coefficient γ, and the parameters of {ψ(t) : t ≥ 0}. We update the signal model based on real-time

observations of degradation signals and environmental conditions. Denote the joint prior distribu-

tion of (r, J, γ) by πs(r, J, γ), where we suppress the dependence of r and J on the environment

state ψ(t) for notational brevity. By monitoring the degradation signal of a fielded component
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(using sensors), along with the current state of the environment, the prior distribution πs will be

updated.

To that end, denote the p.d.f. of sk by fs (sk|Ftk , r, J, γ). In the basic Bayesian framework, the

posterior distribution of (r, J, γ), denoted by νs, is such that

νs(r, J, γ|sk,Ftk ) ∝ πs(r, J, γ)fs (sk|Ftk , r, J, γ) . (2)

3.1.2 Updating the Environment Process

In what follows, we describe the method for updating the environment process, i.e., the param-

eters of {ψ(t) : t ≥ 0}. Specifically, we assume the non-negative, off-diagonal elements of Q are

random. The (negative) diagonal elements follow directly since the row sums of Q are all zero.

To simplify notation in what follows, let q = {qi,j : i, j ∈ S, j 6= i} be the set of off-diagonal

elements of Q. The prior distribution of Q is denoted by πQ(q), and the prior distribution of

(r, J, γ) is denoted by πs(r, J, γ). Consider a time interval [0, T ] and suppose the degradation

signal has not crossed the threshold D by time T . The signal is sampled at discrete times

t0, t1, . . . , tk such that 0 = t0 < t1 < t2 < · · · < tk < T , and these observations comprise the

vector sk = (s(0), s(t1), s(t2), . . . , s(tk))
′. The history of the environment process up to time tk is

Ftk = {(Uj , Aj) : j = 1, . . . , N(tk)}; however, these observations are not deterministic as Aj , Uj ,

and N(tk) are random variables. For i, j ∈ S, j 6= i, let Ni,j(tk) denote the number of environment

transitions from state i to state j in the interval [0, tk], and let Hi(tk) be the total holding time in

state i on this interval. It is well-known (cf. Billingsley (1961)) that for a continuously-monitored

CTMC, the likelihood function of q is given by

L(q) =

m∏

i=1

∏

j 6=i

q
ni,j(tk)
i,j exp (−qi,j hi(tk)) ,

where ni,j(tk) and hi(tk) are realizations of Ni,j(tk) and Hi(tk), respectively.

Assume that the (i, j)th element of Q has a gamma prior distribution, i.e., for j 6= i, qi,j ∼

Γ(ki,j , θi,j), where ki,j and θi,j are the shape and scale parameters, respectively. It is well known
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that the p.d.f. of qi,j is

gi,j(x) =





xki,j−1 exp(−x/θi,j)
Γ(ki,j)θ

ki,j
i,j

, x > 0,

0, x ≤ 0.

We choose a gamma prior distribution for a few pragmatic reasons. First, each element of q is a

non-negative, real number; second, the gamma distribution encompasses a number of important

distributions (e.g., exponential, Erlang, and chi-square); third, ki,j and θi,j can be chosen to model

distributions with varying degrees of skewness; and fourth, the gamma prior distribution yields a

gamma posterior density function (see Theorem 1) that is easy to use. By applying Bayes’ formula,

the posterior distribution of q, denoted by νQ, is such that

νQ(q|Ftk) ∝ πQ(q)× L(q).

Theorem 1 establishes that the posterior distribution of qi,j is also gamma.

Theorem 1. Suppose the environment process is observed at times t0, t1, t2, . . . , tk, Ni,j(tk) =

ni,j(tk), and Hi(tk) = hi(tk) for i, j ∈ S such that j 6= i. Then the posterior distribution of qi,j is

the gamma distribution with parameters (k̃i,j , θ̃i,j) where

k̃i,j = ki,j + ni,j(tk), and θ̃i,j =
[
θ−1
i,j + hi(tk)

]−1
.

Proof. Suppose Ni,j(tk) = ni,j(tk) and Hi(tk) = hi(tk) during [0, tk]. By applying Bayes’ formula

and the likelihood function L(q), we can write

νQ(q|Ftk) ∝ πQ(q)L(q)

=




m∏

i=1

∏

j 6=i

q
ki,j−1
i,j exp(−qi,j/θi,j)

Γ(ki,j)θ
ki,j
i,j






m∏

j=1

∏

j 6=i

q
ni,j(tk)
i,j exp [−qi,jhi(tk)]




∝




m∏

i=1

∏

j 6=i

q
ki,j+ni,j(tk)−1
i,j exp(−qi,j(1/θi,j + hi(tk)))


 .
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We normalize νQ(q|Ftk) so that it satisfies the condition of a p.d.f.,

∫

q

νQ(q|Ftk) = 1.

Therefore, we obtain

νQ(q|Ftk) =

m∏

i=1

∏

j 6=i

q
k̃i,j−1
i,j exp(−qi,j/θ̃i,j)

Γ(k̃i,j)θ̃
k̃i,j
i,j

where k̃i,j = ki,j + ni,j(tk) and

θ̃i,j =
[
θ−1
i,j + hi(tk)

]−1
.

That is, the posterior distribution of qi,j is the gamma distribution with parameters k̃i,j and θ̃i,j.

The updated degradation model is united with the environment process to dynamically update

the RLD of the component. Given the posterior distributions νQ(q|Ftk) and νs(r, J, γ|sk,Ftk ), we

estimate the c.d.f. of Rk by conditioning on the posterior parameters. The updated c.d.f. of Rk is

then obtained by

P(Rk ≤ t− tk|sk,Ftk) =

∫

(r,J,γ)

∫

q

P(Rk ≤ t− tk|sk,Ftk , r, J, γ, q) νs(r, J, γ|sk,Ftk ) νQ(q|Ftk).

In the next section, we propose two approaches for estimating P(Rk ≤ t− tk|sk,Ftk , r, J, γ, q) and

discuss the advantages and disadvantages of both.

4 Estimating the Residual Lifetime Distribution

Here, we describe two distinct approaches for estimating the RLD of a component that degrades

in a randomly-evolving environment. First, we describe a sample path averaging approach that

allows us to generate a large sample of future environment profiles and estimate the RLD for each

profile. The second approach makes use of the expected number of visits to each environment state

in order to estimate the future environmental profile. Before describing the two approaches, we first

show how to obtain the RLD for a deterministic profile, as it forms the basis of both procedures.
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4.1 RLD Estimation with Deterministic Future Environment Profiles

When the future environment profile is deterministic, the RLD can be estimated by exploiting

boundary crossing probabilities for a standard Brownian motion (BM) process. Unlike first passage

times to a fixed threshold, the boundary can be described by a function of time, d(t). For instance,

if d(t) is linear in t on the interval [0, T ], Siegmund (1986) derived the (conditional) probability

that a BM process crosses the linear boundary in this interval. Siegmund’s result was extended by

Wang and Potzelberger (1997) to the case when d(t) is piecewise linear without jump discontinuities

on [0, T ]. Theorem 2 of this subsection extends Theorem 1 of Wang and Potzelberger (1997) to the

case when the boundary function d(t) is piecewise linear with jump discontinuities at finitely many

points in [0, T ]. To set the stage for Theorem 2, let n(T ) denote the number of jump discontinuities

up to time T , suppose n(T ) = n and partition [0, T ] so that [0, T ] =
⋃n

j=1[vj−1, vj), where vj is the

time of the jth jump discontinuity. It is important to note that both upward and downward jumps

can occur; therefore, for ease of notation, let mj ≡ min{dj , d−j }, where dj = d(vj), d
−
j = d(v−j ),

and v−j represents the instant of time just before the jth environment transition, j = 0, 1, . . . , n,

and let d = (d0, d
−
0 , d1, d

−
1 , . . . , dn, d

−
n )

′. The following result, which was utilized but not proved in

Bian and Gebraeel (2011), forms the basis of RLD estimation in a random environment.

Theorem 2. Let 0 = v0 < v1 < · · · < vn = T denote n fixed jump times and suppose d(v) is

linear on [vj−1, vj), j = 1, 2, . . . , n with d(0) > 0. Then for each v ∈ [0, T ], the complement of the

first-passage probability of a Brownian motion process, γW (v), with diffusion parameter γ is given

by

P(γW (v) < d(v)|s0,Ft0 , r, J, γ) = E [h(W (v1),W (v2), . . . ,W (vn);d)] , (3)

where

h(x1, x2, . . . , xn;d) =
n∏

j=1

1(xj < mj/γ)∆(vj , vj−1),

with

∆(vj , vj−1) = 1− exp

[
−
2(dj−1/γ − xj−1) (d

−
j /γ − xj)

vj − vj−1

]
,

and 1(E) is the indicator function for event E.

Proof. The proof of Theorem 2 is provided in the Appendix.
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Suppose the degradation signal is sampled at k + 1 distinct times 0, t1, . . . , tk, and the current

time is tk (tk < T ). The deterministic process, {ψ(t) : tk < t ≤ T}, represents the future

environmental profile from time tk up to time T . For some t ∈ (tk, T ], the deterministic component

of the degradation signal is

ζk(t) ≡ s(tk) +

∫ t

tk

r(ψ(v))dv +
∑

j∈Vk(t)

J(ψ(vj)), (4)

where Vk(t) ≡ {j : vj ∈ (tk, t]} is a strictly ordered set. Hence, the degradation signal S(t) given

(sk,Ftk , r, J, γ) can be expressed as follows:

S(t)
∣∣(sk,Ftk , r, J, γ) = ζk(t) + γ[W (t)−W (tk)]

d
= ζk(t) + γW (t− tk),

where
d
= denotes equality in distribution. Now the c.d.f. of Rk, the residual lifetime at time tk, given

that the signal has not crossed D up to time tk, can be obtained via the first-passage probability

of S(t) to the boundary dk(t), where dk(t) ≡ D − ζk(t), for tk < t ≤ T . Applying equation (3), we

obtain

P(Rk ≤ T − tk|sk,Ftk , r, J, γ) = 1− E


 ∏

j∈Vk(T )

1

(
W (vj − tk) <

mk
j

γ

)

×
(
1− exp

(
−
2[dk(vj−1)/γ −W (vj−1 − tk)][dk(v

−
j )/γ −W (vj − tk)]

vj − vj−1

))]
, (5)

where mk
j = min{dk(vj), dk(v−j )} for j ∈ Vk(T ).

The residual c.d.f. described by equation (5) is not easy to compute because it requires mul-

tidimensional integration. To circumvent this complication, we employ a Monte Carlo simulation

procedure (described in detail in Bian and Gebraeel (2011)) to estimate the right-hand side of (5).

In what follows, we utilize Theorem 2 to propose two approaches for estimating a component’s

RLD when the future environment profile evolves randomly as a CTMC on S.

4.2 Approach I: Sample Path Averaging

Suppose the environment is observed at times t0, t1, . . . , tk. Given ψ(tk), we simulate the

environment process {ψ(u) : tk < u ≤ T} up to T . Because each simulated sample path can
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be treated as a single, deterministic environmental profile, the RLD can be estimated for each

profile independently using Theorem 2. Subsequently, applying the strong law of large numbers,

the set of cumulative probability values are averaged to obtain the estimated RLD. The formal

procedure is as follows:

Step A.1: Select the number of future environment profiles to simulate, C;

Step A.2: Simulate C sample paths of the environment process on the interval [tk, T ], i.e.,

given the state at time tk, ψ(tk), simulate {ψi(u) : tk < u ≤ T} for i = 1, 2, . . . , C;

Step A.3: Obtain ζki (T ) via equation (4) for each i ∈ {1, 2, . . . , C};

Step A.4: Estimate the RLD at tk for each sample path i, Pi(Rk ≤ T − tk|sk,Ftk , r, J, γ, q),

via equation (5). Note that dk(T ) = D − ζki (T ), i = 1, 2, . . . , C;

Step A.5: For a sufficiently large integer C, estimate the RLD at time tk by

P(Rk ≤ T − tk|sk,Ftk , r, J, γ, q) ≈
1

C

C∑

i=1

Pi(Rk ≤ T − tk|sk,Ftk , r, J, γ, q). (6)

Approach I allows us to consider a large number of potential future environmental profiles that the

component might encounter. However, this approach is computationally expensive as we must sim-

ulate these profiles, as well as the Brownian motion component of the degradation signal. Approach

II, described in the next subsection, alleviates this difficulty.

4.3 Approach II: Expected Future Profile

In this approach, we exploit the expected number of visits to any state j ∈ S, given that

ψ(tk) = i. To this end, let Nj(t) denote the number of environment transitions to state j up to

time t. The Markov renewal function (see Kulkarni (1995)),

Mi,j(t) ≡ E(Nj(t)|U0 = i), i, j ∈ S, t ≥ 0,

is the expected number of visits to state j up to time t, given that the process starts in state i ∈ S.

Let M (t) = [Mi,j(t)] be the matrix composed of these expectations, and define its Laplace-Stieltjes
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transform (LST) by

M̃(s) ≡
∫ ∞

0
e−stdM(t).

The LST of the matrix M(t) can be obtained via the LST of the kernel matrix of the Markov

renewal sequence {(Uj , Aj) : j ≥ 0} as seen in the following proposition.

Proposition 1. The Laplace-Stieltjes transform of M (t), denoted by M̃(s), is given by

M̃(s) =
[
I − G̃(s)

]−1
G̃(s), (7)

where I is the identity matrix and G̃(s) = [G̃i,j(s)] with

G̃i,j(s) =





qi,j
qi + s

, j 6= i, qi 6= 0,

0, otherwise.

The proof of Proposition 1 can be found in most standard stochastic modeling textbooks (such

as Kulkarni (1995)). To obtain M (t), we numerically invert M̃ (s) in (7) using the stable inver-

sion algorithms of Abate and Whitt (1995). Given that ψ(tk) = i, the expected total number of

environment transitions during (tk, T ] is given by

τki ≡ E(N(T − tk)|ψ(tk) = i) =

m∑

j=1

Mi,j(T − tk), 0 < tk < T. (8)

By way of a simple example, we next show how to use equations (7) and (8) to assess the expected

future profile.

Example. Suppose S = {1, 2, 3}, tk = 4, T = 10, and ψ(tk) = 2, and inverting (7), it is found

that the expected number of visits to states 1, 2, and 3 (after rounding to the nearest integer)

are 2, 1, and 1, respectively. Then by (8), we expect four environment transitions during (4, 10].

Of those four, two transitions will be to state 1, while states 2 and 3 will be visited once each

(in expectation). A total of 4!/(2! · 1! · 1!) = 12 possible permutations of the state sequence exist;

however, we eliminate from consideration any sequence that contains “self-loops” (i.e., one-step

transitions from state j to j). After doing so for this example, only the following five sequences
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remain: (a) 2 → 1 → 2 → 1 → 3; (b) 2 → 1 → 3 → 1 → 2; (c) 2 → 3 → 1 → 2 → 1; (d)

2 → 1 → 2 → 3 → 1; and (e) 2 → 1 → 3 → 2 → 1.

More generally, let ϑ (ϑ ∈ N) be the remaining number of state sequences after all sequences

with self-loops have been eliminated. For each sequence, we estimate each dwell time in state j ∈ S

by its mean, 1/qj . Let zn = {un0 , un1 , . . . , unτki } be the nth state sequence where un0 = i for all n, and

τki is given by (8). By the Markov property, the probability that sequence zn is observed, P(zn), is

P(zn) =

τki∏

j=1

p
(
unj
∣∣unj−1

)
, n = 1, 2, . . . , ϑ,

where p(y|x) = P(U1 = y|U0 = x). Given the nth state sequence, the RLD at tk is computed by

(5) to obtain Pn(Rk ≤ T − tk|sk,Ftk , r, J, γ, q). Finally, the estimated RLD is the weighted average

P(Rk ≤ T − tk|sk,Ftk , r, J, γ, q) ≈
ϑ∑

n=1

Pn(Rk ≤ T − tk|sk,Ftk , r, J, γ, q)P(zn). (9)

Approach II is preferable to Approach I for two important reasons. First, it obviates the need to

simulate future environmental profiles because it exploits the expected number of visits to each state

and the mean dwell times in those states. Section 5 illustrates that the RLD prediction capability

is only slightly diminished using this approximation. Second, if the expected total number of

transitions during (tk, T ] is moderate, we need to evaluate only a relatively small number of state

sequences.

4.4 An Illustrative Example

Here, we illustrate the degradation model and Bayesian updating framework when the envi-

ronment evolves as a CTMC. We first use observations of the degradation signal and environment

state to update the degradation model as well as the environmental process; subsequently, the RLD

is estimated with the updated information. This illustration serves as the basis for the numerical

results presented in Section 5.

First, let us assume the prior distribution of qi,j is the gamma distribution with probability
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density function

q
ki,j−1
i,j exp(−qi,j/θi,j)

Γ(ki,j)θ
ki,j
i,j

where ki,j is the shape parameter and θi,j is the scale parameter. By Theorem 1, the posterior

distribution of Q, given the history of the process up to time tk, is

νQ(q|Ftk ) =

m∏

i=1

∏

j 6=i

q
k̃i,j−1
i,j exp(−qi,j/θ̃i,j)

Γ(k̃i,j)θ̃
k̃i,j
i,j

.

πQ(q|U(v), 0 ≤ v ≤ tk) =
∏

j 6=i

q
k̄i,j−1
i,j exp(−qi,j/θ̄i,j)

Γ(k̄i,j)θ̄
k̄i,j
i,j

Next, to characterize the signal model, the functions r and J are assumed to be

r(ψ(v)) = αψ(v) + β and J(ψ(Vj)) = η[ψ(V +
j )− ψ(Vj)]

where α, β, and η are random parameters. Recall that γ (γ > 0) is the diffusion parameter of

W (t). We assume the prior distributions of these parameters to be normal, i.e., α ∼ N(µ1, σ
2
1),

β ∼ N(µ2, σ
2
2), η ∼ N(µ3, σ

2
3), and γ ∼ N(µ4, σ

2
4), and they are all mutually independent.

Let πs(α, β, η, γ) denote their joint prior distribution. To estimate the posterior distribution of

(α, β, η, γ), we need to derive the likelihood function of the degradation model. Recall that the

degradation signal observations up to time tk comprise the vector sk. The likelihood function of

sk is

fs(sk|Ftk , α, β, η, γ) =
k∏

i=1

φi(s(ti)− s(ti−1))

where for i = 1, 2, . . . , k, φi(·) is the p.d.f. of a normal random variable with mean

∫ ti

ti−1

(αψ(v) + β)dv + η[ψ(v+i )− ψ(vi)]

and variance γ2(ti − ti−1). The posterior distribution of (α, β, η, γ) is thereby obtained as

νs(α, β, η, γ|sk, Ftk) =
πs(α, β, η, γ) ×

∏k
i=1 φi(s(ti)− s(ti−1))∫

α,β,η,γ

πs(α, β, η, γ) ×
∏k

i=1 φi(s(ti)− s(ti−1))
,
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where πs(α, β, η, γ) = ϕ1(α)ϕ2(β)ϕ3(η)ϕ4(γ), and

ϕi(xi) =
1√
2πσ2i

exp

[
−(xi − µi)

2

2σ2i

]
, i = 1, 2, 3, 4.

Therefore, using the degradation observations up to time tk, the updated RLD is

P(Rk ≤ T − tk|sk, Ftk) =∫

q

∫

(α,β,η,γ)
P(Rk ≤ T − tk|sk,Ftk , α, β, η, γ, q) νs(α, β, η, γ|sk,Ftk) νQ(q|Ftk ). (10)

The first term in the integrand can be estimated using Equation (6) of Approach I or Equa-

tion (9) of Approach II. The second term in the integrand can be estimated using the technique

of Markov chain Monte Carlo (MCMC) described in Bian and Gebraeel (2013). The last term is

obtained via Theorem 1.

5 Numerical Results

In this section, we illustrate the modeling framework of Section 3 using simulated results and

a real case study. For the first experiment, simulated degradation signals subject to a stochastic

environment serve as our benchmarks. Specifically, 1000 degradation signals were simulated until

they first reach a degradation threshold D, and the first passage time to level D is the compo-

nent lifetime. The first 500 signals are used to estimate parameters of the prior distributions of

(α, β, η, γ), while the remaining 500 are used to illustrate real-time residual lifetime prediction.

The prediction error associated with each simulated signal is computed as follows. Let Li denote

the lifetime of the ith simulated signal, and let L̂i be the estimated lifetime (using our updating

procedure). Here, we use the median of the RLD as an estimate of the residual lifetime Rk. Hence,

L̂i = tk + R̂i
k, where R̂

i
k is the estimated median of the residual lifetime at time tk for signal i.

Then the prediction error for the ith simulated signal (as a percentage) is

δi =
L̂i − Li

Li
× 100. (11)
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The sign of δi indicates whether the error is due to overestimation or underestimation of the

remaining lifetime. Specifically, if δi > 0, then the estimate is optimistic and exceeds the true value

Li. On the other hand, if δi < 0, then the estimate is conservative and is less than Li.

The first set of experiments involves simulated degradation signals against which the estimated

residual lifetime is compared. The main purpose of these experiments is to examine and illustrate

the sensitivity of the Bayesian updating approach to a few of the model’s parameters. Subsequently,

the details of a validation case study are provided in Section 5.2. The results are compared to a

benchmark degradation model presented in Gebraeel et al. (2005), which does not account for the

effect of the environment.

5.1 Simulated Degradation Signals

In this subsection, we test online prediction of the RLD under a variety of scenarios in which the

degradation model and environment process are updated online. Baseline parameter values were

chosen according to Table 1. The degradation threshold value is D = 350 units, and we assume

s(0) = 0. Initially, the environment has two states so that S = {1, 2}.

Table 1: Baseline parameter values: Random environment.

Model parameter Mean of prior p.d.f. Variance of prior p.d.f.

α µ1 = 0.3 σ21 = 0.03
β µ2 = 0.5 σ22 = 0.05
η µ3 = 2.0 σ23 = 0.20
γ µ4 = 2.0 σ24 = 0.20
q1,2 k1,2 = 0.2 θ1,2 = 0.1
q2,1 k2,1 = 0.2 θ2,1 = 0.1

For this analysis, we vary one parameter value while holding all others fixed, and we assess the

effect of m on RLD prediction. For the sake of parity, we use the same mean dwell time for each

environment state. The details of the simulation experiments are provided in what follows:

Group 1: (Assessing the effect of η). Suppose µ3 ∈ {1, 5, 10, 15} and set σ23 = 0.1µ3;

Group 2: (Assessing the effect of γ). Suppose µ4 ∈ {1, 5, 10, 15} and set σ24 = 0.1µ4;

Group 3: (Assessing the effect of Q). Suppose m ∈ {2, 3, 4, 5}. Given m, set ki,j = 0.2/(m−

1) and θi,j = 0.1, for j 6= i. Then the prior density of qi,j has mean θi,jki,j = 0.02/(m − 1)
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for j 6= i. This implies that, initially, the mean dwell time for each state i ∈ S is 1/0.02.

We assess the quality of RLD prediction for different values of η and γ but fix α, β, s(0) and D.

These values are fixed because increasing α or β and/or decreasing D − s(0) have the same effect

on prediction accuracy as decreasing the parameter γ; hence, we focus on parameters involving γ.

For each instance, we simulate degradation signals via the following procedure:

Step B.1: Simulate the environment’s evolution.

(a) Generate an m-state generator matrix Q using the prior distributions. That is, for each

i, j ∈ S such that j 6= i, generate a realization of qi,j, denoted by q∗i,j, from a Γ(ki,j, θi,j)

p.d.f. and define q∗i =
∑

j 6=i q
∗
i,j;

(b) Choose ψ(0) randomly (i.e., any state in S is chosen with probability 1/m);

(c) If the current state is i, generate an exponential holding time with parameter q∗i ;

(d) The environment next transitions to state j with probability q∗i,j/q
∗
i ;

(e) Return to Step B.1(c) until the total elapsed time reaches Tmax = 10, 000. The resulting

sample path can be viewed as a deterministic function of t denoted by u∗(t).

Step B.2: Simulate degradation signals subject to the environment process u∗(t). The

procedure is identical to the deterministic case described in Bian and Gebraeel (2011).

The component lifetime was estimated by observing the degradation signal up to the 50th

(tk = 0.5Li) and 90th (tk = 0.9Li) percentiles of the lifetime. The prediction error was then

computed using Equation (11). Figure 1 depicts the simulation results for a number of instances

using Approach I (sample path averaging) and Approach II (expected future profile) to compute

the RLD as in Section 4. Box plots in the column labeled “50%” summarize the prediction error of

the residual life distribution when tk = 0.5Li, and those in the column labeled “90%” summarize

prediction error when tk = 0.9Li. Table 2 summarizes the time needed to estimate the median of

the RLD.

From these figures, we deduce the following general conclusions: (1) for large η, jumps caused

by environment transitions dominate, i.e., system failure can primarily be attributed to shocks; (2)

for large γ, the diffusion term of the degradation signal dominates, and the effect of the environment
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Figure 1: RLD prediction error using Approach I and Approach II.

Table 2: Comparison of computation time (in secs): Approach I versus Approach II.

Parameter Approach I (50th) Approach II (50th) Approach I (90th) Approach II (90th)

η = 1 90.17 4.92 21.36 2.37
η = 5 88.91 5.32 20.27 3.46
η = 10 89.74 4.77 21.29 2.99
η = 15 92.98 4.91 21.75 2.83

γ = 1 88.26 5.23 22.65 2.51
γ = 5 90.83 5.02 21.73 2.78
γ = 10 89.12 5.94 22.08 2.27
γ = 15 90.91 5.66 21.32 3.32

m = 2 90.54 5.37 21.25 2.86
m = 3 93.32 7.75 22.45 3.98
m = 4 93.87 19.14 22.99 7.69
m = 5 95.45 51.86 23.48 19.03
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can essentially be ignored; and (3) an increase in the number of environment states (m) results

in a sharp increase in the mean and variance of the prediction error. Figure 1 also suggests that

moderate parameter values, especially the number of environment states, should be chosen for the

prior distributions. For example, η ≤ 10, γ ≤ 10, and m ≤ 3 are reasonable for the experiments

we conducted. As compared to using Approach I, Approach II reduces the computational time by

eliminating the need to simulate future environmental profiles.

5.2 A Case Study

In this subsection, we present a case study that examines the residual life of ball bearings

that operate under stochastically evolving environmental profiles. We use vibration-based degra-

dation signals that are generated from an experimental test-bed designed to perform accelerated

degradation tests on a thrust ball bearing using different load and speed conditions. These real

signals, correlated with the degradation of ball bearings, are used to assess the prediction accuracy

of residual life distributions using Approaches I and II. Subsequently, we compare the prediction

errors obtained using our methods with those obtained by the degradation model of Gebraeel et al.

(2005). That model assumes the degradation signal has an exponential form and leads to a normal

approximation of the remaining life distribution. Although the model of Gebraeel et al. (2005)

also uses real-time degradation signals to update the degradation model, it does not account for a

dynamic environmental condition. Therefore, the latter experiment will assess the value of incor-

porating this feature when estimating the remaining useful lifetime of the component. Next, we

describe the experimental setup before presenting the numerical results.

5.2.1 Experimental Setup

Bearing failures are among the most common and important failure types in rotating and

reciprocating machinery, and they have been widely studied in the literature. As noted in Harris

(2001), vibration monitoring is among the most popular condition monitoring techniques for bearing

applications. This is due to the fact that vibration signals contain distinctive frequencies that are

related to various types of bearing defects (see Gebraeel et al. (2005)). The specific experimental

test-bed and data acquisition system used to generate the data for this case study have been

discussed previously in Bian and Gebraeel (2013), Gebraeel et al. (2005), Gebraeel and Pan (2008).
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Therefore, we briefly mention here that the bearing degradation processes were monitored using

vibration signals acquired periodically using piezoelectric accelerometers.

In contract to prior studies that focus on deterministic future environmental profiles (such as

Bian and Gebraeel (2013), Gebraeel and Pan (2008)), this study focuses on testing the prediction

accuracy of component RLD when the future environment/operating condition evolves stochasti-

cally. For instance, in Gebraeel and Pan (2008) it was assumed the future environment state is

fixed at the last observed environment state – a significant departure from the model presented

herein. Bian and Gebraeel (2013) considered a deterministic, cyclic environment with no jumps

in the degradation signal; both of those assumptions are relaxed in our model. Different environ-

mental/operational states affect the degradation rates of bearings, and the state transitions induce

jumps in the amplitudes of degradation signals. Figure 2 depicts the evolution of the vibration

spectra from a degrading bearing as the rotational speed changes, and it shows that the system

experiences a significant shock as the bearing transitions from one operating condition to another.
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Figure 2: Evolution of the vibration spectra of a degrading bearing.

5.2.2 Constructing Degradation Signals with Stochastic Speed Profiles

Vibration-based degradation signals were constructed using the fact that the vibration am-

plitudes of bearing-specific defective frequencies are generally correlated with the severity of the
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bearing’s degradation. Furthermore, we define bearing failure based on the root mean square (RMS)

value of the overall vibration of the test rig. According to industrial standards for machinery vibra-

tion (e.g., ISO 2372), 2.0–2.2 G (G denotes gravitational acceleration) represents a vibration-based

danger level for applications involving general purpose, mid-size machinery (Gebraeel et al. (2005)).

Using this standard, we set the failure threshold at D = 0.025 Vrms (root mean square volts). We

focus on examining the effects of two distinct rotational speeds (2,200 rpm and 2,600 rpm) on

the degradation signals of ball bearings. To construct the state space S = {1, 2}, we examine the

degradation rate in each environmental condition. Thus, state 1 corresponds to the less detrimental

condition (2,200 rpm), and state 2 to the more detrimental condition (2,600 rpm). For a scenario

with more environmental states, a detailed discussion of experimental tests and the ordering of the

degradation rates can be found in Bian and Gebraeel (2013).

Eight degradation tests, labeled Bearings 1–8, were performed, and data from these experiments

were used for prior parameter estimation and online validation. In these experiments, Bearings 1

and 2 were run under constant rotational speed, 2,200 rpm and 2,600 rpm, respectively. Bearings

3–8 were run under the speed profile that evolves according to a CTMC. For this two-state CTMC,

we assume that q1,2 and q2,1 follow prior distributions q1,2 ∼ Γ(3.17 × 10−2, 1.37) and q2,1 ∼

Γ(4.35 × 10−2, 0.53) as depicted in Figure 3. The prior means of q1,2 and q2,1 can be computed as

E(q1,2) = 4.34 × 10−2 and E(q2,1) = 2.31 × 10−2.

State 1 

(2,200 rpm)

State 2 

(2,600 rpm)

)37.1,1017.3(~ 2

2,1q

)53.0,1025.4(~ 2

1,2q

State dwelling time in 

State 1 follows Exp(q1,2)

State dwelling time in 

State 2 follows Exp(q2,1)

Figure 3: Rate diagram for the CTMC governing rotational speed.

Speed profiles were simulated according to the CTMC process depicted in Figure 3. For each

degradation test, we generate realizations of q1,2 and q2,1 from their prior distributions. The state
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dwell times for State 1 and State 2 are generated from exponential populations with parameters

q1,2 and q2,1, respectively. The detailed procedure for generating random environments in provided

in Step B.1 of Section 5.1. Degradation signals were observed and monitored throughout each

degradation test. Figure 4 depicts the degradation signals from Bearing 8 and the corresponding

time-varying speed profiles. The upper plot represents the vibration signal of the bearing, and the

lower plot represents the bearing’s rotational speed.
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Figure 4: Degradation signals for online validation: Bearing 8.

5.2.3 Numerical Findings

We divided the resulting degradation signals into two groups. The signals of Bearings 1-5 were

treated as training data used to estimate the parameters of the degradation model, whereas Bearings

6–8 were treated as testing data used to assess the quality of RLD prediction. The estimated model

parameters obtained from the training data are summarized in Table 3.

Next, the validation Bearings 6–8 were used to evaluate the accuracy of online prediction of the

RLDs. Specifically, degradation signals from the validation bearings observed at different life per-

centiles were used to update the stochastic parameters of the model and update the RLDs. The up-

dated RLDs were evaluated at the pth percentile of the lifetime, for p ∈ {20, 30, 40, 50, 60, 70, 80, 90},
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Table 3: Estimated model parameters using signals of Bearings 1–5.

Parameter Prior mean Prior variance

α µ1 = 7.62× 10−4 σ21 = 1.62 × 10−6

β µ2 = −3.44 × 10−4 σ22 = 4.39 × 10−6

η µ3 = 4.81× 10−3 σ23 = 9.25 × 10−6

γ µ4 = 1.02× 10−3 σ24 = 5.18 × 10−6

using Approaches I and II of Section 4. The prediction errors of the estimated lifetimes are sum-

marized in Table 4.

Table 4: Lifetime prediction error (%) for the validation data.

Observed Bearing 6 Bearing 7 Bearing 8
Up To I II I II I II

30th Percentile 20.43 27.82 22.79 29.23 -18.10 25.98
60th Percentile 9.89 13.32 12.73 16.11 -8.88 -13.37
90th Percentile -9.11 -10.01 9.94 11.98 -7.93 -10.38

The results of Table 4 reveal a few important findings. First, we note that the magnitude

of the prediction error is similar for both methods. This is a significant finding because far less

computational effort is required using Approach II as compared to Approach I. Second, as more

real-time information is revealed (i.e., as p increases), the prediction error decreases monotonically.

For instance, in the case of Bearing 6, the error is nearly 28% when only 30% of the bearing’s

lifetime has been observed; however, this error drops to only 10% when 90% of the lifetime has

been observed. That is, as the true failure time approaches, the ability to predict this failure time

improves. For components with very long lifetimes, these errors may be acceptable.

5.3 Benchmarking Performance

In this subsection, we compare the prediction errors of our techniques with those of a benchmark

model presented in Gebraeel et al. (2005) that characterizes degradation signals without considering

the effects of the environment. This model was chosen as a benchmark for two main reasons. First,

the model in Gebraeel et al. (2005) utilizes real-time degradation signals to update the degradation

status and obtain the corresponding posterior RLD for an operating component. Therefore, we

are able to evaluate the prediction accuracy of both models at the same sampling times using the
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same degradation signals. Second, the model in Gebraeel et al. (2005) is similar to our model in

that it includes a Brownian motion signal noise term; however, it does not account explicitly for

time-varying environment effects or signal jumps. For these reasons, any potential performance

improvements using our methods can be attributed to the incorporation of environmental effects.

20 30 40 50 60 70 80 90

0
20

40
60

80

Lifetime Percentile (%)

|P
re

di
ct

io
n 

E
rr

or
| (

%
)

Bearing 6

20 30 40 50 60 70 80 90

0
20

40
60

80

Lifetime Percentile (%)

|P
re

di
ct

io
n 

E
rr

or
| (

%
)

Bearing 7

20 30 40 50 60 70 80 90

0
20

40
60

80

Lifetime Percentile (%)

|P
re

di
ct

io
n 

E
rr

or
| (

%
)

Bearing 8

Figure 5: Absolute prediction error: Approach I (△), Approach II (�), Benchmark (∗).

The degradation signal model in Gebraeel et al. (2005) assumes the exponential form

S(t) = φ+ θ exp
(
βt+ γW (t)− γ2t/2

)
, t ≥ 0, (12)

where φ is a constant, θ is a lognormal random variable, β ∼ N(µ1, σ
2
1) and γW (t) ∼ N(0, γ2t).

Using a simple transformation, Gebraeel et al. (2005) derived an expression for the RLD at time

tk, which can be expressed as

P(Rk ≤ t− tk|sk) = Φ

(
µ̃(t)−D√

σ̃2(t)

)
, (13)

where µ̃(t) and σ̃2(t) denote the posterior mean and variance of S(t), respectively, D is the failure

threshold and Φ is the standard normal c.d.f.

Equation (13) was used to estimate the RLD of each test bearing, and the absolute prediction

errors (|δi|) were computed via Equation (11) for each case. These absolute error percentages are

graphed in Figure 5, along with the errors obtained using Approaches I and II of Section 4. It is

seen that the prediction error is drastically reduced using Approaches I and II when the effect of a

time-varying environment is considered in the model.
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It is also noteworthy that, although the performance of the benchmark method improves over time

(as degradation information is progressively revealed), the magnitude of the prediction error is more

than double those of our techniques, even at 90% of the lifetime. Figure 5 also highlights the close

correspondence between Approaches I and II and corroborates the assertion that performance is

only slightly diminished when using the expected number of visits to each environment state as

opposed to sample path averaging.

6 Conclusions

This paper has presented a stochastic degradation modeling framework for estimating the RLD

of partially-degraded components that are subject to time-varying environment or operating con-

ditions. Our approach uses historical and real-time signals related to environment conditions, as

well as the underlying physical degradation process. Unique to our model is the use of potential fu-

ture environment profiles for estimating the RLD. The case study involving empirically-generated,

vibration-based degradation signals lends significant credibility to the usefulness of our approach.

It was shown that the Bayesian updating scheme provides reasonable lifetime prediction results,

especially as information is progressively revealed over time.

The modeling framework and numerical results are encouraging; however, this research has

raised a few interesting and important questions that are worthy of further consideration. First,

it will be important to devise a scheme for aggregating (or clustering) similar environment condi-

tions. The present model assumes that the number of distinct environment states (m) is known

a priori, but estimating the number of distinct states is an important and challenging next step.

Aggregating states that have similar effects on the degradation signal will reduce the number of

environment states, thereby improving computational efficiency. Second, in case the dwell time in

each environment state is not exponentially distributed, it may be possible to apply phase-type

approximations, such as those proposed in Kharoufeh et al. (2010). The revised stochastic process

describing the environment would retain the Markov property, but at the expense of an enlarged

state space.
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Appendix: Proof of Theorem 2

Proof. For a single linear boundary on the interval [0, T ] of the form d(v) = av+b, Siegmund (1986)

proved that the (conditional) probability that a standard BM process does not cross the boundary

in this interval is given by

P(W (v) < av + b, v < T |W (T ) = x) = 1− exp

[
−2b(aT + b− x)

T

]
.

For our model, we have

P(γW (v) < d(v), v ≤ T ) = P

(
W (v) <

d(v)

γ
, v ≤ T

)

=

∫ m1/γ

−∞

P

(
W (v) <

d(v)

γ
, v < v1|W (v1) = x1

)

× P

(
W (v) <

d(v)

γ
, v > v1|W (v1) = x1

)
dPv1(x1), (14)

where

dPv(x) =
1√
2πv

exp
(
−x2/2v

)
dx,

i.e., dPv(x)/dx is the probability density function ofW (v). The product of (14) holds since {W (t) :

t ≥ 0} possesses the strong Markov property. Using the results of Siegmund (1986), the first term

in the integrand of (14) is given by

P

(
W (v) <

d(v)

γ
, v < v1|W (v1) = x1

)
= 1− exp


−

2d0
γ (

d−
1

γ − x1)

v1




Owing to the fact that a standard BM process has stationary and independent increments, provided

that W (v1) = x1, it is clear that W (v + v1) − x1 is also a BM process starting from the origin.

Arguing along the same lines as Wang and Potzelberger (1997), for any v ∈ (v1, T ], the second
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term in the integrand of (14) is

P

(
W (v) <

d(v)

γ
|W (v1) = x1

)
= P

(
W (v) <

d(v + v1)

γ
− x1, v ≤ T − v1

)

=

∫ (m2−x1)/γ

−∞


1− exp


−

2(d1γ − x1)(
d−
2

γ − x1 − x2)

(v2 − v1)






× P

(
W (v) <

d(v + v1)

γ
− x1, v ∈ (v2 − v1, T − v1)|W (v2 − v1) = x2

)
dPv2−v1(x2)

=

∫ m2/γ

−∞


1− exp


−

2(d1γ − x1)(
d−
2

γ − x2)

(v2 − v1)






× P

(
W (v) <

d(v + v1)

γ
− x1, v ∈ (v2 − v1, T − v1)|W (v2 − v1) = x2 − x1

)
dPv2−v1(x2 − x1)

=

∫ m2/γ

−∞

(
1− exp

[
−2(d1/γ − x1)(d

−
2 /γ − x2)

(v2 − v1)

])

× P

(
W (v) <

d(v + v2)

γ
− x2, v ≤ T − v2

)
dPv2−v1(x2 − x1).

Now, similar steps can be followed to obtain the probability

P(W (v) < d(v + v2)/γ − x2, v ≤ T − v2)dPv2−v1(x2 − x1).

Repeating these steps in an inductive manner, one obtains

P

(
W (v) <

d(v)

γ
, vn−1 < v ≤ T

)

=

∫ mn/γ

−∞


1− exp


−

2(dn−1

γ − xn−1)(
d−n
γ − xn)

vn − vn−1




 dPvn−vn−1

(xn − xn−1).

where for j = 1, 2, . . . , n and x0 = 0,

dPvj−vj−1
(xj − xj−1) =

1√
2π(vj − vj−1)

exp

[
− (xj − xj−1)

2

2(xj − xj−1)

]
dxj
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since {W (t) : t ≥ 0} is a BM process. Finally, due to the independent increments property, we

obtain

P(W (v) < d(v)/γ, v ≤ T ) =

∫ m1

γ

−∞

· · ·
∫ mn

γ

−∞

n∏

j=1

(
1− exp

[
(dj−1/γ − xj−1)(d

−
j /γ − xj)

vj − vj−1

])
g(x)dx

(15)

where x = (x1, x2, . . . , xn)
′, and

g(x) =

n∏

j=1

1√
2π(vj − vj−1)

exp

[
−(xj − xj−1)

2

2(vj − vj−1)

]
.

The result follows directly by noting that g(x) is the probability density function of the random

vector (W (v1),W (v2), . . . ,W (vn)).
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